llvm/lib/CodeGen/IfConversion.cpp
Matthias Braun be01ee2ef3 IfConversion: Use references instead of pointers where possible; NFC
Also put some commonly used subexpressions into variables.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278895 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-17 02:52:01 +00:00

1900 lines
70 KiB
C++

//===-- IfConversion.cpp - Machine code if conversion pass. ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level if-conversion pass, which
// tries to convert conditional branches into predicated instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "BranchFolding.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "ifcvt"
// Hidden options for help debugging.
static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
cl::init(false), cl::Hidden);
static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
cl::init(true), cl::Hidden);
STATISTIC(NumSimple, "Number of simple if-conversions performed");
STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
STATISTIC(NumDupBBs, "Number of duplicated blocks");
STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
namespace {
class IfConverter : public MachineFunctionPass {
enum IfcvtKind {
ICNotClassfied, // BB data valid, but not classified.
ICSimpleFalse, // Same as ICSimple, but on the false path.
ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
ICTriangleRev, // Same as ICTriangle, but true path rev condition.
ICTriangleFalse, // Same as ICTriangle, but on the false path.
ICTriangle, // BB is entry of a triangle sub-CFG.
ICDiamond // BB is entry of a diamond sub-CFG.
};
/// One per MachineBasicBlock, this is used to cache the result
/// if-conversion feasibility analysis. This includes results from
/// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
/// classification, and common tail block of its successors (if it's a
/// diamond shape), its size, whether it's predicable, and whether any
/// instruction can clobber the 'would-be' predicate.
///
/// IsDone - True if BB is not to be considered for ifcvt.
/// IsBeingAnalyzed - True if BB is currently being analyzed.
/// IsAnalyzed - True if BB has been analyzed (info is still valid).
/// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
/// IsBrAnalyzable - True if analyzeBranch() returns false.
/// HasFallThrough - True if BB may fallthrough to the following BB.
/// IsUnpredicable - True if BB is known to be unpredicable.
/// ClobbersPred - True if BB could modify predicates (e.g. has
/// cmp, call, etc.)
/// NonPredSize - Number of non-predicated instructions.
/// ExtraCost - Extra cost for multi-cycle instructions.
/// ExtraCost2 - Some instructions are slower when predicated
/// BB - Corresponding MachineBasicBlock.
/// TrueBB / FalseBB- See analyzeBranch().
/// BrCond - Conditions for end of block conditional branches.
/// Predicate - Predicate used in the BB.
struct BBInfo {
bool IsDone : 1;
bool IsBeingAnalyzed : 1;
bool IsAnalyzed : 1;
bool IsEnqueued : 1;
bool IsBrAnalyzable : 1;
bool HasFallThrough : 1;
bool IsUnpredicable : 1;
bool CannotBeCopied : 1;
bool ClobbersPred : 1;
unsigned NonPredSize;
unsigned ExtraCost;
unsigned ExtraCost2;
MachineBasicBlock *BB;
MachineBasicBlock *TrueBB;
MachineBasicBlock *FalseBB;
SmallVector<MachineOperand, 4> BrCond;
SmallVector<MachineOperand, 4> Predicate;
BBInfo() : IsDone(false), IsBeingAnalyzed(false),
IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
HasFallThrough(false), IsUnpredicable(false),
CannotBeCopied(false), ClobbersPred(false), NonPredSize(0),
ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr),
FalseBB(nullptr) {}
};
/// Record information about pending if-conversions to attempt:
/// BBI - Corresponding BBInfo.
/// Kind - Type of block. See IfcvtKind.
/// NeedSubsumption - True if the to-be-predicated BB has already been
/// predicated.
/// NumDups - Number of instructions that would be duplicated due
/// to this if-conversion. (For diamonds, the number of
/// identical instructions at the beginnings of both
/// paths).
/// NumDups2 - For diamonds, the number of identical instructions
/// at the ends of both paths.
struct IfcvtToken {
BBInfo &BBI;
IfcvtKind Kind;
bool NeedSubsumption;
unsigned NumDups;
unsigned NumDups2;
IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0)
: BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {}
};
/// Results of if-conversion feasibility analysis indexed by basic block
/// number.
std::vector<BBInfo> BBAnalysis;
TargetSchedModel SchedModel;
const TargetLoweringBase *TLI;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const MachineBranchProbabilityInfo *MBPI;
MachineRegisterInfo *MRI;
LivePhysRegs Redefs;
LivePhysRegs DontKill;
bool PreRegAlloc;
bool MadeChange;
int FnNum;
std::function<bool(const Function &)> PredicateFtor;
public:
static char ID;
IfConverter(std::function<bool(const Function &)> Ftor = nullptr)
: MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) {
initializeIfConverterPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineBranchProbabilityInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::AllVRegsAllocated);
}
private:
bool ReverseBranchCondition(BBInfo &BBI) const;
bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
BranchProbability Prediction) const;
bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
bool FalseBranch, unsigned &Dups,
BranchProbability Prediction) const;
bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned &Dups1, unsigned &Dups2) const;
void AnalyzeBranches(BBInfo &BBI);
void ScanInstructions(BBInfo &BBI,
MachineBasicBlock::iterator &Begin,
MachineBasicBlock::iterator &End) const;
void AnalyzeBlock(MachineBasicBlock &MBB,
std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond,
bool isTriangle = false, bool RevBranch = false);
void AnalyzeBlocks(MachineFunction &MF,
std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
void InvalidatePreds(MachineBasicBlock &MBB);
void RemoveExtraEdges(BBInfo &BBI);
bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
unsigned NumDups1, unsigned NumDups2);
void PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond,
SmallSet<unsigned, 4> *LaterRedefs = nullptr);
void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
SmallVectorImpl<MachineOperand> &Cond,
bool IgnoreBr = false);
void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
unsigned Cycle, unsigned Extra,
BranchProbability Prediction) const {
return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
Prediction);
}
bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
unsigned TCycle, unsigned TExtra,
MachineBasicBlock &FBB,
unsigned FCycle, unsigned FExtra,
BranchProbability Prediction) const {
return TCycle > 0 && FCycle > 0 &&
TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
Prediction);
}
/// Returns true if Block ends without a terminator.
bool blockAlwaysFallThrough(BBInfo &BBI) const {
return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
}
/// Used to sort if-conversion candidates.
static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
const std::unique_ptr<IfcvtToken> &C2) {
int Incr1 = (C1->Kind == ICDiamond)
? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
int Incr2 = (C2->Kind == ICDiamond)
? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
if (Incr1 > Incr2)
return true;
else if (Incr1 == Incr2) {
// Favors subsumption.
if (!C1->NeedSubsumption && C2->NeedSubsumption)
return true;
else if (C1->NeedSubsumption == C2->NeedSubsumption) {
// Favors diamond over triangle, etc.
if ((unsigned)C1->Kind < (unsigned)C2->Kind)
return true;
else if (C1->Kind == C2->Kind)
return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
}
}
return false;
}
};
char IfConverter::ID = 0;
}
char &llvm::IfConverterID = IfConverter::ID;
INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false)
bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()) ||
(PredicateFtor && !PredicateFtor(*MF.getFunction())))
return false;
const TargetSubtargetInfo &ST = MF.getSubtarget();
TLI = ST.getTargetLowering();
TII = ST.getInstrInfo();
TRI = ST.getRegisterInfo();
BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
MRI = &MF.getRegInfo();
SchedModel.init(ST.getSchedModel(), &ST, TII);
if (!TII) return false;
PreRegAlloc = MRI->isSSA();
bool BFChange = false;
if (!PreRegAlloc) {
// Tail merge tend to expose more if-conversion opportunities.
BranchFolder BF(true, false, MBFI, *MBPI);
BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
getAnalysisIfAvailable<MachineModuleInfo>());
}
DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
<< MF.getName() << "\'");
if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
DEBUG(dbgs() << " skipped\n");
return false;
}
DEBUG(dbgs() << "\n");
MF.RenumberBlocks();
BBAnalysis.resize(MF.getNumBlockIDs());
std::vector<std::unique_ptr<IfcvtToken>> Tokens;
MadeChange = false;
unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
// Do an initial analysis for each basic block and find all the potential
// candidates to perform if-conversion.
bool Change = false;
AnalyzeBlocks(MF, Tokens);
while (!Tokens.empty()) {
std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
Tokens.pop_back();
BBInfo &BBI = Token->BBI;
IfcvtKind Kind = Token->Kind;
unsigned NumDups = Token->NumDups;
unsigned NumDups2 = Token->NumDups2;
// If the block has been evicted out of the queue or it has already been
// marked dead (due to it being predicated), then skip it.
if (BBI.IsDone)
BBI.IsEnqueued = false;
if (!BBI.IsEnqueued)
continue;
BBI.IsEnqueued = false;
bool RetVal = false;
switch (Kind) {
default: llvm_unreachable("Unexpected!");
case ICSimple:
case ICSimpleFalse: {
bool isFalse = Kind == ICSimpleFalse;
if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ?
" false" : "")
<< "): BB#" << BBI.BB->getNumber() << " ("
<< ((Kind == ICSimpleFalse)
? BBI.FalseBB->getNumber()
: BBI.TrueBB->getNumber()) << ") ");
RetVal = IfConvertSimple(BBI, Kind);
DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) {
if (isFalse) ++NumSimpleFalse;
else ++NumSimple;
}
break;
}
case ICTriangle:
case ICTriangleRev:
case ICTriangleFalse:
case ICTriangleFRev: {
bool isFalse = Kind == ICTriangleFalse;
bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
if (DisableTriangle && !isFalse && !isRev) break;
if (DisableTriangleR && !isFalse && isRev) break;
if (DisableTriangleF && isFalse && !isRev) break;
if (DisableTriangleFR && isFalse && isRev) break;
DEBUG(dbgs() << "Ifcvt (Triangle");
if (isFalse)
DEBUG(dbgs() << " false");
if (isRev)
DEBUG(dbgs() << " rev");
DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ");
RetVal = IfConvertTriangle(BBI, Kind);
DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) {
if (isFalse) {
if (isRev) ++NumTriangleFRev;
else ++NumTriangleFalse;
} else {
if (isRev) ++NumTriangleRev;
else ++NumTriangle;
}
}
break;
}
case ICDiamond: {
if (DisableDiamond) break;
DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ");
RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2);
DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) ++NumDiamonds;
break;
}
}
Change |= RetVal;
NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
NumTriangleFalse + NumTriangleFRev + NumDiamonds;
if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
break;
}
if (!Change)
break;
MadeChange |= Change;
}
Tokens.clear();
BBAnalysis.clear();
if (MadeChange && IfCvtBranchFold) {
BranchFolder BF(false, false, MBFI, *MBPI);
BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
getAnalysisIfAvailable<MachineModuleInfo>());
}
MadeChange |= BFChange;
return MadeChange;
}
/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
MachineBasicBlock *TrueBB) {
for (MachineBasicBlock *SuccBB : BB->successors()) {
if (SuccBB != TrueBB)
return SuccBB;
}
return nullptr;
}
/// Reverse the condition of the end of the block branch. Swap block's 'true'
/// and 'false' successors.
bool IfConverter::ReverseBranchCondition(BBInfo &BBI) const {
DebugLoc dl; // FIXME: this is nowhere
if (!TII->ReverseBranchCondition(BBI.BrCond)) {
TII->RemoveBranch(*BBI.BB);
TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
std::swap(BBI.TrueBB, BBI.FalseBB);
return true;
}
return false;
}
/// Returns the next block in the function blocks ordering. If it is the end,
/// returns NULL.
static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
MachineFunction::iterator I = MBB.getIterator();
MachineFunction::iterator E = MBB.getParent()->end();
if (++I == E)
return nullptr;
return &*I;
}
/// Returns true if the 'true' block (along with its predecessor) forms a valid
/// simple shape for ifcvt. It also returns the number of instructions that the
/// ifcvt would need to duplicate if performed in Dups.
bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
BranchProbability Prediction) const {
Dups = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
return false;
if (TrueBBI.IsBrAnalyzable)
return false;
if (TrueBBI.BB->pred_size() > 1) {
if (TrueBBI.CannotBeCopied ||
!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
Prediction))
return false;
Dups = TrueBBI.NonPredSize;
}
return true;
}
/// Returns true if the 'true' and 'false' blocks (along with their common
/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
/// true, it checks if 'true' block's false branch branches to the 'false' block
/// rather than the other way around. It also returns the number of instructions
/// that the ifcvt would need to duplicate if performed in 'Dups'.
bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
bool FalseBranch, unsigned &Dups,
BranchProbability Prediction) const {
Dups = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
return false;
if (TrueBBI.BB->pred_size() > 1) {
if (TrueBBI.CannotBeCopied)
return false;
unsigned Size = TrueBBI.NonPredSize;
if (TrueBBI.IsBrAnalyzable) {
if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
// Ends with an unconditional branch. It will be removed.
--Size;
else {
MachineBasicBlock *FExit = FalseBranch
? TrueBBI.TrueBB : TrueBBI.FalseBB;
if (FExit)
// Require a conditional branch
++Size;
}
}
if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
return false;
Dups = Size;
}
MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
MachineFunction::iterator I = TrueBBI.BB->getIterator();
if (++I == TrueBBI.BB->getParent()->end())
return false;
TExit = &*I;
}
return TExit && TExit == FalseBBI.BB;
}
/// Increment \p It until it points to a non-debug instruction or to \p End.
/// @param It Iterator to increment
/// @param End Iterator that points to end. Will be compared to It
/// @returns true if It == End, false otherwise.
static inline bool skipDebugInstructionsForward(
MachineBasicBlock::iterator &It,
MachineBasicBlock::iterator &End) {
while (It != End && It->isDebugValue())
It++;
return It == End;
}
/// Decrement \p It until it points to a non-debug instruction or to \p Begin.
/// @param It Iterator to decrement.
/// @param Begin Iterator that points to beginning. Will be compared to It
/// @returns true if It == Begin, false otherwise.
static inline bool skipDebugInstructionsBackward(
MachineBasicBlock::iterator &It,
MachineBasicBlock::iterator &Begin) {
while (It != Begin && It->isDebugValue())
It--;
return It == Begin;
}
/// Count duplicated instructions and move the iterators to show where they
/// are.
/// @param TIB True Iterator Begin
/// @param FIB False Iterator Begin
/// These two iterators initially point to the first instruction of the two
/// blocks, and finally point to the first non-shared instruction.
/// @param TIE True Iterator End
/// @param FIE False Iterator End
/// These two iterators initially point to End() for the two blocks() and
/// finally point to the first shared instruction in the tail.
/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
/// two blocks.
static void countDuplicatedInstructions(
MachineBasicBlock::iterator &TIB,
MachineBasicBlock::iterator &FIB,
MachineBasicBlock::iterator &TIE,
MachineBasicBlock::iterator &FIE,
unsigned &Dups1, unsigned &Dups2,
MachineBasicBlock &TBB, MachineBasicBlock &FBB,
bool SkipConditionalBranches) {
while (TIB != TIE && FIB != FIE) {
// Skip dbg_value instructions. These do not count.
if(skipDebugInstructionsForward(TIB, TIE))
break;
if(skipDebugInstructionsForward(FIB, FIE))
break;
if (!TIB->isIdenticalTo(*FIB))
break;
++Dups1;
++TIB;
++FIB;
}
// Now, in preparation for counting duplicate instructions at the ends of the
// blocks, move the end iterators up past any branch instructions.
// If both blocks are returning don't skip the branches, since they will
// likely be both identical return instructions. In such cases the return
// can be left unpredicated.
// Check for already containing all of the block.
if (TIB == TIE || FIB == FIE)
return;
--TIE;
--FIE;
if (!TBB.succ_empty() || !FBB.succ_empty()) {
if (SkipConditionalBranches) {
while (TIE != TIB && TIE->isBranch())
--TIE;
while (FIE != FIB && FIE->isBranch())
--FIE;
} else {
while (TIE != TIB && TIE->isUnconditionalBranch())
--TIE;
while (FIE != FIB && FIE->isUnconditionalBranch())
--FIE;
}
}
// If Dups1 includes all of a block, then don't count duplicate
// instructions at the end of the blocks.
if (TIB == TIE || FIB == FIE)
return;
// Count duplicate instructions at the ends of the blocks.
while (TIE != TIB && FIE != FIB) {
// Skip dbg_value instructions. These do not count.
if (skipDebugInstructionsBackward(TIE, TIB))
break;
if (skipDebugInstructionsBackward(FIE, FIB))
break;
if (!TIE->isIdenticalTo(*FIE))
break;
// If we are trying to make sure the conditional branches are the same, we
// still don't want to count them.
if (SkipConditionalBranches || !TIE->isBranch())
++Dups2;
--TIE;
--FIE;
}
}
/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) forms a valid diamond shape for ifcvt.
bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned &Dups1, unsigned &Dups2) const {
Dups1 = Dups2 = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
return false;
MachineBasicBlock *TT = TrueBBI.TrueBB;
MachineBasicBlock *FT = FalseBBI.TrueBB;
if (!TT && blockAlwaysFallThrough(TrueBBI))
TT = getNextBlock(*TrueBBI.BB);
if (!FT && blockAlwaysFallThrough(FalseBBI))
FT = getNextBlock(*FalseBBI.BB);
if (TT != FT)
return false;
if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
return false;
if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
return false;
// FIXME: Allow true block to have an early exit?
if (TrueBBI.FalseBB || FalseBBI.FalseBB ||
(TrueBBI.ClobbersPred && FalseBBI.ClobbersPred))
return false;
// Count duplicate instructions at the beginning and end of the true and
// false blocks.
MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
countDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
*TrueBBI.BB, *FalseBBI.BB,
/* SkipConditionalBranches */ true);
return true;
}
/// AnalyzeBranches - Look at the branches at the end of a block to determine if
/// the block is predicable.
void IfConverter::AnalyzeBranches(BBInfo &BBI) {
if (BBI.IsDone)
return;
BBI.TrueBB = BBI.FalseBB = nullptr;
BBI.BrCond.clear();
BBI.IsBrAnalyzable =
!TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
if (BBI.BrCond.size()) {
// No false branch. This BB must end with a conditional branch and a
// fallthrough.
if (!BBI.FalseBB)
BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
if (!BBI.FalseBB) {
// Malformed bcc? True and false blocks are the same?
BBI.IsUnpredicable = true;
}
}
}
/// ScanInstructions - Scan all the instructions in the block to determine if
/// the block is predicable. In most cases, that means all the instructions
/// in the block are isPredicable(). Also checks if the block contains any
/// instruction which can clobber a predicate (e.g. condition code register).
/// If so, the block is not predicable unless it's the last instruction.
void IfConverter::ScanInstructions(BBInfo &BBI,
MachineBasicBlock::iterator &Begin,
MachineBasicBlock::iterator &End) const {
if (BBI.IsDone || BBI.IsUnpredicable)
return;
bool AlreadyPredicated = !BBI.Predicate.empty();
BBI.NonPredSize = 0;
BBI.ExtraCost = 0;
BBI.ExtraCost2 = 0;
BBI.ClobbersPred = false;
for (MachineInstr &MI : make_range(Begin, End)) {
if (MI.isDebugValue())
continue;
// It's unsafe to duplicate convergent instructions in this context, so set
// BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
// following CFG, which is subject to our "simple" transformation.
//
// BB0 // if (c1) goto BB1; else goto BB2;
// / \
// BB1 |
// | BB2 // if (c2) goto TBB; else goto FBB;
// | / |
// | / |
// TBB |
// | |
// | FBB
// |
// exit
//
// Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
// be unconditional, and in BB2, they'd be predicated upon c2), and suppose
// TBB contains a convergent instruction. This is safe iff doing so does
// not add a control-flow dependency to the convergent instruction -- i.e.,
// it's safe iff the set of control flows that leads us to the convergent
// instruction does not get smaller after the transformation.
//
// Originally we executed TBB if c1 || c2. After the transformation, there
// are two copies of TBB's instructions. We get to the first if c1, and we
// get to the second if !c1 && c2.
//
// There are clearly fewer ways to satisfy the condition "c1" than
// "c1 || c2". Since we've shrunk the set of control flows which lead to
// our convergent instruction, the transformation is unsafe.
if (MI.isNotDuplicable() || MI.isConvergent())
BBI.CannotBeCopied = true;
bool isPredicated = TII->isPredicated(MI);
bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
// A conditional branch is not predicable, but it may be eliminated.
if (isCondBr)
continue;
if (!isPredicated) {
BBI.NonPredSize++;
unsigned ExtraPredCost = TII->getPredicationCost(MI);
unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
if (NumCycles > 1)
BBI.ExtraCost += NumCycles-1;
BBI.ExtraCost2 += ExtraPredCost;
} else if (!AlreadyPredicated) {
// FIXME: This instruction is already predicated before the
// if-conversion pass. It's probably something like a conditional move.
// Mark this block unpredicable for now.
BBI.IsUnpredicable = true;
return;
}
if (BBI.ClobbersPred && !isPredicated) {
// Predicate modification instruction should end the block (except for
// already predicated instructions and end of block branches).
// Predicate may have been modified, the subsequent (currently)
// unpredicated instructions cannot be correctly predicated.
BBI.IsUnpredicable = true;
return;
}
// FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
// still potentially predicable.
std::vector<MachineOperand> PredDefs;
if (TII->DefinesPredicate(MI, PredDefs))
BBI.ClobbersPred = true;
if (!TII->isPredicable(MI)) {
BBI.IsUnpredicable = true;
return;
}
}
}
/// Determine if the block is a suitable candidate to be predicated by the
/// specified predicate.
bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
SmallVectorImpl<MachineOperand> &Pred,
bool isTriangle, bool RevBranch) {
// If the block is dead or unpredicable, then it cannot be predicated.
if (BBI.IsDone || BBI.IsUnpredicable)
return false;
// If it is already predicated but we couldn't analyze its terminator, the
// latter might fallthrough, but we can't determine where to.
// Conservatively avoid if-converting again.
if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
return false;
// If it is already predicated, check if the new predicate subsumes
// its predicate.
if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
return false;
if (BBI.BrCond.size()) {
if (!isTriangle)
return false;
// Test predicate subsumption.
SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (RevBranch) {
if (TII->ReverseBranchCondition(Cond))
return false;
}
if (TII->ReverseBranchCondition(RevPred) ||
!TII->SubsumesPredicate(Cond, RevPred))
return false;
}
return true;
}
/// Analyze the structure of the sub-CFG starting from the specified block.
/// Record its successors and whether it looks like an if-conversion candidate.
void IfConverter::AnalyzeBlock(
MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
struct BBState {
BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
MachineBasicBlock *MBB;
/// This flag is true if MBB's successors have been analyzed.
bool SuccsAnalyzed;
};
// Push MBB to the stack.
SmallVector<BBState, 16> BBStack(1, MBB);
while (!BBStack.empty()) {
BBState &State = BBStack.back();
MachineBasicBlock *BB = State.MBB;
BBInfo &BBI = BBAnalysis[BB->getNumber()];
if (!State.SuccsAnalyzed) {
if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
BBStack.pop_back();
continue;
}
BBI.BB = BB;
BBI.IsBeingAnalyzed = true;
AnalyzeBranches(BBI);
MachineBasicBlock::iterator Begin = BBI.BB->begin();
MachineBasicBlock::iterator End = BBI.BB->end();
ScanInstructions(BBI, Begin, End);
// Unanalyzable or ends with fallthrough or unconditional branch, or if is
// not considered for ifcvt anymore.
if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
continue;
}
// Do not ifcvt if either path is a back edge to the entry block.
if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
continue;
}
// Do not ifcvt if true and false fallthrough blocks are the same.
if (!BBI.FalseBB) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
continue;
}
// Push the False and True blocks to the stack.
State.SuccsAnalyzed = true;
BBStack.push_back(*BBI.FalseBB);
BBStack.push_back(*BBI.TrueBB);
continue;
}
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
if (TrueBBI.IsDone && FalseBBI.IsDone) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
continue;
}
SmallVector<MachineOperand, 4>
RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
bool CanRevCond = !TII->ReverseBranchCondition(RevCond);
unsigned Dups = 0;
unsigned Dups2 = 0;
bool TNeedSub = !TrueBBI.Predicate.empty();
bool FNeedSub = !FalseBBI.Predicate.empty();
bool Enqueued = false;
BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) &&
MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) +
TrueBBI.ExtraCost), TrueBBI.ExtraCost2,
*FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) +
FalseBBI.ExtraCost),FalseBBI.ExtraCost2,
Prediction) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond) &&
FeasibilityAnalysis(FalseBBI, RevCond)) {
// Diamond:
// EBB
// / \_
// | |
// TBB FBB
// \ /
// TailBB
// Note TailBB can be empty.
Tokens.push_back(llvm::make_unique<IfcvtToken>(
BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2));
Enqueued = true;
}
if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
TrueBBI.ExtraCost2, Prediction) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
// Triangle:
// EBB
// | \_
// | |
// | TBB
// | /
// FBB
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
Enqueued = true;
}
if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
TrueBBI.ExtraCost2, Prediction) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
Enqueued = true;
}
if (ValidSimple(TrueBBI, Dups, Prediction) &&
MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
TrueBBI.ExtraCost2, Prediction) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
// Simple (split, no rejoin):
// EBB
// | \_
// | |
// | TBB---> exit
// |
// FBB
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
Enqueued = true;
}
if (CanRevCond) {
// Try the other path...
if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
Prediction.getCompl()) &&
MeetIfcvtSizeLimit(*FalseBBI.BB,
FalseBBI.NonPredSize + FalseBBI.ExtraCost,
FalseBBI.ExtraCost2, Prediction.getCompl()) &&
FeasibilityAnalysis(FalseBBI, RevCond, true)) {
Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
FNeedSub, Dups));
Enqueued = true;
}
if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
Prediction.getCompl()) &&
MeetIfcvtSizeLimit(*FalseBBI.BB,
FalseBBI.NonPredSize + FalseBBI.ExtraCost,
FalseBBI.ExtraCost2, Prediction.getCompl()) &&
FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
Enqueued = true;
}
if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
MeetIfcvtSizeLimit(*FalseBBI.BB,
FalseBBI.NonPredSize + FalseBBI.ExtraCost,
FalseBBI.ExtraCost2, Prediction.getCompl()) &&
FeasibilityAnalysis(FalseBBI, RevCond)) {
Tokens.push_back(
llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
Enqueued = true;
}
}
BBI.IsEnqueued = Enqueued;
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
BBStack.pop_back();
}
}
/// Analyze all blocks and find entries for all if-conversion candidates.
void IfConverter::AnalyzeBlocks(
MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
for (MachineBasicBlock &MBB : MF)
AnalyzeBlock(MBB, Tokens);
// Sort to favor more complex ifcvt scheme.
std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
}
/// Returns true either if ToMBB is the next block after MBB or that all the
/// intervening blocks are empty (given MBB can fall through to its next block).
static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
MachineFunction::iterator PI = MBB.getIterator();
MachineFunction::iterator I = std::next(PI);
MachineFunction::iterator TI = ToMBB.getIterator();
MachineFunction::iterator E = MBB.getParent()->end();
while (I != TI) {
// Check isSuccessor to avoid case where the next block is empty, but
// it's not a successor.
if (I == E || !I->empty() || !PI->isSuccessor(&*I))
return false;
PI = I++;
}
return true;
}
/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
/// can be if-converted. If predecessor is already enqueued, dequeue it!
void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
if (PBBI.IsDone || PBBI.BB == &MBB)
continue;
PBBI.IsAnalyzed = false;
PBBI.IsEnqueued = false;
}
}
/// Inserts an unconditional branch from \p MBB to \p ToMBB.
static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
const TargetInstrInfo *TII) {
DebugLoc dl; // FIXME: this is nowhere
SmallVector<MachineOperand, 0> NoCond;
TII->InsertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
}
/// Remove true / false edges if either / both are no longer successors.
void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond))
BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
}
/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
/// values defined in MI which are also live/used by MI.
static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
const TargetRegisterInfo *TRI = MI.getParent()->getParent()
->getSubtarget().getRegisterInfo();
// Before stepping forward past MI, remember which regs were live
// before MI. This is needed to set the Undef flag only when reg is
// dead.
SparseSet<unsigned> LiveBeforeMI;
LiveBeforeMI.setUniverse(TRI->getNumRegs());
for (unsigned Reg : Redefs)
LiveBeforeMI.insert(Reg);
SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
Redefs.stepForward(MI, Clobbers);
// Now add the implicit uses for each of the clobbered values.
for (auto Clobber : Clobbers) {
// FIXME: Const cast here is nasty, but better than making StepForward
// take a mutable instruction instead of const.
unsigned Reg = Clobber.first;
MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
MachineInstr *OpMI = Op.getParent();
MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI);
if (Op.isRegMask()) {
// First handle regmasks. They clobber any entries in the mask which
// means that we need a def for those registers.
if (LiveBeforeMI.count(Reg))
MIB.addReg(Reg, RegState::Implicit);
// We also need to add an implicit def of this register for the later
// use to read from.
// For the register allocator to have allocated a register clobbered
// by the call which is used later, it must be the case that
// the call doesn't return.
MIB.addReg(Reg, RegState::Implicit | RegState::Define);
continue;
}
assert(Op.isReg() && "Register operand required");
if (Op.isDead()) {
// If we found a dead def, but it needs to be live, then remove the dead
// flag.
if (Redefs.contains(Op.getReg()))
Op.setIsDead(false);
}
if (LiveBeforeMI.count(Reg))
MIB.addReg(Reg, RegState::Implicit);
}
}
/// Remove kill flags from operands with a registers in the \p DontKill set.
static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) {
for (MIBundleOperands O(MI); O.isValid(); ++O) {
if (!O->isReg() || !O->isKill())
continue;
if (DontKill.contains(O->getReg()))
O->setIsKill(false);
}
}
/// Walks a range of machine instructions and removes kill flags for registers
/// in the \p DontKill set.
static void RemoveKills(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E,
const LivePhysRegs &DontKill,
const MCRegisterInfo &MCRI) {
for (MachineInstr &MI : make_range(I, E))
RemoveKills(MI, DontKill);
}
/// If convert a simple (split, no rejoin) sub-CFG.
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
BBInfo *CvtBBI = &TrueBBI;
BBInfo *NextBBI = &FalseBBI;
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (Kind == ICSimpleFalse)
std::swap(CvtBBI, NextBBI);
MachineBasicBlock &CvtMBB = *CvtBBI->BB;
MachineBasicBlock &NextMBB = *NextBBI->BB;
if (CvtBBI->IsDone ||
(CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
// Something has changed. It's no longer safe to predicate this block.
BBI.IsAnalyzed = false;
CvtBBI->IsAnalyzed = false;
return false;
}
if (CvtMBB.hasAddressTaken())
// Conservatively abort if-conversion if BB's address is taken.
return false;
if (Kind == ICSimpleFalse)
if (TII->ReverseBranchCondition(Cond))
llvm_unreachable("Unable to reverse branch condition!");
// Initialize liveins to the first BB. These are potentiall redefined by
// predicated instructions.
Redefs.init(TRI);
Redefs.addLiveIns(CvtMBB);
Redefs.addLiveIns(NextMBB);
// Compute a set of registers which must not be killed by instructions in
// BB1: This is everything live-in to BB2.
DontKill.init(TRI);
DontKill.addLiveIns(NextMBB);
if (CvtMBB.pred_size() > 1) {
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
// Copy instructions in the true block, predicate them, and add them to
// the entry block.
CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
// RemoveExtraEdges won't work if the block has an unanalyzable branch, so
// explicitly remove CvtBBI as a successor.
BBI.BB->removeSuccessor(&CvtMBB, true);
} else {
RemoveKills(CvtMBB.begin(), CvtMBB.end(), DontKill, *TRI);
PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
// Merge converted block into entry block.
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
MergeBlocks(BBI, *CvtBBI);
}
bool IterIfcvt = true;
if (!canFallThroughTo(*BBI.BB, NextMBB)) {
InsertUncondBranch(*BBI.BB, NextMBB, TII);
BBI.HasFallThrough = false;
// Now ifcvt'd block will look like this:
// BB:
// ...
// t, f = cmp
// if t op
// b BBf
//
// We cannot further ifcvt this block because the unconditional branch
// will have to be predicated on the new condition, that will not be
// available if cmp executes.
IterIfcvt = false;
}
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
if (!IterIfcvt)
BBI.IsDone = true;
InvalidatePreds(*BBI.BB);
CvtBBI->IsDone = true;
// FIXME: Must maintain LiveIns.
return true;
}
/// If convert a triangle sub-CFG.
bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
BBInfo *CvtBBI = &TrueBBI;
BBInfo *NextBBI = &FalseBBI;
DebugLoc dl; // FIXME: this is nowhere
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
std::swap(CvtBBI, NextBBI);
MachineBasicBlock &CvtMBB = *CvtBBI->BB;
MachineBasicBlock &NextMBB = *NextBBI->BB;
if (CvtBBI->IsDone ||
(CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
// Something has changed. It's no longer safe to predicate this block.
BBI.IsAnalyzed = false;
CvtBBI->IsAnalyzed = false;
return false;
}
if (CvtMBB.hasAddressTaken())
// Conservatively abort if-conversion if BB's address is taken.
return false;
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
if (TII->ReverseBranchCondition(Cond))
llvm_unreachable("Unable to reverse branch condition!");
if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
if (ReverseBranchCondition(*CvtBBI)) {
// BB has been changed, modify its predecessors (except for this
// one) so they don't get ifcvt'ed based on bad intel.
for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
if (PBB == BBI.BB)
continue;
BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
if (PBBI.IsEnqueued) {
PBBI.IsAnalyzed = false;
PBBI.IsEnqueued = false;
}
}
}
}
// Initialize liveins to the first BB. These are potentially redefined by
// predicated instructions.
Redefs.init(TRI);
Redefs.addLiveIns(CvtMBB);
Redefs.addLiveIns(NextMBB);
DontKill.clear();
bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
if (HasEarlyExit) {
// Get probabilities before modifying CvtMBB and BBI.BB.
CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
}
if (CvtMBB.pred_size() > 1) {
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
// Copy instructions in the true block, predicate them, and add them to
// the entry block.
CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
// RemoveExtraEdges won't work if the block has an unanalyzable branch, so
// explicitly remove CvtBBI as a successor.
BBI.BB->removeSuccessor(&CvtMBB, true);
} else {
// Predicate the 'true' block after removing its branch.
CvtBBI->NonPredSize -= TII->RemoveBranch(CvtMBB);
PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
// Now merge the entry of the triangle with the true block.
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
MergeBlocks(BBI, *CvtBBI, false);
}
// If 'true' block has a 'false' successor, add an exit branch to it.
if (HasEarlyExit) {
SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
CvtBBI->BrCond.end());
if (TII->ReverseBranchCondition(RevCond))
llvm_unreachable("Unable to reverse branch condition!");
// Update the edge probability for both CvtBBI->FalseBB and NextBBI.
// NewNext = New_Prob(BBI.BB, NextMBB) =
// Prob(BBI.BB, NextMBB) +
// Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
// NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
// Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
auto NewTrueBB = getNextBlock(*BBI.BB);
auto NewNext = BBNext + BBCvt * CvtNext;
auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
if (NewTrueBBIter != BBI.BB->succ_end())
BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
auto NewFalse = BBCvt * CvtFalse;
TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
}
// Merge in the 'false' block if the 'false' block has no other
// predecessors. Otherwise, add an unconditional branch to 'false'.
bool FalseBBDead = false;
bool IterIfcvt = true;
bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
if (!isFallThrough) {
// Only merge them if the true block does not fallthrough to the false
// block. By not merging them, we make it possible to iteratively
// ifcvt the blocks.
if (!HasEarlyExit &&
NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
!NextMBB.hasAddressTaken()) {
MergeBlocks(BBI, *NextBBI);
FalseBBDead = true;
} else {
InsertUncondBranch(*BBI.BB, NextMBB, TII);
BBI.HasFallThrough = false;
}
// Mixed predicated and unpredicated code. This cannot be iteratively
// predicated.
IterIfcvt = false;
}
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
if (!IterIfcvt)
BBI.IsDone = true;
InvalidatePreds(*BBI.BB);
CvtBBI->IsDone = true;
if (FalseBBDead)
NextBBI->IsDone = true;
// FIXME: Must maintain LiveIns.
return true;
}
/// If convert a diamond sub-CFG.
bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
unsigned NumDups1, unsigned NumDups2) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
MachineBasicBlock *TailBB = TrueBBI.TrueBB;
// True block must fall through or end with an unanalyzable terminator.
if (!TailBB) {
if (blockAlwaysFallThrough(TrueBBI))
TailBB = FalseBBI.TrueBB;
assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
}
if (TrueBBI.IsDone || FalseBBI.IsDone ||
TrueBBI.BB->pred_size() > 1 ||
FalseBBI.BB->pred_size() > 1) {
// Something has changed. It's no longer safe to predicate these blocks.
BBI.IsAnalyzed = false;
TrueBBI.IsAnalyzed = false;
FalseBBI.IsAnalyzed = false;
return false;
}
if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
// Conservatively abort if-conversion if either BB has its address taken.
return false;
// Put the predicated instructions from the 'true' block before the
// instructions from the 'false' block, unless the true block would clobber
// the predicate, in which case, do the opposite.
BBInfo *BBI1 = &TrueBBI;
BBInfo *BBI2 = &FalseBBI;
SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
if (TII->ReverseBranchCondition(RevCond))
llvm_unreachable("Unable to reverse branch condition!");
SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
// Figure out the more profitable ordering.
bool DoSwap = false;
if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred)
DoSwap = true;
else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) {
if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
DoSwap = true;
}
if (DoSwap) {
std::swap(BBI1, BBI2);
std::swap(Cond1, Cond2);
}
// Remove the conditional branch from entry to the blocks.
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
MachineBasicBlock &MBB1 = *BBI1->BB;
MachineBasicBlock &MBB2 = *BBI2->BB;
// Initialize the Redefs:
// - BB2 live-in regs need implicit uses before being redefined by BB1
// instructions.
// - BB1 live-out regs need implicit uses before being redefined by BB2
// instructions. We start with BB1 live-ins so we have the live-out regs
// after tracking the BB1 instructions.
Redefs.init(TRI);
Redefs.addLiveIns(MBB1);
Redefs.addLiveIns(MBB2);
// Remove the duplicated instructions at the beginnings of both paths.
// Skip dbg_value instructions
MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
BBI1->NonPredSize -= NumDups1;
BBI2->NonPredSize -= NumDups1;
// Skip past the dups on each side separately since there may be
// differing dbg_value entries.
for (unsigned i = 0; i < NumDups1; ++DI1) {
if (!DI1->isDebugValue())
++i;
}
while (NumDups1 != 0) {
++DI2;
if (!DI2->isDebugValue())
--NumDups1;
}
// Compute a set of registers which must not be killed by instructions in BB1:
// This is everything used+live in BB2 after the duplicated instructions. We
// can compute this set by simulating liveness backwards from the end of BB2.
DontKill.init(TRI);
for (const MachineInstr &MI :
make_range(MBB2.rbegin(), MachineBasicBlock::reverse_iterator(DI2)))
DontKill.stepBackward(MI);
for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers;
Redefs.stepForward(MI, IgnoredClobbers);
}
BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
MBB2.erase(MBB2.begin(), DI2);
// Remove branch from the 'true' block, unless it was not analyzable.
// Non-analyzable branches need to be preserved, since in such cases,
// the CFG structure is not an actual diamond (the join block may not
// be present).
if (BBI1->IsBrAnalyzable)
BBI1->NonPredSize -= TII->RemoveBranch(MBB1);
// Remove duplicated instructions.
DI1 = MBB1.end();
for (unsigned i = 0; i != NumDups2; ) {
// NumDups2 only counted non-dbg_value instructions, so this won't
// run off the head of the list.
assert(DI1 != MBB1.begin());
--DI1;
// skip dbg_value instructions
if (!DI1->isDebugValue())
++i;
}
MBB1.erase(DI1, MBB1.end());
// Kill flags in the true block for registers living into the false block
// must be removed.
RemoveKills(MBB1.begin(), MBB1.end(), DontKill, *TRI);
// Remove 'false' block branch (unless it was not analyzable), and find
// the last instruction to predicate.
if (BBI2->IsBrAnalyzable)
BBI2->NonPredSize -= TII->RemoveBranch(MBB2);
DI2 = MBB2.end();
while (NumDups2 != 0) {
// NumDups2 only counted non-dbg_value instructions, so this won't
// run off the head of the list.
assert(DI2 != MBB2.begin());
--DI2;
// skip dbg_value instructions
if (!DI2->isDebugValue())
--NumDups2;
}
// Remember which registers would later be defined by the false block.
// This allows us not to predicate instructions in the true block that would
// later be re-defined. That is, rather than
// subeq r0, r1, #1
// addne r0, r1, #1
// generate:
// sub r0, r1, #1
// addne r0, r1, #1
SmallSet<unsigned, 4> RedefsByFalse;
SmallSet<unsigned, 4> ExtUses;
if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
if (FI.isDebugValue())
continue;
SmallVector<unsigned, 4> Defs;
for (const MachineOperand &MO : FI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef()) {
Defs.push_back(Reg);
} else if (!RedefsByFalse.count(Reg)) {
// These are defined before ctrl flow reach the 'false' instructions.
// They cannot be modified by the 'true' instructions.
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
ExtUses.insert(*SubRegs);
}
}
for (unsigned Reg : Defs) {
if (!ExtUses.count(Reg)) {
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
RedefsByFalse.insert(*SubRegs);
}
}
}
}
// Predicate the 'true' block.
PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
// After predicating BBI1, if there is a predicated terminator in BBI1 and
// a non-predicated in BBI2, then we don't want to predicate the one from
// BBI2. The reason is that if we merged these blocks, we would end up with
// two predicated terminators in the same block.
if (!MBB2.empty() && (DI2 == MBB2.end())) {
MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) &&
BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T))
--DI2;
}
// Predicate the 'false' block.
PredicateBlock(*BBI2, DI2, *Cond2);
// Merge the true block into the entry of the diamond.
MergeBlocks(BBI, *BBI1, TailBB == nullptr);
MergeBlocks(BBI, *BBI2, TailBB == nullptr);
// If the if-converted block falls through or unconditionally branches into
// the tail block, and the tail block does not have other predecessors, then
// fold the tail block in as well. Otherwise, unless it falls through to the
// tail, add a unconditional branch to it.
if (TailBB) {
BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
bool CanMergeTail = !TailBBI.HasFallThrough &&
!TailBBI.BB->hasAddressTaken();
// The if-converted block can still have a predicated terminator
// (e.g. a predicated return). If that is the case, we cannot merge
// it with the tail block.
MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
if (TI != BBI.BB->end() && TII->isPredicated(*TI))
CanMergeTail = false;
// There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
// check if there are any other predecessors besides those.
unsigned NumPreds = TailBB->pred_size();
if (NumPreds > 1)
CanMergeTail = false;
else if (NumPreds == 1 && CanMergeTail) {
MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
if (*PI != &MBB1 && *PI != &MBB2)
CanMergeTail = false;
}
if (CanMergeTail) {
MergeBlocks(BBI, TailBBI);
TailBBI.IsDone = true;
} else {
BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
InsertUncondBranch(*BBI.BB, *TailBB, TII);
BBI.HasFallThrough = false;
}
}
// RemoveExtraEdges won't work if the block has an unanalyzable branch,
// which can happen here if TailBB is unanalyzable and is merged, so
// explicitly remove BBI1 and BBI2 as successors.
BBI.BB->removeSuccessor(&MBB1);
BBI.BB->removeSuccessor(&MBB2, true);
RemoveExtraEdges(BBI);
// Update block info.
BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
InvalidatePreds(*BBI.BB);
// FIXME: Must maintain LiveIns.
return true;
}
static bool MaySpeculate(const MachineInstr &MI,
SmallSet<unsigned, 4> &LaterRedefs) {
bool SawStore = true;
if (!MI.isSafeToMove(nullptr, SawStore))
return false;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef() && !LaterRedefs.count(Reg))
return false;
}
return true;
}
/// Predicate instructions from the start of the block to the specified end with
/// the specified condition.
void IfConverter::PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond,
SmallSet<unsigned, 4> *LaterRedefs) {
bool AnyUnpred = false;
bool MaySpec = LaterRedefs != nullptr;
for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
if (I.isDebugValue() || TII->isPredicated(I))
continue;
// It may be possible not to predicate an instruction if it's the 'true'
// side of a diamond and the 'false' side may re-define the instruction's
// defs.
if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
AnyUnpred = true;
continue;
}
// If any instruction is predicated, then every instruction after it must
// be predicated.
MaySpec = false;
if (!TII->PredicateInstruction(I, Cond)) {
#ifndef NDEBUG
dbgs() << "Unable to predicate " << I << "!\n";
#endif
llvm_unreachable(nullptr);
}
// If the predicated instruction now redefines a register as the result of
// if-conversion, add an implicit kill.
UpdatePredRedefs(I, Redefs);
}
BBI.Predicate.append(Cond.begin(), Cond.end());
BBI.IsAnalyzed = false;
BBI.NonPredSize = 0;
++NumIfConvBBs;
if (AnyUnpred)
++NumUnpred;
}
/// Copy and predicate instructions from source BB to the destination block.
/// Skip end of block branches if IgnoreBr is true.
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
SmallVectorImpl<MachineOperand> &Cond,
bool IgnoreBr) {
MachineFunction &MF = *ToBBI.BB->getParent();
MachineBasicBlock &FromMBB = *FromBBI.BB;
for (MachineInstr &I : FromMBB) {
// Do not copy the end of the block branches.
if (IgnoreBr && I.isBranch())
break;
MachineInstr *MI = MF.CloneMachineInstr(&I);
ToBBI.BB->insert(ToBBI.BB->end(), MI);
ToBBI.NonPredSize++;
unsigned ExtraPredCost = TII->getPredicationCost(I);
unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
if (NumCycles > 1)
ToBBI.ExtraCost += NumCycles-1;
ToBBI.ExtraCost2 += ExtraPredCost;
if (!TII->isPredicated(I) && !MI->isDebugValue()) {
if (!TII->PredicateInstruction(*MI, Cond)) {
#ifndef NDEBUG
dbgs() << "Unable to predicate " << I << "!\n";
#endif
llvm_unreachable(nullptr);
}
}
// If the predicated instruction now redefines a register as the result of
// if-conversion, add an implicit kill.
UpdatePredRedefs(*MI, Redefs);
// Some kill flags may not be correct anymore.
if (!DontKill.empty())
RemoveKills(*MI, DontKill);
}
if (!IgnoreBr) {
std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
FromMBB.succ_end());
MachineBasicBlock *NBB = getNextBlock(FromMBB);
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
for (MachineBasicBlock *Succ : Succs) {
// Fallthrough edge can't be transferred.
if (Succ == FallThrough)
continue;
ToBBI.BB->addSuccessor(Succ);
}
}
ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
ToBBI.Predicate.append(Cond.begin(), Cond.end());
ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
ToBBI.IsAnalyzed = false;
++NumDupBBs;
}
/// Move all instructions from FromBB to the end of ToBB. This will leave
/// FromBB as an empty block, so remove all of its successor edges except for
/// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
/// being moved, add those successor edges to ToBBI.
void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
MachineBasicBlock &FromMBB = *FromBBI.BB;
assert(!FromMBB.hasAddressTaken() &&
"Removing a BB whose address is taken!");
// In case FromMBB contains terminators (e.g. return instruction),
// first move the non-terminator instructions, then the terminators.
MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
// If FromBB has non-predicated terminator we should copy it at the end.
if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
ToTI = ToBBI.BB->end();
ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
// Force normalizing the successors' probabilities of ToBBI.BB to convert all
// unknown probabilities into known ones.
// FIXME: This usage is too tricky and in the future we would like to
// eliminate all unknown probabilities in MBB.
ToBBI.BB->normalizeSuccProbs();
SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
FromMBB.succ_end());
MachineBasicBlock *NBB = getNextBlock(FromMBB);
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
// The edge probability from ToBBI.BB to FromMBB, which is only needed when
// AddEdges is true and FromMBB is a successor of ToBBI.BB.
auto To2FromProb = BranchProbability::getZero();
if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
// Set the edge probability from ToBBI.BB to FromMBB to zero to avoid the
// edge probability being merged to other edges when this edge is removed
// later.
ToBBI.BB->setSuccProbability(find(ToBBI.BB->successors(), &FromMBB),
BranchProbability::getZero());
}
for (MachineBasicBlock *Succ : FromSuccs) {
// Fallthrough edge can't be transferred.
if (Succ == FallThrough)
continue;
auto NewProb = BranchProbability::getZero();
if (AddEdges) {
// Calculate the edge probability for the edge from ToBBI.BB to Succ,
// which is a portion of the edge probability from FromMBB to Succ. The
// portion ratio is the edge probability from ToBBI.BB to FromMBB (if
// FromBBI is a successor of ToBBI.BB. See comment below for excepion).
NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
// To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
// only happens when if-converting a diamond CFG and FromMBB is the
// tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
// could just use the probabilities on FromMBB's out-edges when adding
// new successors.
if (!To2FromProb.isZero())
NewProb *= To2FromProb;
}
FromMBB.removeSuccessor(Succ);
if (AddEdges) {
// If the edge from ToBBI.BB to Succ already exists, update the
// probability of this edge by adding NewProb to it. An example is shown
// below, in which A is ToBBI.BB and B is FromMBB. In this case we
// don't have to set C as A's successor as it already is. We only need to
// update the edge probability on A->C. Note that B will not be
// immediately removed from A's successors. It is possible that B->D is
// not removed either if D is a fallthrough of B. Later the edge A->D
// (generated here) and B->D will be combined into one edge. To maintain
// correct edge probability of this combined edge, we need to set the edge
// probability of A->B to zero, which is already done above. The edge
// probability on A->D is calculated by scaling the original probability
// on A->B by the probability of B->D.
//
// Before ifcvt: After ifcvt (assume B->D is kept):
//
// A A
// /| /|\
// / B / B|
// | /| | ||
// |/ | | |/
// C D C D
//
if (ToBBI.BB->isSuccessor(Succ))
ToBBI.BB->setSuccProbability(
find(ToBBI.BB->successors(), Succ),
MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
else
ToBBI.BB->addSuccessor(Succ, NewProb);
}
}
// Now FromBBI always falls through to the next block!
if (NBB && !FromMBB.isSuccessor(NBB))
FromMBB.addSuccessor(NBB);
// Normalize the probabilities of ToBBI.BB's successors with all adjustment
// we've done above.
ToBBI.BB->normalizeSuccProbs();
ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
FromBBI.Predicate.clear();
ToBBI.NonPredSize += FromBBI.NonPredSize;
ToBBI.ExtraCost += FromBBI.ExtraCost;
ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
FromBBI.NonPredSize = 0;
FromBBI.ExtraCost = 0;
FromBBI.ExtraCost2 = 0;
ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
ToBBI.HasFallThrough = FromBBI.HasFallThrough;
ToBBI.IsAnalyzed = false;
FromBBI.IsAnalyzed = false;
}
FunctionPass *
llvm::createIfConverter(std::function<bool(const Function &)> Ftor) {
return new IfConverter(std::move(Ftor));
}