mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-13 06:38:44 +00:00
ada5f24b5f
In resent times asan and valgrind have found way more memory management bugs in llvm than the special purpose leak detector. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224703 91177308-0d34-0410-b5e6-96231b3b80d8
1049 lines
31 KiB
C++
1049 lines
31 KiB
C++
//===-- Metadata.cpp - Implement Metadata classes -------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Metadata classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "SymbolTableListTraitsImpl.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
|
|
using namespace llvm;
|
|
|
|
MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
|
|
: Value(Ty, MetadataAsValueVal), MD(MD) {
|
|
track();
|
|
}
|
|
|
|
MetadataAsValue::~MetadataAsValue() {
|
|
getType()->getContext().pImpl->MetadataAsValues.erase(MD);
|
|
untrack();
|
|
}
|
|
|
|
/// \brief Canonicalize metadata arguments to intrinsics.
|
|
///
|
|
/// To support bitcode upgrades (and assembly semantic sugar) for \a
|
|
/// MetadataAsValue, we need to canonicalize certain metadata.
|
|
///
|
|
/// - nullptr is replaced by an empty MDNode.
|
|
/// - An MDNode with a single null operand is replaced by an empty MDNode.
|
|
/// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
|
|
///
|
|
/// This maintains readability of bitcode from when metadata was a type of
|
|
/// value, and these bridges were unnecessary.
|
|
static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
|
|
Metadata *MD) {
|
|
if (!MD)
|
|
// !{}
|
|
return MDNode::get(Context, None);
|
|
|
|
// Return early if this isn't a single-operand MDNode.
|
|
auto *N = dyn_cast<MDNode>(MD);
|
|
if (!N || N->getNumOperands() != 1)
|
|
return MD;
|
|
|
|
if (!N->getOperand(0))
|
|
// !{}
|
|
return MDNode::get(Context, None);
|
|
|
|
if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
|
|
// Look through the MDNode.
|
|
return C;
|
|
|
|
return MD;
|
|
}
|
|
|
|
MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
|
|
MD = canonicalizeMetadataForValue(Context, MD);
|
|
auto *&Entry = Context.pImpl->MetadataAsValues[MD];
|
|
if (!Entry)
|
|
Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
|
|
return Entry;
|
|
}
|
|
|
|
MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
|
|
Metadata *MD) {
|
|
MD = canonicalizeMetadataForValue(Context, MD);
|
|
auto &Store = Context.pImpl->MetadataAsValues;
|
|
auto I = Store.find(MD);
|
|
return I == Store.end() ? nullptr : I->second;
|
|
}
|
|
|
|
void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
|
|
LLVMContext &Context = getContext();
|
|
MD = canonicalizeMetadataForValue(Context, MD);
|
|
auto &Store = Context.pImpl->MetadataAsValues;
|
|
|
|
// Stop tracking the old metadata.
|
|
Store.erase(this->MD);
|
|
untrack();
|
|
this->MD = nullptr;
|
|
|
|
// Start tracking MD, or RAUW if necessary.
|
|
auto *&Entry = Store[MD];
|
|
if (Entry) {
|
|
replaceAllUsesWith(Entry);
|
|
delete this;
|
|
return;
|
|
}
|
|
|
|
this->MD = MD;
|
|
track();
|
|
Entry = this;
|
|
}
|
|
|
|
void MetadataAsValue::track() {
|
|
if (MD)
|
|
MetadataTracking::track(&MD, *MD, *this);
|
|
}
|
|
|
|
void MetadataAsValue::untrack() {
|
|
if (MD)
|
|
MetadataTracking::untrack(MD);
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
|
|
bool WasInserted =
|
|
UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
|
|
.second;
|
|
(void)WasInserted;
|
|
assert(WasInserted && "Expected to add a reference");
|
|
|
|
++NextIndex;
|
|
assert(NextIndex != 0 && "Unexpected overflow");
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::dropRef(void *Ref) {
|
|
bool WasErased = UseMap.erase(Ref);
|
|
(void)WasErased;
|
|
assert(WasErased && "Expected to drop a reference");
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
|
|
const Metadata &MD) {
|
|
auto I = UseMap.find(Ref);
|
|
assert(I != UseMap.end() && "Expected to move a reference");
|
|
auto OwnerAndIndex = I->second;
|
|
UseMap.erase(I);
|
|
bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
|
|
(void)WasInserted;
|
|
assert(WasInserted && "Expected to add a reference");
|
|
|
|
// Check that the references are direct if there's no owner.
|
|
(void)MD;
|
|
assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
|
|
"Reference without owner must be direct");
|
|
assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
|
|
"Reference without owner must be direct");
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
|
|
assert(!(MD && isa<MDNodeFwdDecl>(MD)) && "Expected non-temp node");
|
|
|
|
if (UseMap.empty())
|
|
return;
|
|
|
|
// Copy out uses since UseMap will get touched below.
|
|
typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
|
|
SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
|
|
std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
|
|
return L.second.second < R.second.second;
|
|
});
|
|
for (const auto &Pair : Uses) {
|
|
OwnerTy Owner = Pair.second.first;
|
|
if (!Owner) {
|
|
// Update unowned tracking references directly.
|
|
Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
|
|
Ref = MD;
|
|
if (MD)
|
|
MetadataTracking::track(Ref);
|
|
UseMap.erase(Pair.first);
|
|
continue;
|
|
}
|
|
|
|
// Check for MetadataAsValue.
|
|
if (Owner.is<MetadataAsValue *>()) {
|
|
Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
|
|
continue;
|
|
}
|
|
|
|
// There's a Metadata owner -- dispatch.
|
|
Metadata *OwnerMD = Owner.get<Metadata *>();
|
|
switch (OwnerMD->getMetadataID()) {
|
|
#define HANDLE_METADATA_LEAF(CLASS) \
|
|
case Metadata::CLASS##Kind: \
|
|
cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
|
|
continue;
|
|
#include "llvm/IR/Metadata.def"
|
|
default:
|
|
llvm_unreachable("Invalid metadata subclass");
|
|
}
|
|
}
|
|
assert(UseMap.empty() && "Expected all uses to be replaced");
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
|
|
if (UseMap.empty())
|
|
return;
|
|
|
|
if (!ResolveUsers) {
|
|
UseMap.clear();
|
|
return;
|
|
}
|
|
|
|
// Copy out uses since UseMap could get touched below.
|
|
typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
|
|
SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
|
|
std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
|
|
return L.second.second < R.second.second;
|
|
});
|
|
UseMap.clear();
|
|
for (const auto &Pair : Uses) {
|
|
auto Owner = Pair.second.first;
|
|
if (!Owner)
|
|
continue;
|
|
if (Owner.is<MetadataAsValue *>())
|
|
continue;
|
|
|
|
// Resolve GenericMDNodes that point at this.
|
|
auto *OwnerMD = dyn_cast<GenericMDNode>(Owner.get<Metadata *>());
|
|
if (!OwnerMD)
|
|
continue;
|
|
if (OwnerMD->isResolved())
|
|
continue;
|
|
OwnerMD->decrementUnresolvedOperands();
|
|
if (!OwnerMD->hasUnresolvedOperands())
|
|
OwnerMD->resolve();
|
|
}
|
|
}
|
|
|
|
static Function *getLocalFunction(Value *V) {
|
|
assert(V && "Expected value");
|
|
if (auto *A = dyn_cast<Argument>(V))
|
|
return A->getParent();
|
|
if (BasicBlock *BB = cast<Instruction>(V)->getParent())
|
|
return BB->getParent();
|
|
return nullptr;
|
|
}
|
|
|
|
ValueAsMetadata *ValueAsMetadata::get(Value *V) {
|
|
assert(V && "Unexpected null Value");
|
|
|
|
auto &Context = V->getContext();
|
|
auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
|
|
if (!Entry) {
|
|
assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
|
|
"Expected constant or function-local value");
|
|
assert(!V->NameAndIsUsedByMD.getInt() &&
|
|
"Expected this to be the only metadata use");
|
|
V->NameAndIsUsedByMD.setInt(true);
|
|
if (auto *C = dyn_cast<Constant>(V))
|
|
Entry = new ConstantAsMetadata(Context, C);
|
|
else
|
|
Entry = new LocalAsMetadata(Context, V);
|
|
}
|
|
|
|
return Entry;
|
|
}
|
|
|
|
ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
|
|
assert(V && "Unexpected null Value");
|
|
return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
|
|
}
|
|
|
|
void ValueAsMetadata::handleDeletion(Value *V) {
|
|
assert(V && "Expected valid value");
|
|
|
|
auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
|
|
auto I = Store.find(V);
|
|
if (I == Store.end())
|
|
return;
|
|
|
|
// Remove old entry from the map.
|
|
ValueAsMetadata *MD = I->second;
|
|
assert(MD && "Expected valid metadata");
|
|
assert(MD->getValue() == V && "Expected valid mapping");
|
|
Store.erase(I);
|
|
|
|
// Delete the metadata.
|
|
MD->replaceAllUsesWith(nullptr);
|
|
delete MD;
|
|
}
|
|
|
|
void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
|
|
assert(From && "Expected valid value");
|
|
assert(To && "Expected valid value");
|
|
assert(From != To && "Expected changed value");
|
|
assert(From->getType() == To->getType() && "Unexpected type change");
|
|
|
|
LLVMContext &Context = From->getType()->getContext();
|
|
auto &Store = Context.pImpl->ValuesAsMetadata;
|
|
auto I = Store.find(From);
|
|
if (I == Store.end()) {
|
|
assert(!From->NameAndIsUsedByMD.getInt() &&
|
|
"Expected From not to be used by metadata");
|
|
return;
|
|
}
|
|
|
|
// Remove old entry from the map.
|
|
assert(From->NameAndIsUsedByMD.getInt() &&
|
|
"Expected From to be used by metadata");
|
|
From->NameAndIsUsedByMD.setInt(false);
|
|
ValueAsMetadata *MD = I->second;
|
|
assert(MD && "Expected valid metadata");
|
|
assert(MD->getValue() == From && "Expected valid mapping");
|
|
Store.erase(I);
|
|
|
|
if (isa<LocalAsMetadata>(MD)) {
|
|
if (auto *C = dyn_cast<Constant>(To)) {
|
|
// Local became a constant.
|
|
MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
|
|
delete MD;
|
|
return;
|
|
}
|
|
if (getLocalFunction(From) && getLocalFunction(To) &&
|
|
getLocalFunction(From) != getLocalFunction(To)) {
|
|
// Function changed.
|
|
MD->replaceAllUsesWith(nullptr);
|
|
delete MD;
|
|
return;
|
|
}
|
|
} else if (!isa<Constant>(To)) {
|
|
// Changed to function-local value.
|
|
MD->replaceAllUsesWith(nullptr);
|
|
delete MD;
|
|
return;
|
|
}
|
|
|
|
auto *&Entry = Store[To];
|
|
if (Entry) {
|
|
// The target already exists.
|
|
MD->replaceAllUsesWith(Entry);
|
|
delete MD;
|
|
return;
|
|
}
|
|
|
|
// Update MD in place (and update the map entry).
|
|
assert(!To->NameAndIsUsedByMD.getInt() &&
|
|
"Expected this to be the only metadata use");
|
|
To->NameAndIsUsedByMD.setInt(true);
|
|
MD->V = To;
|
|
Entry = MD;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MDString implementation.
|
|
//
|
|
|
|
MDString *MDString::get(LLVMContext &Context, StringRef Str) {
|
|
auto &Store = Context.pImpl->MDStringCache;
|
|
auto I = Store.find(Str);
|
|
if (I != Store.end())
|
|
return &I->second;
|
|
|
|
auto *Entry =
|
|
StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString());
|
|
bool WasInserted = Store.insert(Entry);
|
|
(void)WasInserted;
|
|
assert(WasInserted && "Expected entry to be inserted");
|
|
Entry->second.Entry = Entry;
|
|
return &Entry->second;
|
|
}
|
|
|
|
StringRef MDString::getString() const {
|
|
assert(Entry && "Expected to find string map entry");
|
|
return Entry->first();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MDNode implementation.
|
|
//
|
|
|
|
void *MDNode::operator new(size_t Size, unsigned NumOps) {
|
|
void *Ptr = ::operator new(Size + NumOps * sizeof(MDOperand));
|
|
MDOperand *O = static_cast<MDOperand *>(Ptr);
|
|
for (MDOperand *E = O + NumOps; O != E; ++O)
|
|
(void)new (O) MDOperand;
|
|
return O;
|
|
}
|
|
|
|
void MDNode::operator delete(void *Mem) {
|
|
MDNode *N = static_cast<MDNode *>(Mem);
|
|
MDOperand *O = static_cast<MDOperand *>(Mem);
|
|
for (MDOperand *E = O - N->NumOperands; O != E; --O)
|
|
(O - 1)->~MDOperand();
|
|
::operator delete(O);
|
|
}
|
|
|
|
MDNode::MDNode(LLVMContext &Context, unsigned ID, ArrayRef<Metadata *> MDs)
|
|
: Metadata(ID), Context(Context), NumOperands(MDs.size()),
|
|
MDNodeSubclassData(0) {
|
|
for (unsigned I = 0, E = MDs.size(); I != E; ++I)
|
|
setOperand(I, MDs[I]);
|
|
}
|
|
|
|
bool MDNode::isResolved() const {
|
|
if (isa<MDNodeFwdDecl>(this))
|
|
return false;
|
|
return cast<GenericMDNode>(this)->isResolved();
|
|
}
|
|
|
|
static bool isOperandUnresolved(Metadata *Op) {
|
|
if (auto *N = dyn_cast_or_null<MDNode>(Op))
|
|
return !N->isResolved();
|
|
return false;
|
|
}
|
|
|
|
GenericMDNode::GenericMDNode(LLVMContext &C, ArrayRef<Metadata *> Vals)
|
|
: MDNode(C, GenericMDNodeKind, Vals) {
|
|
// Check whether any operands are unresolved, requiring re-uniquing.
|
|
for (const auto &Op : operands())
|
|
if (isOperandUnresolved(Op))
|
|
incrementUnresolvedOperands();
|
|
|
|
if (hasUnresolvedOperands())
|
|
ReplaceableUses.reset(new ReplaceableMetadataImpl);
|
|
}
|
|
|
|
GenericMDNode::~GenericMDNode() {
|
|
LLVMContextImpl *pImpl = getContext().pImpl;
|
|
if (isStoredDistinctInContext())
|
|
pImpl->NonUniquedMDNodes.erase(this);
|
|
else
|
|
pImpl->MDNodeSet.erase(this);
|
|
dropAllReferences();
|
|
}
|
|
|
|
void GenericMDNode::resolve() {
|
|
assert(!isResolved() && "Expected this to be unresolved");
|
|
|
|
// Move the map, so that this immediately looks resolved.
|
|
auto Uses = std::move(ReplaceableUses);
|
|
SubclassData32 = 0;
|
|
assert(isResolved() && "Expected this to be resolved");
|
|
|
|
// Drop RAUW support.
|
|
Uses->resolveAllUses();
|
|
}
|
|
|
|
void GenericMDNode::resolveCycles() {
|
|
if (isResolved())
|
|
return;
|
|
|
|
// Resolve this node immediately.
|
|
resolve();
|
|
|
|
// Resolve all operands.
|
|
for (const auto &Op : operands()) {
|
|
if (!Op)
|
|
continue;
|
|
assert(!isa<MDNodeFwdDecl>(Op) &&
|
|
"Expected all forward declarations to be resolved");
|
|
if (auto *N = dyn_cast<GenericMDNode>(Op))
|
|
if (!N->isResolved())
|
|
N->resolveCycles();
|
|
}
|
|
}
|
|
|
|
void MDNode::dropAllReferences() {
|
|
for (unsigned I = 0, E = NumOperands; I != E; ++I)
|
|
setOperand(I, nullptr);
|
|
if (auto *G = dyn_cast<GenericMDNode>(this))
|
|
if (!G->isResolved()) {
|
|
G->ReplaceableUses->resolveAllUses(/* ResolveUsers */ false);
|
|
G->ReplaceableUses.reset();
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
/// \brief Make MDOperand transparent for hashing.
|
|
///
|
|
/// This overload of an implementation detail of the hashing library makes
|
|
/// MDOperand hash to the same value as a \a Metadata pointer.
|
|
///
|
|
/// Note that overloading \a hash_value() as follows:
|
|
///
|
|
/// \code
|
|
/// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
|
|
/// \endcode
|
|
///
|
|
/// does not cause MDOperand to be transparent. In particular, a bare pointer
|
|
/// doesn't get hashed before it's combined, whereas \a MDOperand would.
|
|
static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
|
|
}
|
|
|
|
void GenericMDNode::handleChangedOperand(void *Ref, Metadata *New) {
|
|
unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
|
|
assert(Op < getNumOperands() && "Expected valid operand");
|
|
|
|
if (isStoredDistinctInContext()) {
|
|
assert(isResolved() && "Expected distinct node to be resolved");
|
|
|
|
// This node is not uniqued. Just set the operand and be done with it.
|
|
setOperand(Op, New);
|
|
return;
|
|
}
|
|
if (InRAUW) {
|
|
// We just hit a recursion due to RAUW. Set the operand and move on, since
|
|
// we're about to be deleted.
|
|
//
|
|
// FIXME: Can this cycle really happen?
|
|
setOperand(Op, New);
|
|
return;
|
|
}
|
|
|
|
auto &Store = getContext().pImpl->MDNodeSet;
|
|
Store.erase(this);
|
|
|
|
Metadata *Old = getOperand(Op);
|
|
setOperand(Op, New);
|
|
|
|
// Drop uniquing for self-reference cycles or if an operand drops to null.
|
|
//
|
|
// FIXME: Stop dropping uniquing when an operand drops to null. The original
|
|
// motivation was to prevent madness during teardown of LLVMContextImpl, but
|
|
// dropAllReferences() fixes that problem in a better way. (It's just here
|
|
// now for better staging of semantic changes.)
|
|
if (New == this || !New) {
|
|
storeDistinctInContext();
|
|
setHash(0);
|
|
if (!isResolved())
|
|
resolve();
|
|
return;
|
|
}
|
|
|
|
// Re-calculate the hash.
|
|
setHash(hash_combine_range(op_begin(), op_end()));
|
|
#ifndef NDEBUG
|
|
{
|
|
SmallVector<Metadata *, 8> MDs(op_begin(), op_end());
|
|
unsigned RawHash = hash_combine_range(MDs.begin(), MDs.end());
|
|
assert(getHash() == RawHash &&
|
|
"Expected hash of MDOperand to equal hash of Metadata*");
|
|
}
|
|
#endif
|
|
|
|
// Re-unique the node.
|
|
GenericMDNodeInfo::KeyTy Key(this);
|
|
auto I = Store.find_as(Key);
|
|
if (I == Store.end()) {
|
|
Store.insert(this);
|
|
|
|
if (!isResolved()) {
|
|
// Check if the last unresolved operand has just been resolved; if so,
|
|
// resolve this as well.
|
|
if (isOperandUnresolved(Old))
|
|
decrementUnresolvedOperands();
|
|
if (isOperandUnresolved(New))
|
|
incrementUnresolvedOperands();
|
|
if (!hasUnresolvedOperands())
|
|
resolve();
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Collision.
|
|
if (!isResolved()) {
|
|
// Still unresolved, so RAUW.
|
|
InRAUW = true;
|
|
ReplaceableUses->replaceAllUsesWith(*I);
|
|
delete this;
|
|
return;
|
|
}
|
|
|
|
// Store in non-uniqued form if this node has already been resolved.
|
|
setHash(0);
|
|
storeDistinctInContext();
|
|
}
|
|
|
|
MDNode *MDNode::getMDNode(LLVMContext &Context, ArrayRef<Metadata *> MDs,
|
|
bool Insert) {
|
|
auto &Store = Context.pImpl->MDNodeSet;
|
|
|
|
GenericMDNodeInfo::KeyTy Key(MDs);
|
|
auto I = Store.find_as(Key);
|
|
if (I != Store.end())
|
|
return *I;
|
|
if (!Insert)
|
|
return nullptr;
|
|
|
|
// Coallocate space for the node and Operands together, then placement new.
|
|
GenericMDNode *N = new (MDs.size()) GenericMDNode(Context, MDs);
|
|
N->setHash(Key.Hash);
|
|
Store.insert(N);
|
|
return N;
|
|
}
|
|
|
|
MDNodeFwdDecl *MDNode::getTemporary(LLVMContext &Context,
|
|
ArrayRef<Metadata *> MDs) {
|
|
MDNodeFwdDecl *N = new (MDs.size()) MDNodeFwdDecl(Context, MDs);
|
|
return N;
|
|
}
|
|
|
|
void MDNode::deleteTemporary(MDNode *N) {
|
|
assert(isa<MDNodeFwdDecl>(N) && "Expected forward declaration");
|
|
delete cast<MDNodeFwdDecl>(N);
|
|
}
|
|
|
|
void MDNode::storeDistinctInContext() {
|
|
assert(!IsDistinctInContext && "Expected newly distinct metadata");
|
|
IsDistinctInContext = true;
|
|
auto *G = cast<GenericMDNode>(this);
|
|
G->setHash(0);
|
|
getContext().pImpl->NonUniquedMDNodes.insert(G);
|
|
}
|
|
|
|
// Replace value from this node's operand list.
|
|
void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
|
|
if (getOperand(I) == New)
|
|
return;
|
|
|
|
if (auto *N = dyn_cast<GenericMDNode>(this)) {
|
|
N->handleChangedOperand(mutable_begin() + I, New);
|
|
return;
|
|
}
|
|
|
|
assert(isa<MDNodeFwdDecl>(this) && "Expected an MDNode");
|
|
setOperand(I, New);
|
|
}
|
|
|
|
void MDNode::setOperand(unsigned I, Metadata *New) {
|
|
assert(I < NumOperands);
|
|
if (isStoredDistinctInContext() || isa<MDNodeFwdDecl>(this))
|
|
// No need for a callback, this isn't uniqued.
|
|
mutable_begin()[I].reset(New, nullptr);
|
|
else
|
|
mutable_begin()[I].reset(New, this);
|
|
}
|
|
|
|
/// \brief Get a node, or a self-reference that looks like it.
|
|
///
|
|
/// Special handling for finding self-references, for use by \a
|
|
/// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
|
|
/// when self-referencing nodes were still uniqued. If the first operand has
|
|
/// the same operands as \c Ops, return the first operand instead.
|
|
static MDNode *getOrSelfReference(LLVMContext &Context,
|
|
ArrayRef<Metadata *> Ops) {
|
|
if (!Ops.empty())
|
|
if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
|
|
if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
|
|
for (unsigned I = 1, E = Ops.size(); I != E; ++I)
|
|
if (Ops[I] != N->getOperand(I))
|
|
return MDNode::get(Context, Ops);
|
|
return N;
|
|
}
|
|
|
|
return MDNode::get(Context, Ops);
|
|
}
|
|
|
|
MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
|
|
if (!A)
|
|
return B;
|
|
if (!B)
|
|
return A;
|
|
|
|
SmallVector<Metadata *, 4> MDs(A->getNumOperands() + B->getNumOperands());
|
|
|
|
unsigned j = 0;
|
|
for (unsigned i = 0, ie = A->getNumOperands(); i != ie; ++i)
|
|
MDs[j++] = A->getOperand(i);
|
|
for (unsigned i = 0, ie = B->getNumOperands(); i != ie; ++i)
|
|
MDs[j++] = B->getOperand(i);
|
|
|
|
// FIXME: This preserves long-standing behaviour, but is it really the right
|
|
// behaviour? Or was that an unintended side-effect of node uniquing?
|
|
return getOrSelfReference(A->getContext(), MDs);
|
|
}
|
|
|
|
MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
SmallVector<Metadata *, 4> MDs;
|
|
for (unsigned i = 0, ie = A->getNumOperands(); i != ie; ++i) {
|
|
Metadata *MD = A->getOperand(i);
|
|
for (unsigned j = 0, je = B->getNumOperands(); j != je; ++j)
|
|
if (MD == B->getOperand(j)) {
|
|
MDs.push_back(MD);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// FIXME: This preserves long-standing behaviour, but is it really the right
|
|
// behaviour? Or was that an unintended side-effect of node uniquing?
|
|
return getOrSelfReference(A->getContext(), MDs);
|
|
}
|
|
|
|
MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
|
|
APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
|
|
if (AVal.compare(BVal) == APFloat::cmpLessThan)
|
|
return A;
|
|
return B;
|
|
}
|
|
|
|
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
|
|
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
|
|
}
|
|
|
|
static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
|
|
return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
|
|
}
|
|
|
|
static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
|
|
ConstantInt *Low, ConstantInt *High) {
|
|
ConstantRange NewRange(Low->getValue(), High->getValue());
|
|
unsigned Size = EndPoints.size();
|
|
APInt LB = EndPoints[Size - 2]->getValue();
|
|
APInt LE = EndPoints[Size - 1]->getValue();
|
|
ConstantRange LastRange(LB, LE);
|
|
if (canBeMerged(NewRange, LastRange)) {
|
|
ConstantRange Union = LastRange.unionWith(NewRange);
|
|
Type *Ty = High->getType();
|
|
EndPoints[Size - 2] =
|
|
cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
|
|
EndPoints[Size - 1] =
|
|
cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
|
|
ConstantInt *Low, ConstantInt *High) {
|
|
if (!EndPoints.empty())
|
|
if (tryMergeRange(EndPoints, Low, High))
|
|
return;
|
|
|
|
EndPoints.push_back(Low);
|
|
EndPoints.push_back(High);
|
|
}
|
|
|
|
MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
|
|
// Given two ranges, we want to compute the union of the ranges. This
|
|
// is slightly complitade by having to combine the intervals and merge
|
|
// the ones that overlap.
|
|
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
if (A == B)
|
|
return A;
|
|
|
|
// First, walk both lists in older of the lower boundary of each interval.
|
|
// At each step, try to merge the new interval to the last one we adedd.
|
|
SmallVector<ConstantInt *, 4> EndPoints;
|
|
int AI = 0;
|
|
int BI = 0;
|
|
int AN = A->getNumOperands() / 2;
|
|
int BN = B->getNumOperands() / 2;
|
|
while (AI < AN && BI < BN) {
|
|
ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
|
|
ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
|
|
|
|
if (ALow->getValue().slt(BLow->getValue())) {
|
|
addRange(EndPoints, ALow,
|
|
mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
|
|
++AI;
|
|
} else {
|
|
addRange(EndPoints, BLow,
|
|
mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
|
|
++BI;
|
|
}
|
|
}
|
|
while (AI < AN) {
|
|
addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
|
|
mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
|
|
++AI;
|
|
}
|
|
while (BI < BN) {
|
|
addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
|
|
mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
|
|
++BI;
|
|
}
|
|
|
|
// If we have more than 2 ranges (4 endpoints) we have to try to merge
|
|
// the last and first ones.
|
|
unsigned Size = EndPoints.size();
|
|
if (Size > 4) {
|
|
ConstantInt *FB = EndPoints[0];
|
|
ConstantInt *FE = EndPoints[1];
|
|
if (tryMergeRange(EndPoints, FB, FE)) {
|
|
for (unsigned i = 0; i < Size - 2; ++i) {
|
|
EndPoints[i] = EndPoints[i + 2];
|
|
}
|
|
EndPoints.resize(Size - 2);
|
|
}
|
|
}
|
|
|
|
// If in the end we have a single range, it is possible that it is now the
|
|
// full range. Just drop the metadata in that case.
|
|
if (EndPoints.size() == 2) {
|
|
ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
|
|
if (Range.isFullSet())
|
|
return nullptr;
|
|
}
|
|
|
|
SmallVector<Metadata *, 4> MDs;
|
|
MDs.reserve(EndPoints.size());
|
|
for (auto *I : EndPoints)
|
|
MDs.push_back(ConstantAsMetadata::get(I));
|
|
return MDNode::get(A->getContext(), MDs);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NamedMDNode implementation.
|
|
//
|
|
|
|
static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
|
|
return *(SmallVector<TrackingMDRef, 4> *)Operands;
|
|
}
|
|
|
|
NamedMDNode::NamedMDNode(const Twine &N)
|
|
: Name(N.str()), Parent(nullptr),
|
|
Operands(new SmallVector<TrackingMDRef, 4>()) {}
|
|
|
|
NamedMDNode::~NamedMDNode() {
|
|
dropAllReferences();
|
|
delete &getNMDOps(Operands);
|
|
}
|
|
|
|
unsigned NamedMDNode::getNumOperands() const {
|
|
return (unsigned)getNMDOps(Operands).size();
|
|
}
|
|
|
|
MDNode *NamedMDNode::getOperand(unsigned i) const {
|
|
assert(i < getNumOperands() && "Invalid Operand number!");
|
|
auto *N = getNMDOps(Operands)[i].get();
|
|
return cast_or_null<MDNode>(N);
|
|
}
|
|
|
|
void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
|
|
|
|
void NamedMDNode::eraseFromParent() {
|
|
getParent()->eraseNamedMetadata(this);
|
|
}
|
|
|
|
void NamedMDNode::dropAllReferences() {
|
|
getNMDOps(Operands).clear();
|
|
}
|
|
|
|
StringRef NamedMDNode::getName() const {
|
|
return StringRef(Name);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Metadata method implementations.
|
|
//
|
|
|
|
void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
|
|
if (!Node && !hasMetadata())
|
|
return;
|
|
setMetadata(getContext().getMDKindID(Kind), Node);
|
|
}
|
|
|
|
MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
|
|
return getMetadataImpl(getContext().getMDKindID(Kind));
|
|
}
|
|
|
|
void Instruction::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
|
|
SmallSet<unsigned, 5> KnownSet;
|
|
KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
|
|
|
|
// Drop debug if needed
|
|
if (KnownSet.erase(LLVMContext::MD_dbg))
|
|
DbgLoc = DebugLoc();
|
|
|
|
if (!hasMetadataHashEntry())
|
|
return; // Nothing to remove!
|
|
|
|
DenseMap<const Instruction *, LLVMContextImpl::MDMapTy> &MetadataStore =
|
|
getContext().pImpl->MetadataStore;
|
|
|
|
if (KnownSet.empty()) {
|
|
// Just drop our entry at the store.
|
|
MetadataStore.erase(this);
|
|
setHasMetadataHashEntry(false);
|
|
return;
|
|
}
|
|
|
|
LLVMContextImpl::MDMapTy &Info = MetadataStore[this];
|
|
unsigned I;
|
|
unsigned E;
|
|
// Walk the array and drop any metadata we don't know.
|
|
for (I = 0, E = Info.size(); I != E;) {
|
|
if (KnownSet.count(Info[I].first)) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
Info[I] = std::move(Info.back());
|
|
Info.pop_back();
|
|
--E;
|
|
}
|
|
assert(E == Info.size());
|
|
|
|
if (E == 0) {
|
|
// Drop our entry at the store.
|
|
MetadataStore.erase(this);
|
|
setHasMetadataHashEntry(false);
|
|
}
|
|
}
|
|
|
|
/// setMetadata - Set the metadata of of the specified kind to the specified
|
|
/// node. This updates/replaces metadata if already present, or removes it if
|
|
/// Node is null.
|
|
void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
|
|
if (!Node && !hasMetadata())
|
|
return;
|
|
|
|
// Handle 'dbg' as a special case since it is not stored in the hash table.
|
|
if (KindID == LLVMContext::MD_dbg) {
|
|
DbgLoc = DebugLoc::getFromDILocation(Node);
|
|
return;
|
|
}
|
|
|
|
// Handle the case when we're adding/updating metadata on an instruction.
|
|
if (Node) {
|
|
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
|
|
assert(!Info.empty() == hasMetadataHashEntry() &&
|
|
"HasMetadata bit is wonked");
|
|
if (Info.empty()) {
|
|
setHasMetadataHashEntry(true);
|
|
} else {
|
|
// Handle replacement of an existing value.
|
|
for (auto &P : Info)
|
|
if (P.first == KindID) {
|
|
P.second.reset(Node);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// No replacement, just add it to the list.
|
|
Info.emplace_back(std::piecewise_construct, std::make_tuple(KindID),
|
|
std::make_tuple(Node));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we're removing metadata from an instruction.
|
|
assert((hasMetadataHashEntry() ==
|
|
(getContext().pImpl->MetadataStore.count(this) > 0)) &&
|
|
"HasMetadata bit out of date!");
|
|
if (!hasMetadataHashEntry())
|
|
return; // Nothing to remove!
|
|
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
|
|
|
|
// Common case is removing the only entry.
|
|
if (Info.size() == 1 && Info[0].first == KindID) {
|
|
getContext().pImpl->MetadataStore.erase(this);
|
|
setHasMetadataHashEntry(false);
|
|
return;
|
|
}
|
|
|
|
// Handle removal of an existing value.
|
|
for (unsigned i = 0, e = Info.size(); i != e; ++i)
|
|
if (Info[i].first == KindID) {
|
|
Info[i] = std::move(Info.back());
|
|
Info.pop_back();
|
|
assert(!Info.empty() && "Removing last entry should be handled above");
|
|
return;
|
|
}
|
|
// Otherwise, removing an entry that doesn't exist on the instruction.
|
|
}
|
|
|
|
void Instruction::setAAMetadata(const AAMDNodes &N) {
|
|
setMetadata(LLVMContext::MD_tbaa, N.TBAA);
|
|
setMetadata(LLVMContext::MD_alias_scope, N.Scope);
|
|
setMetadata(LLVMContext::MD_noalias, N.NoAlias);
|
|
}
|
|
|
|
MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
|
|
// Handle 'dbg' as a special case since it is not stored in the hash table.
|
|
if (KindID == LLVMContext::MD_dbg)
|
|
return DbgLoc.getAsMDNode();
|
|
|
|
if (!hasMetadataHashEntry()) return nullptr;
|
|
|
|
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
|
|
assert(!Info.empty() && "bit out of sync with hash table");
|
|
|
|
for (const auto &I : Info)
|
|
if (I.first == KindID)
|
|
return I.second;
|
|
return nullptr;
|
|
}
|
|
|
|
void Instruction::getAllMetadataImpl(
|
|
SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
|
|
Result.clear();
|
|
|
|
// Handle 'dbg' as a special case since it is not stored in the hash table.
|
|
if (!DbgLoc.isUnknown()) {
|
|
Result.push_back(
|
|
std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
|
|
if (!hasMetadataHashEntry()) return;
|
|
}
|
|
|
|
assert(hasMetadataHashEntry() &&
|
|
getContext().pImpl->MetadataStore.count(this) &&
|
|
"Shouldn't have called this");
|
|
const LLVMContextImpl::MDMapTy &Info =
|
|
getContext().pImpl->MetadataStore.find(this)->second;
|
|
assert(!Info.empty() && "Shouldn't have called this");
|
|
|
|
Result.reserve(Result.size() + Info.size());
|
|
for (auto &I : Info)
|
|
Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get())));
|
|
|
|
// Sort the resulting array so it is stable.
|
|
if (Result.size() > 1)
|
|
array_pod_sort(Result.begin(), Result.end());
|
|
}
|
|
|
|
void Instruction::getAllMetadataOtherThanDebugLocImpl(
|
|
SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
|
|
Result.clear();
|
|
assert(hasMetadataHashEntry() &&
|
|
getContext().pImpl->MetadataStore.count(this) &&
|
|
"Shouldn't have called this");
|
|
const LLVMContextImpl::MDMapTy &Info =
|
|
getContext().pImpl->MetadataStore.find(this)->second;
|
|
assert(!Info.empty() && "Shouldn't have called this");
|
|
Result.reserve(Result.size() + Info.size());
|
|
for (auto &I : Info)
|
|
Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get())));
|
|
|
|
// Sort the resulting array so it is stable.
|
|
if (Result.size() > 1)
|
|
array_pod_sort(Result.begin(), Result.end());
|
|
}
|
|
|
|
/// clearMetadataHashEntries - Clear all hashtable-based metadata from
|
|
/// this instruction.
|
|
void Instruction::clearMetadataHashEntries() {
|
|
assert(hasMetadataHashEntry() && "Caller should check");
|
|
getContext().pImpl->MetadataStore.erase(this);
|
|
setHasMetadataHashEntry(false);
|
|
}
|