llvm/unittests/Analysis/CGSCCPassManagerTest.cpp
Chandler Carruth 0fc446723e [PM] Introduce the facilities for registering cross-IR-unit dependencies
that require deferred invalidation.

This handles the other real-world invalidation scenario that we have
cases of: a function analysis which caches references to a module
analysis. We currently do this in the AA aggregation layer and might
well do this in other places as well.

Since this is relative rare, the technique is somewhat more cumbersome.
Analyses need to register themselves when accessing the outer analysis
manager's proxy. This proxy is already necessarily present to allow
access to the outer IR unit's analyses. By registering here we can track
and trigger invalidation when that outer analysis goes away.

To make this work we need to enhance the PreservedAnalyses
infrastructure to support a (slightly) more explicit model for "sets" of
analyses, and allow abandoning a single specific analyses even when
a set covering that analysis is preserved. That allows us to describe
the scenario of preserving all Function analyses *except* for the one
where deferred invalidation has triggered.

We also need to teach the invalidator API to support direct ID calls
instead of always going through a template to dispatch so that we can
just record the ID mapping.

I've introduced testing of all of this both for simple module<->function
cases as well as for more complex cases involving a CGSCC layer.

Much like the previous patch I've not tried to fully update the loop
pass management layer because that layer is due to be heavily reworked
to use similar techniques to the CGSCC to handle updates. As that
happens, we'll have a better testing basis for adding support like this.

Many thanks to both Justin and Sean for the extensive reviews on this to
help bring the API design and documentation into a better state.

Differential Revision: https://reviews.llvm.org/D27198

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290594 91177308-0d34-0410-b5e6-96231b3b80d8
2016-12-27 08:40:39 +00:00

1087 lines
40 KiB
C++

//===- CGSCCPassManagerTest.cpp -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class TestModuleAnalysis : public AnalysisInfoMixin<TestModuleAnalysis> {
public:
struct Result {
Result(int Count) : FunctionCount(Count) {}
int FunctionCount;
};
TestModuleAnalysis(int &Runs) : Runs(Runs) {}
Result run(Module &M, ModuleAnalysisManager &AM) {
++Runs;
return Result(M.size());
}
private:
friend AnalysisInfoMixin<TestModuleAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestModuleAnalysis::Key;
class TestSCCAnalysis : public AnalysisInfoMixin<TestSCCAnalysis> {
public:
struct Result {
Result(int Count) : FunctionCount(Count) {}
int FunctionCount;
};
TestSCCAnalysis(int &Runs) : Runs(Runs) {}
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &) {
++Runs;
return Result(C.size());
}
private:
friend AnalysisInfoMixin<TestSCCAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestSCCAnalysis::Key;
class TestFunctionAnalysis : public AnalysisInfoMixin<TestFunctionAnalysis> {
public:
struct Result {
Result(int Count) : InstructionCount(Count) {}
int InstructionCount;
};
TestFunctionAnalysis(int &Runs) : Runs(Runs) {}
Result run(Function &F, FunctionAnalysisManager &AM) {
++Runs;
int Count = 0;
for (Instruction &I : instructions(F)) {
(void)I;
++Count;
}
return Result(Count);
}
private:
friend AnalysisInfoMixin<TestFunctionAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestFunctionAnalysis::Key;
class TestImmutableFunctionAnalysis
: public AnalysisInfoMixin<TestImmutableFunctionAnalysis> {
public:
struct Result {
bool invalidate(Function &, const PreservedAnalyses &,
FunctionAnalysisManager::Invalidator &) {
return false;
}
};
TestImmutableFunctionAnalysis(int &Runs) : Runs(Runs) {}
Result run(Function &F, FunctionAnalysisManager &AM) {
++Runs;
return Result();
}
private:
friend AnalysisInfoMixin<TestImmutableFunctionAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestImmutableFunctionAnalysis::Key;
struct LambdaModulePass : public PassInfoMixin<LambdaModulePass> {
template <typename T>
LambdaModulePass(T &&Arg) : Func(std::forward<T>(Arg)) {}
PreservedAnalyses run(Module &F, ModuleAnalysisManager &AM) {
return Func(F, AM);
}
std::function<PreservedAnalyses(Module &, ModuleAnalysisManager &)> Func;
};
struct LambdaSCCPass : public PassInfoMixin<LambdaSCCPass> {
template <typename T> LambdaSCCPass(T &&Arg) : Func(std::forward<T>(Arg)) {}
PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
return Func(C, AM, CG, UR);
}
std::function<PreservedAnalyses(LazyCallGraph::SCC &, CGSCCAnalysisManager &,
LazyCallGraph &, CGSCCUpdateResult &)>
Func;
};
struct LambdaFunctionPass : public PassInfoMixin<LambdaFunctionPass> {
template <typename T>
LambdaFunctionPass(T &&Arg) : Func(std::forward<T>(Arg)) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
return Func(F, AM);
}
std::function<PreservedAnalyses(Function &, FunctionAnalysisManager &)> Func;
};
std::unique_ptr<Module> parseIR(const char *IR) {
// We just use a static context here. This is never called from multiple
// threads so it is harmless no matter how it is implemented. We just need
// the context to outlive the module which it does.
static LLVMContext C;
SMDiagnostic Err;
return parseAssemblyString(IR, Err, C);
}
class CGSCCPassManagerTest : public ::testing::Test {
protected:
LLVMContext Context;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
std::unique_ptr<Module> M;
public:
CGSCCPassManagerTest()
: FAM(/*DebugLogging*/ true), CGAM(/*DebugLogging*/ true),
MAM(/*DebugLogging*/ true),
M(parseIR(
// Define a module with the following call graph, where calls go
// out the bottom of nodes and enter the top:
//
// f
// |\ _
// | \ / |
// g h1 |
// | | |
// | h2 |
// | | |
// | h3 |
// | / \_/
// |/
// x
//
"define void @f() {\n"
"entry:\n"
" call void @g()\n"
" call void @h1()\n"
" ret void\n"
"}\n"
"define void @g() {\n"
"entry:\n"
" call void @g()\n"
" call void @x()\n"
" ret void\n"
"}\n"
"define void @h1() {\n"
"entry:\n"
" call void @h2()\n"
" ret void\n"
"}\n"
"define void @h2() {\n"
"entry:\n"
" call void @h3()\n"
" call void @x()\n"
" ret void\n"
"}\n"
"define void @h3() {\n"
"entry:\n"
" call void @h1()\n"
" ret void\n"
"}\n"
"define void @x() {\n"
"entry:\n"
" ret void\n"
"}\n")) {
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
MAM.registerPass([&] { return CGSCCAnalysisManagerModuleProxy(CGAM); });
CGAM.registerPass([&] { return FunctionAnalysisManagerCGSCCProxy(); });
CGAM.registerPass([&] { return ModuleAnalysisManagerCGSCCProxy(MAM); });
FAM.registerPass([&] { return CGSCCAnalysisManagerFunctionProxy(CGAM); });
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
}
};
TEST_F(CGSCCPassManagerTest, Basic) {
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
int ImmutableFunctionAnalysisRuns = 0;
FAM.registerPass([&] {
return TestImmutableFunctionAnalysis(ImmutableFunctionAnalysisRuns);
});
int SCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
ModulePassManager MPM(/*DebugLogging*/ true);
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
FunctionPassManager FPM1(/*DebugLogging*/ true);
int FunctionPassRunCount1 = 0;
FPM1.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
++FunctionPassRunCount1;
return PreservedAnalyses::none();
}));
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
int SCCPassRunCount1 = 0;
int AnalyzedInstrCount1 = 0;
int AnalyzedSCCFunctionCount1 = 0;
int AnalyzedModuleFunctionCount1 = 0;
CGPM1.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
++SCCPassRunCount1;
const ModuleAnalysisManager &MAM =
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
if (TestModuleAnalysis::Result *TMA =
MAM.getCachedResult<TestModuleAnalysis>(
*C.begin()->getFunction().getParent()))
AnalyzedModuleFunctionCount1 += TMA->FunctionCount;
TestSCCAnalysis::Result &AR = AM.getResult<TestSCCAnalysis>(C, CG);
AnalyzedSCCFunctionCount1 += AR.FunctionCount;
for (LazyCallGraph::Node &N : C) {
TestFunctionAnalysis::Result &FAR =
FAM.getResult<TestFunctionAnalysis>(N.getFunction());
AnalyzedInstrCount1 += FAR.InstructionCount;
// Just ensure we get the immutable results.
(void)FAM.getResult<TestImmutableFunctionAnalysis>(N.getFunction());
}
return PreservedAnalyses::all();
}));
FunctionPassManager FPM2(/*DebugLogging*/ true);
int FunctionPassRunCount2 = 0;
FPM2.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
++FunctionPassRunCount2;
return PreservedAnalyses::none();
}));
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
FunctionPassManager FPM3(/*DebugLogging*/ true);
int FunctionPassRunCount3 = 0;
FPM3.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
++FunctionPassRunCount3;
return PreservedAnalyses::none();
}));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM3)));
MPM.run(*M, MAM);
EXPECT_EQ(4, SCCPassRunCount1);
EXPECT_EQ(6, FunctionPassRunCount1);
EXPECT_EQ(6, FunctionPassRunCount2);
EXPECT_EQ(6, FunctionPassRunCount3);
EXPECT_EQ(1, ModuleAnalysisRuns);
EXPECT_EQ(4, SCCAnalysisRuns);
EXPECT_EQ(6, FunctionAnalysisRuns);
EXPECT_EQ(6, ImmutableFunctionAnalysisRuns);
EXPECT_EQ(14, AnalyzedInstrCount1);
EXPECT_EQ(6, AnalyzedSCCFunctionCount1);
EXPECT_EQ(4 * 6, AnalyzedModuleFunctionCount1);
}
// Test that an SCC pass which fails to preserve a module analysis does in fact
// invalidate that module analysis.
TEST_F(CGSCCPassManagerTest, TestSCCPassInvalidatesModuleAnalysis) {
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
ModulePassManager MPM(/*DebugLogging*/ true);
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
// The first CGSCC run we preserve everything and make sure that works and
// the module analysis is available in the second CGSCC run from the one
// required module pass above.
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
int CountFoundModuleAnalysis1 = 0;
CGPM1.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
const auto &MAM =
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(
*C.begin()->getFunction().getParent());
if (TMA)
++CountFoundModuleAnalysis1;
return PreservedAnalyses::all();
}));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// The second CGSCC run checks that the module analysis got preserved the
// previous time and in one SCC fails to preserve it.
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
int CountFoundModuleAnalysis2 = 0;
CGPM2.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
const auto &MAM =
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(
*C.begin()->getFunction().getParent());
if (TMA)
++CountFoundModuleAnalysis2;
// Only fail to preserve analyses on one SCC and make sure that gets
// propagated.
return C.getName() == "(g)" ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
// The third CGSCC run should fail to find a cached module analysis as it
// should have been invalidated by the above CGSCC run.
CGSCCPassManager CGPM3(/*DebugLogging*/ true);
int CountFoundModuleAnalysis3 = 0;
CGPM3.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
const auto &MAM =
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(
*C.begin()->getFunction().getParent());
if (TMA)
++CountFoundModuleAnalysis3;
return PreservedAnalyses::none();
}));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
MPM.run(*M, MAM);
EXPECT_EQ(1, ModuleAnalysisRuns);
EXPECT_EQ(4, CountFoundModuleAnalysis1);
EXPECT_EQ(4, CountFoundModuleAnalysis2);
EXPECT_EQ(0, CountFoundModuleAnalysis3);
}
// Similar to the above, but test that this works for function passes embedded
// *within* a CGSCC layer.
TEST_F(CGSCCPassManagerTest, TestFunctionPassInsideCGSCCInvalidatesModuleAnalysis) {
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
ModulePassManager MPM(/*DebugLogging*/ true);
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
// The first run we preserve everything and make sure that works and the
// module analysis is available in the second run from the one required
// module pass above.
FunctionPassManager FPM1(/*DebugLogging*/ true);
// Start true and mark false if we ever failed to find a module analysis
// because we expect this to succeed for each SCC.
bool FoundModuleAnalysis1 = true;
FPM1.addPass(
LambdaFunctionPass([&](Function &F, FunctionAnalysisManager &AM) {
const auto &MAM =
AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
if (!TMA)
FoundModuleAnalysis1 = false;
return PreservedAnalyses::all();
}));
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// The second run checks that the module analysis got preserved the previous
// time and in one function fails to preserve it.
FunctionPassManager FPM2(/*DebugLogging*/ true);
// Again, start true and mark false if we ever failed to find a module analysis
// because we expect this to succeed for each SCC.
bool FoundModuleAnalysis2 = true;
FPM2.addPass(
LambdaFunctionPass([&](Function &F, FunctionAnalysisManager &AM) {
const auto &MAM =
AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
if (!TMA)
FoundModuleAnalysis2 = false;
// Only fail to preserve analyses on one SCC and make sure that gets
// propagated.
return F.getName() == "h2" ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}));
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
// The third run should fail to find a cached module analysis as it should
// have been invalidated by the above run.
FunctionPassManager FPM3(/*DebugLogging*/ true);
// Start false and mark true if we ever *succeeded* to find a module
// analysis, as we expect this to fail for every function.
bool FoundModuleAnalysis3 = false;
FPM3.addPass(
LambdaFunctionPass([&](Function &F, FunctionAnalysisManager &AM) {
const auto &MAM =
AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
if (TMA)
FoundModuleAnalysis3 = true;
return PreservedAnalyses::none();
}));
CGSCCPassManager CGPM3(/*DebugLogging*/ true);
CGPM3.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM3)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
MPM.run(*M, MAM);
EXPECT_EQ(1, ModuleAnalysisRuns);
EXPECT_TRUE(FoundModuleAnalysis1);
EXPECT_TRUE(FoundModuleAnalysis2);
EXPECT_FALSE(FoundModuleAnalysis3);
}
// Test that a Module pass which fails to preserve an SCC analysis in fact
// invalidates that analysis.
TEST_F(CGSCCPassManagerTest, TestModulePassInvalidatesSCCAnalysis) {
int SCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
ModulePassManager MPM(/*DebugLogging*/ true);
// First force the analysis to be run.
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the LazyCallGraph and the proxy but
// not the SCC analysis.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Two runs and four SCCs.
EXPECT_EQ(2 * 4, SCCAnalysisRuns);
}
// Check that marking the SCC analysis preserved is sufficient to avoid
// invaliadtion. This should only run the analysis once for each SCC.
TEST_F(CGSCCPassManagerTest, TestModulePassCanPreserveSCCAnalysis) {
int SCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
ModulePassManager MPM(/*DebugLogging*/ true);
// First force the analysis to be run.
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves each of the necessary components
// (but not everything).
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
PA.preserve<TestSCCAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again but find
// it in the cache.
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Four SCCs
EXPECT_EQ(4, SCCAnalysisRuns);
}
// Check that even when the analysis is preserved, if the SCC information isn't
// we still nuke things because the SCC keys could change.
TEST_F(CGSCCPassManagerTest, TestModulePassInvalidatesSCCAnalysisOnCGChange) {
int SCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
ModulePassManager MPM(/*DebugLogging*/ true);
// First force the analysis to be run.
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the analysis but not the call
// graph or proxy.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<TestSCCAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again.
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Two runs and four SCCs.
EXPECT_EQ(2 * 4, SCCAnalysisRuns);
}
// Test that an SCC pass which fails to preserve a Function analysis in fact
// invalidates that analysis.
TEST_F(CGSCCPassManagerTest, TestSCCPassInvalidatesFunctionAnalysis) {
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
// Create a very simple module with a single function and SCC to make testing
// these issues much easier.
std::unique_ptr<Module> M = parseIR("declare void @g()\n"
"declare void @h()\n"
"define void @f() {\n"
"entry:\n"
" call void @g()\n"
" call void @h()\n"
" ret void\n"
"}\n");
CGSCCPassManager CGPM(/*DebugLogging*/ true);
// First force the analysis to be run.
FunctionPassManager FPM1(/*DebugLogging*/ true);
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
// Now run a module pass that preserves the LazyCallGraph and proxy but not
// the SCC analysis.
CGPM.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
LazyCallGraph &, CGSCCUpdateResult &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
FunctionPassManager FPM2(/*DebugLogging*/ true);
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
ModulePassManager MPM(/*DebugLogging*/ true);
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
EXPECT_EQ(2, FunctionAnalysisRuns);
}
// Check that marking the SCC analysis preserved is sufficient. This should
// only run the analysis once the SCC.
TEST_F(CGSCCPassManagerTest, TestSCCPassCanPreserveFunctionAnalysis) {
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
// Create a very simple module with a single function and SCC to make testing
// these issues much easier.
std::unique_ptr<Module> M = parseIR("declare void @g()\n"
"declare void @h()\n"
"define void @f() {\n"
"entry:\n"
" call void @g()\n"
" call void @h()\n"
" ret void\n"
"}\n");
CGSCCPassManager CGPM(/*DebugLogging*/ true);
// First force the analysis to be run.
FunctionPassManager FPM1(/*DebugLogging*/ true);
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
// Now run a module pass that preserves each of the necessary components
// (but
// not everything).
CGPM.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
LazyCallGraph &, CGSCCUpdateResult &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<TestFunctionAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again but find
// it in the cache.
FunctionPassManager FPM2(/*DebugLogging*/ true);
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
ModulePassManager MPM(/*DebugLogging*/ true);
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
EXPECT_EQ(1, FunctionAnalysisRuns);
}
// Note that there is no test for invalidating the call graph or other
// structure with an SCC pass because there is no mechanism to do that from
// withinsuch a pass. Instead, such a pass has to directly update the call
// graph structure.
// Test that a madule pass invalidates function analyses when the CGSCC proxies
// and pass manager.
TEST_F(CGSCCPassManagerTest,
TestModulePassInvalidatesFunctionAnalysisNestedInCGSCC) {
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
ModulePassManager MPM(/*DebugLogging*/ true);
// First force the analysis to be run.
FunctionPassManager FPM1(/*DebugLogging*/ true);
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the LazyCallGraph and proxy but not
// the Function analysis.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
FunctionPassManager FPM2(/*DebugLogging*/ true);
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Two runs and 6 functions.
EXPECT_EQ(2 * 6, FunctionAnalysisRuns);
}
// Check that by marking the function pass and FAM proxy as preserved, this
// propagates all the way through.
TEST_F(CGSCCPassManagerTest,
TestModulePassCanPreserveFunctionAnalysisNestedInCGSCC) {
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
ModulePassManager MPM(/*DebugLogging*/ true);
// First force the analysis to be run.
FunctionPassManager FPM1(/*DebugLogging*/ true);
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the LazyCallGraph, the proxy, and
// the Function analysis.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
PA.preserve<TestFunctionAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
FunctionPassManager FPM2(/*DebugLogging*/ true);
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// One run and 6 functions.
EXPECT_EQ(6, FunctionAnalysisRuns);
}
// Check that if the lazy call graph itself isn't preserved we still manage to
// invalidate everything.
TEST_F(CGSCCPassManagerTest,
TestModulePassInvalidatesFunctionAnalysisNestedInCGSCCOnCGChange) {
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
ModulePassManager MPM(/*DebugLogging*/ true);
// First force the analysis to be run.
FunctionPassManager FPM1(/*DebugLogging*/ true);
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the LazyCallGraph but not the
// Function analysis.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
FunctionPassManager FPM2(/*DebugLogging*/ true);
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Two runs and 6 functions.
EXPECT_EQ(2 * 6, FunctionAnalysisRuns);
}
/// A test CGSCC-level analysis pass which caches in its result another
/// analysis pass and uses it to serve queries. This requires the result to
/// invalidate itself when its dependency is invalidated.
///
/// FIXME: Currently this doesn't also depend on a function analysis, and if it
/// did we would fail to invalidate it correctly.
struct TestIndirectSCCAnalysis
: public AnalysisInfoMixin<TestIndirectSCCAnalysis> {
struct Result {
Result(TestSCCAnalysis::Result &SCCDep, TestModuleAnalysis::Result &MDep)
: SCCDep(SCCDep), MDep(MDep) {}
TestSCCAnalysis::Result &SCCDep;
TestModuleAnalysis::Result &MDep;
bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
CGSCCAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<TestIndirectSCCAnalysis>();
return !(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) ||
Inv.invalidate<TestSCCAnalysis>(C, PA);
}
};
TestIndirectSCCAnalysis(int &Runs) : Runs(Runs) {}
/// Run the analysis pass over the function and return a result.
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG) {
++Runs;
auto &SCCDep = AM.getResult<TestSCCAnalysis>(C, CG);
auto &ModuleProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
const ModuleAnalysisManager &MAM = ModuleProxy.getManager();
// For the test, we insist that the module analysis starts off in the
// cache.
auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(
*C.begin()->getFunction().getParent());
// Register the dependency as module analysis dependencies have to be
// pre-registered on the proxy.
ModuleProxy.registerOuterAnalysisInvalidation<TestModuleAnalysis,
TestIndirectSCCAnalysis>();
return Result(SCCDep, MDep);
}
private:
friend AnalysisInfoMixin<TestIndirectSCCAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestIndirectSCCAnalysis::Key;
/// A test analysis pass which caches in its result the result from the above
/// indirect analysis pass.
///
/// This allows us to ensure that whenever an analysis pass is invalidated due
/// to dependencies (especially dependencies across IR units that trigger
/// asynchronous invalidation) we correctly detect that this may in turn cause
/// other analysis to be invalidated.
struct TestDoublyIndirectSCCAnalysis
: public AnalysisInfoMixin<TestDoublyIndirectSCCAnalysis> {
struct Result {
Result(TestIndirectSCCAnalysis::Result &IDep) : IDep(IDep) {}
TestIndirectSCCAnalysis::Result &IDep;
bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
CGSCCAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<TestDoublyIndirectSCCAnalysis>();
return !(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) ||
Inv.invalidate<TestIndirectSCCAnalysis>(C, PA);
}
};
TestDoublyIndirectSCCAnalysis(int &Runs) : Runs(Runs) {}
/// Run the analysis pass over the function and return a result.
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG) {
++Runs;
auto &IDep = AM.getResult<TestIndirectSCCAnalysis>(C, CG);
return Result(IDep);
}
private:
friend AnalysisInfoMixin<TestDoublyIndirectSCCAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestDoublyIndirectSCCAnalysis::Key;
/// A test analysis pass which caches results from three different IR unit
/// layers and requires intermediate layers to correctly propagate the entire
/// distance.
struct TestIndirectFunctionAnalysis
: public AnalysisInfoMixin<TestIndirectFunctionAnalysis> {
struct Result {
Result(TestFunctionAnalysis::Result &FDep, TestModuleAnalysis::Result &MDep,
TestSCCAnalysis::Result &SCCDep)
: FDep(FDep), MDep(MDep), SCCDep(SCCDep) {}
TestFunctionAnalysis::Result &FDep;
TestModuleAnalysis::Result &MDep;
TestSCCAnalysis::Result &SCCDep;
bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<TestIndirectFunctionAnalysis>();
return !(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<Function>>()) ||
Inv.invalidate<TestFunctionAnalysis>(F, PA);
}
};
TestIndirectFunctionAnalysis(int &Runs) : Runs(Runs) {}
/// Run the analysis pass over the function and return a result.
Result run(Function &F, FunctionAnalysisManager &AM) {
++Runs;
auto &FDep = AM.getResult<TestFunctionAnalysis>(F);
auto &ModuleProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
const ModuleAnalysisManager &MAM = ModuleProxy.getManager();
// For the test, we insist that the module analysis starts off in the
// cache.
auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
// Register the dependency as module analysis dependencies have to be
// pre-registered on the proxy.
ModuleProxy.registerOuterAnalysisInvalidation<
TestModuleAnalysis, TestIndirectFunctionAnalysis>();
// For thet test we assume this is run inside a CGSCC pass manager.
const LazyCallGraph &CG =
*MAM.getCachedResult<LazyCallGraphAnalysis>(*F.getParent());
auto &CGSCCProxy = AM.getResult<CGSCCAnalysisManagerFunctionProxy>(F);
const CGSCCAnalysisManager &CGAM = CGSCCProxy.getManager();
// For the test, we insist that the CGSCC analysis starts off in the cache.
auto &SCCDep =
*CGAM.getCachedResult<TestSCCAnalysis>(*CG.lookupSCC(*CG.lookup(F)));
// Register the dependency as CGSCC analysis dependencies have to be
// pre-registered on the proxy.
CGSCCProxy.registerOuterAnalysisInvalidation<
TestSCCAnalysis, TestIndirectFunctionAnalysis>();
return Result(FDep, MDep, SCCDep);
}
private:
friend AnalysisInfoMixin<TestIndirectFunctionAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestIndirectFunctionAnalysis::Key;
TEST_F(CGSCCPassManagerTest, TestIndirectAnalysisInvalidation) {
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
int SCCAnalysisRuns = 0, IndirectSCCAnalysisRuns = 0,
DoublyIndirectSCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
CGAM.registerPass(
[&] { return TestIndirectSCCAnalysis(IndirectSCCAnalysisRuns); });
CGAM.registerPass([&] {
return TestDoublyIndirectSCCAnalysis(DoublyIndirectSCCAnalysisRuns);
});
int FunctionAnalysisRuns = 0, IndirectFunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
FAM.registerPass([&] {
return TestIndirectFunctionAnalysis(IndirectFunctionAnalysisRuns);
});
ModulePassManager MPM(/*DebugLogging*/ true);
int FunctionCount = 0;
CGSCCPassManager CGPM(/*DebugLogging*/ true);
// First just use the analysis to get the function count and preserve
// everything.
CGPM.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
auto &IndirectResult = DoublyIndirectResult.IDep;
FunctionCount += IndirectResult.SCCDep.FunctionCount;
return PreservedAnalyses::all();
}));
// Next, invalidate
// - both analyses for the (f) and (x) SCCs,
// - just the underlying (indirect) analysis for (g) SCC, and
// - just the direct analysis for (h1,h2,h3) SCC.
CGPM.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
auto &IndirectResult = DoublyIndirectResult.IDep;
FunctionCount += IndirectResult.SCCDep.FunctionCount;
auto PA = PreservedAnalyses::none();
if (C.getName() == "(g)")
PA.preserve<TestSCCAnalysis>();
else if (C.getName() == "(h3, h1, h2)")
PA.preserve<TestIndirectSCCAnalysis>();
return PA;
}));
// Finally, use the analysis again on each function, forcing re-computation
// for all of them.
CGPM.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
auto &IndirectResult = DoublyIndirectResult.IDep;
FunctionCount += IndirectResult.SCCDep.FunctionCount;
return PreservedAnalyses::all();
}));
// Create a second CGSCC pass manager. This will cause the module-level
// invalidation to occur, which will force yet another invalidation of the
// indirect SCC-level analysis as the module analysis it depends on gets
// invalidated.
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
CGPM2.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
auto &IndirectResult = DoublyIndirectResult.IDep;
FunctionCount += IndirectResult.SCCDep.FunctionCount;
return PreservedAnalyses::all();
}));
// Add a requires pass to populate the module analysis and then our function
// pass pipeline.
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
// Now require the module analysis again (it will have been invalidated once)
// and then use it again from a function pass manager.
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// There are generally two possible runs for each of the four SCCs. But
// for one SCC, we only invalidate the indirect analysis so the base one
// only gets run seven times.
EXPECT_EQ(7, SCCAnalysisRuns);
// The module analysis pass should be run twice here.
EXPECT_EQ(2, ModuleAnalysisRuns);
// The indirect analysis is invalidated (either directly or indirectly) three
// times for each of four SCCs.
EXPECT_EQ(3 * 4, IndirectSCCAnalysisRuns);
EXPECT_EQ(3 * 4, DoublyIndirectSCCAnalysisRuns);
// Four passes count each of six functions once (via SCCs).
EXPECT_EQ(4 * 6, FunctionCount);
}
}