mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-10 06:00:30 +00:00
5401ba7099
This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
729 lines
26 KiB
C++
729 lines
26 KiB
C++
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "lcg"
|
|
|
|
static void findCallees(
|
|
SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
|
|
SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
|
|
DenseMap<Function *, size_t> &CalleeIndexMap) {
|
|
while (!Worklist.empty()) {
|
|
Constant *C = Worklist.pop_back_val();
|
|
|
|
if (Function *F = dyn_cast<Function>(C)) {
|
|
// Note that we consider *any* function with a definition to be a viable
|
|
// edge. Even if the function's definition is subject to replacement by
|
|
// some other module (say, a weak definition) there may still be
|
|
// optimizations which essentially speculate based on the definition and
|
|
// a way to check that the specific definition is in fact the one being
|
|
// used. For example, this could be done by moving the weak definition to
|
|
// a strong (internal) definition and making the weak definition be an
|
|
// alias. Then a test of the address of the weak function against the new
|
|
// strong definition's address would be an effective way to determine the
|
|
// safety of optimizing a direct call edge.
|
|
if (!F->isDeclaration() &&
|
|
CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) {
|
|
DEBUG(dbgs() << " Added callable function: " << F->getName()
|
|
<< "\n");
|
|
Callees.push_back(F);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (Value *Op : C->operand_values())
|
|
if (Visited.insert(cast<Constant>(Op)).second)
|
|
Worklist.push_back(cast<Constant>(Op));
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
|
|
: G(&G), F(F), DFSNumber(0), LowLink(0) {
|
|
DEBUG(dbgs() << " Adding functions called by '" << F.getName()
|
|
<< "' to the graph.\n");
|
|
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
// Find all the potential callees in this function. First walk the
|
|
// instructions and add every operand which is a constant to the worklist.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &I : BB)
|
|
for (Value *Op : I.operand_values())
|
|
if (Constant *C = dyn_cast<Constant>(Op))
|
|
if (Visited.insert(C).second)
|
|
Worklist.push_back(C);
|
|
|
|
// We've collected all the constant (and thus potentially function or
|
|
// function containing) operands to all of the instructions in the function.
|
|
// Process them (recursively) collecting every function found.
|
|
findCallees(Worklist, Visited, Callees, CalleeIndexMap);
|
|
}
|
|
|
|
void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) {
|
|
if (Node *N = G->lookup(Callee))
|
|
return insertEdgeInternal(*N);
|
|
|
|
CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size()));
|
|
Callees.push_back(&Callee);
|
|
}
|
|
|
|
void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) {
|
|
CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size()));
|
|
Callees.push_back(&CalleeN);
|
|
}
|
|
|
|
void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) {
|
|
auto IndexMapI = CalleeIndexMap.find(&Callee);
|
|
assert(IndexMapI != CalleeIndexMap.end() &&
|
|
"Callee not in the callee set for this caller?");
|
|
|
|
Callees[IndexMapI->second] = nullptr;
|
|
CalleeIndexMap.erase(IndexMapI);
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
|
|
DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
|
|
<< "\n");
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !F.hasLocalLinkage())
|
|
if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) {
|
|
DEBUG(dbgs() << " Adding '" << F.getName()
|
|
<< "' to entry set of the graph.\n");
|
|
EntryNodes.push_back(&F);
|
|
}
|
|
|
|
// Now add entry nodes for functions reachable via initializers to globals.
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (GV.hasInitializer())
|
|
if (Visited.insert(GV.getInitializer()).second)
|
|
Worklist.push_back(GV.getInitializer());
|
|
|
|
DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
|
|
"entry set.\n");
|
|
findCallees(Worklist, Visited, EntryNodes, EntryIndexMap);
|
|
|
|
for (auto &Entry : EntryNodes) {
|
|
assert(!Entry.isNull() &&
|
|
"We can't have removed edges before we finish the constructor!");
|
|
if (Function *F = Entry.dyn_cast<Function *>())
|
|
SCCEntryNodes.push_back(F);
|
|
else
|
|
SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction());
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
|
|
: BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
|
|
EntryNodes(std::move(G.EntryNodes)),
|
|
EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
|
|
SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
|
|
DFSStack(std::move(G.DFSStack)),
|
|
SCCEntryNodes(std::move(G.SCCEntryNodes)),
|
|
NextDFSNumber(G.NextDFSNumber) {
|
|
updateGraphPtrs();
|
|
}
|
|
|
|
LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
|
|
BPA = std::move(G.BPA);
|
|
NodeMap = std::move(G.NodeMap);
|
|
EntryNodes = std::move(G.EntryNodes);
|
|
EntryIndexMap = std::move(G.EntryIndexMap);
|
|
SCCBPA = std::move(G.SCCBPA);
|
|
SCCMap = std::move(G.SCCMap);
|
|
LeafSCCs = std::move(G.LeafSCCs);
|
|
DFSStack = std::move(G.DFSStack);
|
|
SCCEntryNodes = std::move(G.SCCEntryNodes);
|
|
NextDFSNumber = G.NextDFSNumber;
|
|
updateGraphPtrs();
|
|
return *this;
|
|
}
|
|
|
|
void LazyCallGraph::SCC::insert(Node &N) {
|
|
N.DFSNumber = N.LowLink = -1;
|
|
Nodes.push_back(&N);
|
|
G->SCCMap[&N] = this;
|
|
}
|
|
|
|
bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const {
|
|
// Walk up the parents of this SCC and verify that we eventually find C.
|
|
SmallVector<const SCC *, 4> AncestorWorklist;
|
|
AncestorWorklist.push_back(this);
|
|
do {
|
|
const SCC *AncestorC = AncestorWorklist.pop_back_val();
|
|
if (AncestorC->isChildOf(C))
|
|
return true;
|
|
for (const SCC *ParentC : AncestorC->ParentSCCs)
|
|
AncestorWorklist.push_back(ParentC);
|
|
} while (!AncestorWorklist.empty());
|
|
|
|
return false;
|
|
}
|
|
|
|
void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) {
|
|
// First insert it into the caller.
|
|
CallerN.insertEdgeInternal(CalleeN);
|
|
|
|
assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
|
|
assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
|
|
|
|
// Nothing changes about this SCC or any other.
|
|
}
|
|
|
|
void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) {
|
|
// First insert it into the caller.
|
|
CallerN.insertEdgeInternal(CalleeN);
|
|
|
|
assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
|
|
|
|
SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
|
|
assert(&CalleeC != this && "Callee must not be in this SCC.");
|
|
assert(CalleeC.isDescendantOf(*this) &&
|
|
"Callee must be a descendant of the Caller.");
|
|
|
|
// The only change required is to add this SCC to the parent set of the callee.
|
|
CalleeC.ParentSCCs.insert(this);
|
|
}
|
|
|
|
SmallVector<LazyCallGraph::SCC *, 1>
|
|
LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) {
|
|
// First insert it into the caller.
|
|
CallerN.insertEdgeInternal(CalleeN);
|
|
|
|
assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
|
|
|
|
SCC &CallerC = *G->SCCMap.lookup(&CallerN);
|
|
assert(&CallerC != this && "Caller must not be in this SCC.");
|
|
assert(CallerC.isDescendantOf(*this) &&
|
|
"Caller must be a descendant of the Callee.");
|
|
|
|
// The algorithm we use for merging SCCs based on the cycle introduced here
|
|
// is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse
|
|
// graph has the same cycle properties as the actual DAG of the SCCs, and
|
|
// when forming SCCs lazily by a DFS, the bottom of the graph won't exist in
|
|
// many cases which should prune the search space.
|
|
//
|
|
// FIXME: We can get this pruning behavior even after the incremental SCC
|
|
// formation by leaving behind (conservative) DFS numberings in the nodes,
|
|
// and pruning the search with them. These would need to be cleverly updated
|
|
// during the removal of intra-SCC edges, but could be preserved
|
|
// conservatively.
|
|
|
|
// The set of SCCs that are connected to the caller, and thus will
|
|
// participate in the merged connected component.
|
|
SmallPtrSet<SCC *, 8> ConnectedSCCs;
|
|
ConnectedSCCs.insert(this);
|
|
ConnectedSCCs.insert(&CallerC);
|
|
|
|
// We build up a DFS stack of the parents chains.
|
|
SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs;
|
|
SmallPtrSet<SCC *, 8> VisitedSCCs;
|
|
int ConnectedDepth = -1;
|
|
SCC *C = this;
|
|
parent_iterator I = parent_begin(), E = parent_end();
|
|
for (;;) {
|
|
while (I != E) {
|
|
SCC &ParentSCC = *I++;
|
|
|
|
// If we have already processed this parent SCC, skip it, and remember
|
|
// whether it was connected so we don't have to check the rest of the
|
|
// stack. This also handles when we reach a child of the 'this' SCC (the
|
|
// callee) which terminates the search.
|
|
if (ConnectedSCCs.count(&ParentSCC)) {
|
|
ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size());
|
|
continue;
|
|
}
|
|
if (VisitedSCCs.count(&ParentSCC))
|
|
continue;
|
|
|
|
// We fully explore the depth-first space, adding nodes to the connected
|
|
// set only as we pop them off, so "recurse" by rotating to the parent.
|
|
DFSSCCs.push_back(std::make_pair(C, I));
|
|
C = &ParentSCC;
|
|
I = ParentSCC.parent_begin();
|
|
E = ParentSCC.parent_end();
|
|
}
|
|
|
|
// If we've found a connection anywhere below this point on the stack (and
|
|
// thus up the parent graph from the caller), the current node needs to be
|
|
// added to the connected set now that we've processed all of its parents.
|
|
if ((int)DFSSCCs.size() == ConnectedDepth) {
|
|
--ConnectedDepth; // We're finished with this connection.
|
|
ConnectedSCCs.insert(C);
|
|
} else {
|
|
// Otherwise remember that its parents don't ever connect.
|
|
assert(ConnectedDepth < (int)DFSSCCs.size() &&
|
|
"Cannot have a connected depth greater than the DFS depth!");
|
|
VisitedSCCs.insert(C);
|
|
}
|
|
|
|
if (DFSSCCs.empty())
|
|
break; // We've walked all the parents of the caller transitively.
|
|
|
|
// Pop off the prior node and position to unwind the depth first recursion.
|
|
std::tie(C, I) = DFSSCCs.pop_back_val();
|
|
E = C->parent_end();
|
|
}
|
|
|
|
// Now that we have identified all of the SCCs which need to be merged into
|
|
// a connected set with the inserted edge, merge all of them into this SCC.
|
|
// FIXME: This operation currently creates ordering stability problems
|
|
// because we don't use stably ordered containers for the parent SCCs or the
|
|
// connected SCCs.
|
|
unsigned NewNodeBeginIdx = Nodes.size();
|
|
for (SCC *C : ConnectedSCCs) {
|
|
if (C == this)
|
|
continue;
|
|
for (SCC *ParentC : C->ParentSCCs)
|
|
if (!ConnectedSCCs.count(ParentC))
|
|
ParentSCCs.insert(ParentC);
|
|
C->ParentSCCs.clear();
|
|
|
|
for (Node *N : *C) {
|
|
for (Node &ChildN : *N) {
|
|
SCC &ChildC = *G->SCCMap.lookup(&ChildN);
|
|
if (&ChildC != C)
|
|
ChildC.ParentSCCs.erase(C);
|
|
}
|
|
G->SCCMap[N] = this;
|
|
Nodes.push_back(N);
|
|
}
|
|
C->Nodes.clear();
|
|
}
|
|
for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I)
|
|
for (Node &ChildN : **I) {
|
|
SCC &ChildC = *G->SCCMap.lookup(&ChildN);
|
|
if (&ChildC != this)
|
|
ChildC.ParentSCCs.insert(this);
|
|
}
|
|
|
|
// We return the list of SCCs which were merged so that callers can
|
|
// invalidate any data they have associated with those SCCs. Note that these
|
|
// SCCs are no longer in an interesting state (they are totally empty) but
|
|
// the pointers will remain stable for the life of the graph itself.
|
|
return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end());
|
|
}
|
|
|
|
void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) {
|
|
// First remove it from the node.
|
|
CallerN.removeEdgeInternal(CalleeN.getFunction());
|
|
|
|
assert(G->SCCMap.lookup(&CallerN) == this &&
|
|
"The caller must be a member of this SCC.");
|
|
|
|
SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
|
|
assert(&CalleeC != this &&
|
|
"This API only supports the rmoval of inter-SCC edges.");
|
|
|
|
assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) ==
|
|
G->LeafSCCs.end() &&
|
|
"Cannot have a leaf SCC caller with a different SCC callee.");
|
|
|
|
bool HasOtherCallToCalleeC = false;
|
|
bool HasOtherCallOutsideSCC = false;
|
|
for (Node *N : *this) {
|
|
for (Node &OtherCalleeN : *N) {
|
|
SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN);
|
|
if (&OtherCalleeC == &CalleeC) {
|
|
HasOtherCallToCalleeC = true;
|
|
break;
|
|
}
|
|
if (&OtherCalleeC != this)
|
|
HasOtherCallOutsideSCC = true;
|
|
}
|
|
if (HasOtherCallToCalleeC)
|
|
break;
|
|
}
|
|
// Because the SCCs form a DAG, deleting such an edge cannot change the set
|
|
// of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
|
|
// the caller no longer a parent of the callee. Walk the other call edges
|
|
// in the caller to tell.
|
|
if (!HasOtherCallToCalleeC) {
|
|
bool Removed = CalleeC.ParentSCCs.erase(this);
|
|
(void)Removed;
|
|
assert(Removed &&
|
|
"Did not find the caller SCC in the callee SCC's parent list!");
|
|
|
|
// It may orphan an SCC if it is the last edge reaching it, but that does
|
|
// not violate any invariants of the graph.
|
|
if (CalleeC.ParentSCCs.empty())
|
|
DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName()
|
|
<< " -> " << CalleeN.getFunction().getName()
|
|
<< " edge orphaned the callee's SCC!\n");
|
|
}
|
|
|
|
// It may make the Caller SCC a leaf SCC.
|
|
if (!HasOtherCallOutsideSCC)
|
|
G->LeafSCCs.push_back(this);
|
|
}
|
|
|
|
void LazyCallGraph::SCC::internalDFS(
|
|
SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack,
|
|
SmallVectorImpl<Node *> &PendingSCCStack, Node *N,
|
|
SmallVectorImpl<SCC *> &ResultSCCs) {
|
|
Node::iterator I = N->begin();
|
|
N->LowLink = N->DFSNumber = 1;
|
|
int NextDFSNumber = 2;
|
|
for (;;) {
|
|
assert(N->DFSNumber != 0 && "We should always assign a DFS number "
|
|
"before processing a node.");
|
|
|
|
// We simulate recursion by popping out of the nested loop and continuing.
|
|
Node::iterator E = N->end();
|
|
while (I != E) {
|
|
Node &ChildN = *I;
|
|
if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) {
|
|
// Check if we have reached a node in the new (known connected) set of
|
|
// this SCC. If so, the entire stack is necessarily in that set and we
|
|
// can re-start.
|
|
if (ChildSCC == this) {
|
|
insert(*N);
|
|
while (!PendingSCCStack.empty())
|
|
insert(*PendingSCCStack.pop_back_val());
|
|
while (!DFSStack.empty())
|
|
insert(*DFSStack.pop_back_val().first);
|
|
return;
|
|
}
|
|
|
|
// If this child isn't currently in this SCC, no need to process it.
|
|
// However, we do need to remove this SCC from its SCC's parent set.
|
|
ChildSCC->ParentSCCs.erase(this);
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
if (ChildN.DFSNumber == 0) {
|
|
// Mark that we should start at this child when next this node is the
|
|
// top of the stack. We don't start at the next child to ensure this
|
|
// child's lowlink is reflected.
|
|
DFSStack.push_back(std::make_pair(N, I));
|
|
|
|
// Continue, resetting to the child node.
|
|
ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
|
|
N = &ChildN;
|
|
I = ChildN.begin();
|
|
E = ChildN.end();
|
|
continue;
|
|
}
|
|
|
|
// Track the lowest link of the children, if any are still in the stack.
|
|
// Any child not on the stack will have a LowLink of -1.
|
|
assert(ChildN.LowLink != 0 &&
|
|
"Low-link must not be zero with a non-zero DFS number.");
|
|
if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
|
|
N->LowLink = ChildN.LowLink;
|
|
++I;
|
|
}
|
|
|
|
if (N->LowLink == N->DFSNumber) {
|
|
ResultSCCs.push_back(G->formSCC(N, PendingSCCStack));
|
|
if (DFSStack.empty())
|
|
return;
|
|
} else {
|
|
// At this point we know that N cannot ever be an SCC root. Its low-link
|
|
// is not its dfs-number, and we've processed all of its children. It is
|
|
// just sitting here waiting until some node further down the stack gets
|
|
// low-link == dfs-number and pops it off as well. Move it to the pending
|
|
// stack which is pulled into the next SCC to be formed.
|
|
PendingSCCStack.push_back(N);
|
|
|
|
assert(!DFSStack.empty() && "We shouldn't have an empty stack!");
|
|
}
|
|
|
|
N = DFSStack.back().first;
|
|
I = DFSStack.back().second;
|
|
DFSStack.pop_back();
|
|
}
|
|
}
|
|
|
|
SmallVector<LazyCallGraph::SCC *, 1>
|
|
LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN,
|
|
Node &CalleeN) {
|
|
// First remove it from the node.
|
|
CallerN.removeEdgeInternal(CalleeN.getFunction());
|
|
|
|
// We return a list of the resulting *new* SCCs in postorder.
|
|
SmallVector<SCC *, 1> ResultSCCs;
|
|
|
|
// Direct recursion doesn't impact the SCC graph at all.
|
|
if (&CallerN == &CalleeN)
|
|
return ResultSCCs;
|
|
|
|
// The worklist is every node in the original SCC.
|
|
SmallVector<Node *, 1> Worklist;
|
|
Worklist.swap(Nodes);
|
|
for (Node *N : Worklist) {
|
|
// The nodes formerly in this SCC are no longer in any SCC.
|
|
N->DFSNumber = 0;
|
|
N->LowLink = 0;
|
|
G->SCCMap.erase(N);
|
|
}
|
|
assert(Worklist.size() > 1 && "We have to have at least two nodes to have an "
|
|
"edge between them that is within the SCC.");
|
|
|
|
// The callee can already reach every node in this SCC (by definition). It is
|
|
// the only node we know will stay inside this SCC. Everything which
|
|
// transitively reaches Callee will also remain in the SCC. To model this we
|
|
// incrementally add any chain of nodes which reaches something in the new
|
|
// node set to the new node set. This short circuits one side of the Tarjan's
|
|
// walk.
|
|
insert(CalleeN);
|
|
|
|
// We're going to do a full mini-Tarjan's walk using a local stack here.
|
|
SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack;
|
|
SmallVector<Node *, 4> PendingSCCStack;
|
|
do {
|
|
Node *N = Worklist.pop_back_val();
|
|
if (N->DFSNumber == 0)
|
|
internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs);
|
|
|
|
assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
|
|
assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!");
|
|
} while (!Worklist.empty());
|
|
|
|
// Now we need to reconnect the current SCC to the graph.
|
|
bool IsLeafSCC = true;
|
|
for (Node *N : Nodes) {
|
|
for (Node &ChildN : *N) {
|
|
SCC &ChildSCC = *G->SCCMap.lookup(&ChildN);
|
|
if (&ChildSCC == this)
|
|
continue;
|
|
ChildSCC.ParentSCCs.insert(this);
|
|
IsLeafSCC = false;
|
|
}
|
|
}
|
|
#ifndef NDEBUG
|
|
if (!ResultSCCs.empty())
|
|
assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new "
|
|
"SCCs by removing this edge.");
|
|
if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(),
|
|
[&](SCC *C) { return C == this; }))
|
|
assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child "
|
|
"SCCs before we removed this edge.");
|
|
#endif
|
|
// If this SCC stopped being a leaf through this edge removal, remove it from
|
|
// the leaf SCC list.
|
|
if (!IsLeafSCC && !ResultSCCs.empty())
|
|
G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this),
|
|
G->LeafSCCs.end());
|
|
|
|
// Return the new list of SCCs.
|
|
return ResultSCCs;
|
|
}
|
|
|
|
void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) {
|
|
assert(SCCMap.empty() && DFSStack.empty() &&
|
|
"This method cannot be called after SCCs have been formed!");
|
|
|
|
return CallerN.insertEdgeInternal(Callee);
|
|
}
|
|
|
|
void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) {
|
|
assert(SCCMap.empty() && DFSStack.empty() &&
|
|
"This method cannot be called after SCCs have been formed!");
|
|
|
|
return CallerN.removeEdgeInternal(Callee);
|
|
}
|
|
|
|
LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
|
|
return *new (MappedN = BPA.Allocate()) Node(*this, F);
|
|
}
|
|
|
|
void LazyCallGraph::updateGraphPtrs() {
|
|
// Process all nodes updating the graph pointers.
|
|
{
|
|
SmallVector<Node *, 16> Worklist;
|
|
for (auto &Entry : EntryNodes)
|
|
if (Node *EntryN = Entry.dyn_cast<Node *>())
|
|
Worklist.push_back(EntryN);
|
|
|
|
while (!Worklist.empty()) {
|
|
Node *N = Worklist.pop_back_val();
|
|
N->G = this;
|
|
for (auto &Callee : N->Callees)
|
|
if (!Callee.isNull())
|
|
if (Node *CalleeN = Callee.dyn_cast<Node *>())
|
|
Worklist.push_back(CalleeN);
|
|
}
|
|
}
|
|
|
|
// Process all SCCs updating the graph pointers.
|
|
{
|
|
SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end());
|
|
|
|
while (!Worklist.empty()) {
|
|
SCC *C = Worklist.pop_back_val();
|
|
C->G = this;
|
|
Worklist.insert(Worklist.end(), C->ParentSCCs.begin(),
|
|
C->ParentSCCs.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN,
|
|
SmallVectorImpl<Node *> &NodeStack) {
|
|
// The tail of the stack is the new SCC. Allocate the SCC and pop the stack
|
|
// into it.
|
|
SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this);
|
|
|
|
while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) {
|
|
assert(NodeStack.back()->LowLink >= RootN->LowLink &&
|
|
"We cannot have a low link in an SCC lower than its root on the "
|
|
"stack!");
|
|
NewSCC->insert(*NodeStack.pop_back_val());
|
|
}
|
|
NewSCC->insert(*RootN);
|
|
|
|
// A final pass over all edges in the SCC (this remains linear as we only
|
|
// do this once when we build the SCC) to connect it to the parent sets of
|
|
// its children.
|
|
bool IsLeafSCC = true;
|
|
for (Node *SCCN : NewSCC->Nodes)
|
|
for (Node &SCCChildN : *SCCN) {
|
|
SCC &ChildSCC = *SCCMap.lookup(&SCCChildN);
|
|
if (&ChildSCC == NewSCC)
|
|
continue;
|
|
ChildSCC.ParentSCCs.insert(NewSCC);
|
|
IsLeafSCC = false;
|
|
}
|
|
|
|
// For the SCCs where we fine no child SCCs, add them to the leaf list.
|
|
if (IsLeafSCC)
|
|
LeafSCCs.push_back(NewSCC);
|
|
|
|
return NewSCC;
|
|
}
|
|
|
|
LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
|
|
Node *N;
|
|
Node::iterator I;
|
|
if (!DFSStack.empty()) {
|
|
N = DFSStack.back().first;
|
|
I = DFSStack.back().second;
|
|
DFSStack.pop_back();
|
|
} else {
|
|
// If we've handled all candidate entry nodes to the SCC forest, we're done.
|
|
do {
|
|
if (SCCEntryNodes.empty())
|
|
return nullptr;
|
|
|
|
N = &get(*SCCEntryNodes.pop_back_val());
|
|
} while (N->DFSNumber != 0);
|
|
I = N->begin();
|
|
N->LowLink = N->DFSNumber = 1;
|
|
NextDFSNumber = 2;
|
|
}
|
|
|
|
for (;;) {
|
|
assert(N->DFSNumber != 0 && "We should always assign a DFS number "
|
|
"before placing a node onto the stack.");
|
|
|
|
Node::iterator E = N->end();
|
|
while (I != E) {
|
|
Node &ChildN = *I;
|
|
if (ChildN.DFSNumber == 0) {
|
|
// Mark that we should start at this child when next this node is the
|
|
// top of the stack. We don't start at the next child to ensure this
|
|
// child's lowlink is reflected.
|
|
DFSStack.push_back(std::make_pair(N, N->begin()));
|
|
|
|
// Recurse onto this node via a tail call.
|
|
assert(!SCCMap.count(&ChildN) &&
|
|
"Found a node with 0 DFS number but already in an SCC!");
|
|
ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
|
|
N = &ChildN;
|
|
I = ChildN.begin();
|
|
E = ChildN.end();
|
|
continue;
|
|
}
|
|
|
|
// Track the lowest link of the children, if any are still in the stack.
|
|
assert(ChildN.LowLink != 0 &&
|
|
"Low-link must not be zero with a non-zero DFS number.");
|
|
if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
|
|
N->LowLink = ChildN.LowLink;
|
|
++I;
|
|
}
|
|
|
|
if (N->LowLink == N->DFSNumber)
|
|
// Form the new SCC out of the top of the DFS stack.
|
|
return formSCC(N, PendingSCCStack);
|
|
|
|
// At this point we know that N cannot ever be an SCC root. Its low-link
|
|
// is not its dfs-number, and we've processed all of its children. It is
|
|
// just sitting here waiting until some node further down the stack gets
|
|
// low-link == dfs-number and pops it off as well. Move it to the pending
|
|
// stack which is pulled into the next SCC to be formed.
|
|
PendingSCCStack.push_back(N);
|
|
|
|
assert(!DFSStack.empty() && "We never found a viable root!");
|
|
N = DFSStack.back().first;
|
|
I = DFSStack.back().second;
|
|
DFSStack.pop_back();
|
|
}
|
|
}
|
|
|
|
char LazyCallGraphAnalysis::PassID;
|
|
|
|
LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
|
|
SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
|
|
// Recurse depth first through the nodes.
|
|
for (LazyCallGraph::Node &ChildN : N)
|
|
if (Printed.insert(&ChildN).second)
|
|
printNodes(OS, ChildN, Printed);
|
|
|
|
OS << " Call edges in function: " << N.getFunction().getName() << "\n";
|
|
for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
|
|
OS << " -> " << I->getFunction().getName() << "\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
|
|
ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
|
|
OS << " SCC with " << SCCSize << " functions:\n";
|
|
|
|
for (LazyCallGraph::Node *N : SCC)
|
|
OS << " " << N->getFunction().getName() << "\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
|
|
ModuleAnalysisManager *AM) {
|
|
LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
|
|
|
|
OS << "Printing the call graph for module: " << M->getModuleIdentifier()
|
|
<< "\n\n";
|
|
|
|
SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
|
|
for (LazyCallGraph::Node &N : G)
|
|
if (Printed.insert(&N).second)
|
|
printNodes(OS, N, Printed);
|
|
|
|
for (LazyCallGraph::SCC &SCC : G.postorder_sccs())
|
|
printSCC(OS, SCC);
|
|
|
|
return PreservedAnalyses::all();
|
|
|
|
}
|