llvm/test/CodeGen/X86/tail-opts.ll
Hans Wennborg 3b7626fb55 [X86] Use "and $0" and "orl $-1" to store 0 and -1 when optimizing for minsize
64-bit, 32-bit and 16-bit move-immediate instructions are 7, 6, and 5 bytes,
respectively, whereas and/or with 8-bit immediate is only three bytes.

Since these instructions imply an additional memory read (which the CPU could
elide, but we don't think it does), restrict these patterns to minsize functions.

Differential Revision: http://reviews.llvm.org/D18374

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264440 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-25 18:11:31 +00:00

472 lines
13 KiB
LLVM

; RUN: llc < %s -march=x86-64 -mtriple=x86_64-unknown-linux-gnu -asm-verbose=false -post-RA-scheduler=true | FileCheck %s
declare void @bar(i32)
declare void @car(i32)
declare void @dar(i32)
declare void @ear(i32)
declare void @far(i32)
declare i1 @qux()
@GHJK = global i32 0
@HABC = global i32 0
; BranchFolding should tail-merge the stores since they all precede
; direct branches to the same place.
; CHECK-LABEL: tail_merge_me:
; CHECK-NOT: GHJK
; CHECK: movl $0, GHJK(%rip)
; CHECK-NEXT: movl $1, HABC(%rip)
; CHECK-NOT: GHJK
define void @tail_merge_me() nounwind {
entry:
%a = call i1 @qux()
br i1 %a, label %A, label %next
next:
%b = call i1 @qux()
br i1 %b, label %B, label %C
A:
call void @bar(i32 0)
store i32 0, i32* @GHJK
br label %M
B:
call void @car(i32 1)
store i32 0, i32* @GHJK
br label %M
C:
call void @dar(i32 2)
store i32 0, i32* @GHJK
br label %M
M:
store i32 1, i32* @HABC
%c = call i1 @qux()
br i1 %c, label %return, label %altret
return:
call void @ear(i32 1000)
ret void
altret:
call void @far(i32 1001)
ret void
}
declare i8* @choose(i8*, i8*)
; BranchFolding should tail-duplicate the indirect jump to avoid
; redundant branching.
; CHECK-LABEL: tail_duplicate_me:
; CHECK: movl $0, GHJK(%rip)
; CHECK-NEXT: jmpq *%r
; CHECK: movl $0, GHJK(%rip)
; CHECK-NEXT: jmpq *%r
; CHECK: movl $0, GHJK(%rip)
; CHECK-NEXT: jmpq *%r
define void @tail_duplicate_me() nounwind {
entry:
%a = call i1 @qux()
%c = call i8* @choose(i8* blockaddress(@tail_duplicate_me, %return),
i8* blockaddress(@tail_duplicate_me, %altret))
br i1 %a, label %A, label %next
next:
%b = call i1 @qux()
br i1 %b, label %B, label %C
A:
call void @bar(i32 0)
store i32 0, i32* @GHJK
br label %M
B:
call void @car(i32 1)
store i32 0, i32* @GHJK
br label %M
C:
call void @dar(i32 2)
store i32 0, i32* @GHJK
br label %M
M:
indirectbr i8* %c, [label %return, label %altret]
return:
call void @ear(i32 1000)
ret void
altret:
call void @far(i32 1001)
ret void
}
; BranchFolding shouldn't try to merge the tails of two blocks
; with only a branch in common, regardless of the fallthrough situation.
; CHECK-LABEL: dont_merge_oddly:
; CHECK-NOT: ret
; CHECK: ucomiss %xmm{{[0-2]}}, %xmm{{[0-2]}}
; CHECK-NEXT: jbe .LBB2_3
; CHECK-NEXT: ucomiss %xmm{{[0-2]}}, %xmm{{[0-2]}}
; CHECK-NEXT: ja .LBB2_4
; CHECK-NEXT: jmp .LBB2_2
; CHECK-NEXT: .LBB2_3:
; CHECK-NEXT: ucomiss %xmm{{[0-2]}}, %xmm{{[0-2]}}
; CHECK-NEXT: jbe .LBB2_2
; CHECK-NEXT: .LBB2_4:
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: ret
; CHECK-NEXT: .LBB2_2:
; CHECK-NEXT: movb $1, %al
; CHECK-NEXT: ret
define i1 @dont_merge_oddly(float* %result) nounwind {
entry:
%tmp4 = getelementptr float, float* %result, i32 2
%tmp5 = load float, float* %tmp4, align 4
%tmp7 = getelementptr float, float* %result, i32 4
%tmp8 = load float, float* %tmp7, align 4
%tmp10 = getelementptr float, float* %result, i32 6
%tmp11 = load float, float* %tmp10, align 4
%tmp12 = fcmp olt float %tmp8, %tmp11
br i1 %tmp12, label %bb, label %bb21
bb:
%tmp23469 = fcmp olt float %tmp5, %tmp8
br i1 %tmp23469, label %bb26, label %bb30
bb21:
%tmp23 = fcmp olt float %tmp5, %tmp11
br i1 %tmp23, label %bb26, label %bb30
bb26:
ret i1 0
bb30:
ret i1 1
}
; Do any-size tail-merging when two candidate blocks will both require
; an unconditional jump to complete a two-way conditional branch.
; CHECK-LABEL: c_expand_expr_stmt:
;
; This test only works when register allocation happens to use %rax for both
; load addresses.
;
; CHE: jmp .LBB3_11
; CHE-NEXT: .LBB3_9:
; CHE-NEXT: movq 8(%rax), %rax
; CHE-NEXT: xorl %edx, %edx
; CHE-NEXT: movb 16(%rax), %al
; CHE-NEXT: cmpb $16, %al
; CHE-NEXT: je .LBB3_11
; CHE-NEXT: cmpb $23, %al
; CHE-NEXT: jne .LBB3_14
; CHE-NEXT: .LBB3_11:
%0 = type { %struct.rtx_def* }
%struct.lang_decl = type opaque
%struct.rtx_def = type { i16, i8, i8, [1 x %union.rtunion] }
%struct.tree_decl = type { [24 x i8], i8*, i32, %union.tree_node*, i32, i8, i8, i8, i8, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %struct.rtx_def*, %union..2anon, %0, %union.tree_node*, %struct.lang_decl* }
%union..2anon = type { i32 }
%union.rtunion = type { i8* }
%union.tree_node = type { %struct.tree_decl }
define fastcc void @c_expand_expr_stmt(%union.tree_node* %expr) nounwind {
entry:
%tmp4 = load i8, i8* null, align 8 ; <i8> [#uses=3]
switch i8 %tmp4, label %bb3 [
i8 18, label %bb
]
bb: ; preds = %entry
switch i32 undef, label %bb1 [
i32 0, label %bb2.i
i32 37, label %bb.i
]
bb.i: ; preds = %bb
switch i32 undef, label %bb1 [
i32 0, label %lvalue_p.exit
]
bb2.i: ; preds = %bb
br label %bb3
lvalue_p.exit: ; preds = %bb.i
%tmp21 = load %union.tree_node*, %union.tree_node** null, align 8 ; <%union.tree_node*> [#uses=3]
%tmp22 = getelementptr inbounds %union.tree_node, %union.tree_node* %tmp21, i64 0, i32 0, i32 0, i64 0 ; <i8*> [#uses=1]
%tmp23 = load i8, i8* %tmp22, align 8 ; <i8> [#uses=1]
%tmp24 = zext i8 %tmp23 to i32 ; <i32> [#uses=1]
switch i32 %tmp24, label %lvalue_p.exit4 [
i32 0, label %bb2.i3
i32 2, label %bb.i1
]
bb.i1: ; preds = %lvalue_p.exit
%tmp25 = getelementptr inbounds %union.tree_node, %union.tree_node* %tmp21, i64 0, i32 0, i32 2 ; <i32*> [#uses=1]
%tmp26 = bitcast i32* %tmp25 to %union.tree_node** ; <%union.tree_node**> [#uses=1]
%tmp27 = load %union.tree_node*, %union.tree_node** %tmp26, align 8 ; <%union.tree_node*> [#uses=2]
%tmp28 = getelementptr inbounds %union.tree_node, %union.tree_node* %tmp27, i64 0, i32 0, i32 0, i64 16 ; <i8*> [#uses=1]
%tmp29 = load i8, i8* %tmp28, align 8 ; <i8> [#uses=1]
%tmp30 = zext i8 %tmp29 to i32 ; <i32> [#uses=1]
switch i32 %tmp30, label %lvalue_p.exit4 [
i32 0, label %bb2.i.i2
i32 2, label %bb.i.i
]
bb.i.i: ; preds = %bb.i1
%tmp34 = tail call fastcc i32 @lvalue_p(%union.tree_node* null) nounwind ; <i32> [#uses=1]
%phitmp = icmp ne i32 %tmp34, 0 ; <i1> [#uses=1]
br label %lvalue_p.exit4
bb2.i.i2: ; preds = %bb.i1
%tmp35 = getelementptr inbounds %union.tree_node, %union.tree_node* %tmp27, i64 0, i32 0, i32 0, i64 8 ; <i8*> [#uses=1]
%tmp36 = bitcast i8* %tmp35 to %union.tree_node** ; <%union.tree_node**> [#uses=1]
%tmp37 = load %union.tree_node*, %union.tree_node** %tmp36, align 8 ; <%union.tree_node*> [#uses=1]
%tmp38 = getelementptr inbounds %union.tree_node, %union.tree_node* %tmp37, i64 0, i32 0, i32 0, i64 16 ; <i8*> [#uses=1]
%tmp39 = load i8, i8* %tmp38, align 8 ; <i8> [#uses=1]
switch i8 %tmp39, label %bb2 [
i8 16, label %lvalue_p.exit4
i8 23, label %lvalue_p.exit4
]
bb2.i3: ; preds = %lvalue_p.exit
%tmp40 = getelementptr inbounds %union.tree_node, %union.tree_node* %tmp21, i64 0, i32 0, i32 0, i64 8 ; <i8*> [#uses=1]
%tmp41 = bitcast i8* %tmp40 to %union.tree_node** ; <%union.tree_node**> [#uses=1]
%tmp42 = load %union.tree_node*, %union.tree_node** %tmp41, align 8 ; <%union.tree_node*> [#uses=1]
%tmp43 = getelementptr inbounds %union.tree_node, %union.tree_node* %tmp42, i64 0, i32 0, i32 0, i64 16 ; <i8*> [#uses=1]
%tmp44 = load i8, i8* %tmp43, align 8 ; <i8> [#uses=1]
switch i8 %tmp44, label %bb2 [
i8 16, label %lvalue_p.exit4
i8 23, label %lvalue_p.exit4
]
lvalue_p.exit4: ; preds = %bb2.i3, %bb2.i3, %bb2.i.i2, %bb2.i.i2, %bb.i.i, %bb.i1, %lvalue_p.exit
%tmp45 = phi i1 [ %phitmp, %bb.i.i ], [ false, %bb2.i.i2 ], [ false, %bb2.i.i2 ], [ false, %bb.i1 ], [ false, %bb2.i3 ], [ false, %bb2.i3 ], [ false, %lvalue_p.exit ] ; <i1> [#uses=1]
%tmp46 = icmp eq i8 %tmp4, 0 ; <i1> [#uses=1]
%or.cond = or i1 %tmp45, %tmp46 ; <i1> [#uses=1]
br i1 %or.cond, label %bb2, label %bb3
bb1: ; preds = %bb2.i.i, %bb.i, %bb
%.old = icmp eq i8 %tmp4, 23 ; <i1> [#uses=1]
br i1 %.old, label %bb2, label %bb3
bb2: ; preds = %bb1, %lvalue_p.exit4, %bb2.i3, %bb2.i.i2
br label %bb3
bb3: ; preds = %bb2, %bb1, %lvalue_p.exit4, %bb2.i, %entry
%expr_addr.0 = phi %union.tree_node* [ null, %bb2 ], [ %expr, %bb2.i ], [ %expr, %entry ], [ %expr, %bb1 ], [ %expr, %lvalue_p.exit4 ] ; <%union.tree_node*> [#uses=0]
unreachable
}
declare fastcc i32 @lvalue_p(%union.tree_node* nocapture) nounwind readonly
declare fastcc %union.tree_node* @default_conversion(%union.tree_node*) nounwind
; If one tail merging candidate falls through into the other,
; tail merging is likely profitable regardless of how few
; instructions are involved. This function should have only
; one ret instruction.
; CHECK-LABEL: foo:
; CHECK: callq func
; CHECK-NEXT: popq
; CHECK-NEXT: .LBB4_2:
; CHECK-NEXT: ret
define void @foo(i1* %V) nounwind {
entry:
%t0 = icmp eq i1* %V, null
br i1 %t0, label %return, label %bb
bb:
call void @func()
ret void
return:
ret void
}
declare void @func()
; one - One instruction may be tail-duplicated even with optsize.
; CHECK-LABEL: one:
; CHECK: movl $0, XYZ(%rip)
; CHECK: movl $0, XYZ(%rip)
@XYZ = external global i32
define void @one() nounwind optsize {
entry:
%0 = icmp eq i32 undef, 0
br i1 %0, label %bbx, label %bby
bby:
switch i32 undef, label %bb7 [
i32 16, label %return
]
bb7:
store volatile i32 0, i32* @XYZ
unreachable
bbx:
switch i32 undef, label %bb12 [
i32 128, label %return
]
bb12:
store volatile i32 0, i32* @XYZ
unreachable
return:
ret void
}
; two - Same as one, but with two instructions in the common
; tail instead of one. This is too much to be merged, given
; the optsize attribute.
; CHECK-LABEL: two:
; CHECK-NOT: XYZ
; CHECK: ret
; CHECK: movl $0, XYZ(%rip)
; CHECK: movl $1, XYZ(%rip)
; CHECK-NOT: XYZ
define void @two() nounwind optsize {
entry:
%0 = icmp eq i32 undef, 0
br i1 %0, label %bbx, label %bby
bby:
switch i32 undef, label %bb7 [
i32 16, label %return
]
bb7:
store volatile i32 0, i32* @XYZ
store volatile i32 1, i32* @XYZ
unreachable
bbx:
switch i32 undef, label %bb12 [
i32 128, label %return
]
bb12:
store volatile i32 0, i32* @XYZ
store volatile i32 1, i32* @XYZ
unreachable
return:
ret void
}
; two_minsize - Same as two, but with minsize instead of optsize.
; CHECK-LABEL: two_minsize:
; CHECK-NOT: XYZ
; CHECK: ret
; CHECK: andl $0, XYZ(%rip)
; CHECK: movl $1, XYZ(%rip)
; CHECK-NOT: XYZ
define void @two_minsize() nounwind minsize {
entry:
%0 = icmp eq i32 undef, 0
br i1 %0, label %bbx, label %bby
bby:
switch i32 undef, label %bb7 [
i32 16, label %return
]
bb7:
store volatile i32 0, i32* @XYZ
store volatile i32 1, i32* @XYZ
unreachable
bbx:
switch i32 undef, label %bb12 [
i32 128, label %return
]
bb12:
store volatile i32 0, i32* @XYZ
store volatile i32 1, i32* @XYZ
unreachable
return:
ret void
}
; two_nosize - Same as two, but without the optsize attribute.
; Now two instructions are enough to be tail-duplicated.
; CHECK-LABEL: two_nosize:
; CHECK: movl $0, XYZ(%rip)
; CHECK: movl $1, XYZ(%rip)
; CHECK: movl $0, XYZ(%rip)
; CHECK: movl $1, XYZ(%rip)
define void @two_nosize() nounwind {
entry:
%0 = icmp eq i32 undef, 0
br i1 %0, label %bbx, label %bby
bby:
switch i32 undef, label %bb7 [
i32 16, label %return
]
bb7:
store volatile i32 0, i32* @XYZ
store volatile i32 1, i32* @XYZ
unreachable
bbx:
switch i32 undef, label %bb12 [
i32 128, label %return
]
bb12:
store volatile i32 0, i32* @XYZ
store volatile i32 1, i32* @XYZ
unreachable
return:
ret void
}
; Tail-merging should merge the two ret instructions since one side
; can fall-through into the ret and the other side has to branch anyway.
; CHECK-LABEL: TESTE:
; CHECK: ret
; CHECK-NOT: ret
; CHECK: size TESTE
define i64 @TESTE(i64 %parami, i64 %paraml) nounwind readnone {
entry:
%cmp = icmp slt i64 %parami, 1 ; <i1> [#uses=1]
%varx.0 = select i1 %cmp, i64 1, i64 %parami ; <i64> [#uses=1]
%cmp410 = icmp slt i64 %paraml, 1 ; <i1> [#uses=1]
br i1 %cmp410, label %for.end, label %bb.nph
bb.nph: ; preds = %entry
%tmp15 = mul i64 %paraml, %parami ; <i64> [#uses=1]
ret i64 %tmp15
for.end: ; preds = %entry
ret i64 %varx.0
}