llvm/test/CodeGen/X86/vec_uint_to_fp.ll
Justin Bogner cbf2c65b9e AsmPrinter: Use emitGlobalConstantFP to emit elements of constant data
It's strange to duplicate the logic for emitting FP values into
emitGlobalConstantDataSequential, and it's even stranger that we end
up printing the verbose assembly comments differently between the two
paths. Just call into emitGlobalConstantFP rather than crudely
duplicating its logic.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254988 91177308-0d34-0410-b5e6-96231b3b80d8
2015-12-08 02:37:48 +00:00

168 lines
7.3 KiB
LLVM

; RUN: llc < %s -mtriple=x86_64-apple-macosx | FileCheck --check-prefix=CHECK --check-prefix=SSE --check-prefix=CST %s
; RUN: llc < %s -mtriple=x86_64-apple-macosx -mattr=+sse4.1 | FileCheck --check-prefix=CHECK --check-prefix=SSE41 --check-prefix=CST %s
; RUN: llc < %s -mtriple=x86_64-apple-macosx -mattr=+avx | FileCheck --check-prefix=CHECK --check-prefix=AVX --check-prefix=CST %s
; RUN: llc < %s -mtriple=x86_64-apple-macosx -mattr=+avx2 | FileCheck --check-prefix=CHECK --check-prefix=AVX2 %s
; Check that the constant used in the vectors are the right ones.
; SSE: [[MASKCSTADDR:LCPI0_[0-9]+]]:
; SSE-NEXT: .long 65535 ## 0xffff
; SSE-NEXT: .long 65535 ## 0xffff
; SSE-NEXT: .long 65535 ## 0xffff
; SSE-NEXT: .long 65535 ## 0xffff
; CST: [[LOWCSTADDR:LCPI0_[0-9]+]]:
; CST-NEXT: .long 1258291200 ## 0x4b000000
; CST-NEXT: .long 1258291200 ## 0x4b000000
; CST-NEXT: .long 1258291200 ## 0x4b000000
; CST-NEXT: .long 1258291200 ## 0x4b000000
; CST: [[HIGHCSTADDR:LCPI0_[0-9]+]]:
; CST-NEXT: .long 1392508928 ## 0x53000000
; CST-NEXT: .long 1392508928 ## 0x53000000
; CST-NEXT: .long 1392508928 ## 0x53000000
; CST-NEXT: .long 1392508928 ## 0x53000000
; CST: [[MAGICCSTADDR:LCPI0_[0-9]+]]:
; CST-NEXT: .long 3539992704 ## float -5.49764202E+11
; CST-NEXT: .long 3539992704 ## float -5.49764202E+11
; CST-NEXT: .long 3539992704 ## float -5.49764202E+11
; CST-NEXT: .long 3539992704 ## float -5.49764202E+11
; AVX2: [[LOWCSTADDR:LCPI0_[0-9]+]]:
; AVX2-NEXT: .long 1258291200 ## 0x4b000000
; AVX2: [[HIGHCSTADDR:LCPI0_[0-9]+]]:
; AVX2-NEXT: .long 1392508928 ## 0x53000000
; AVX2: [[MAGICCSTADDR:LCPI0_[0-9]+]]:
; AVX2-NEXT: .long 3539992704 ## float -5.49764202E+11
define <4 x float> @test1(<4 x i32> %A) nounwind {
; CHECK-LABEL: test1:
;
; SSE: movdqa [[MASKCSTADDR]](%rip), [[MASK:%xmm[0-9]+]]
; SSE-NEXT: pand %xmm0, [[MASK]]
; After this instruction, MASK will have the value of the low parts
; of the vector.
; SSE-NEXT: por [[LOWCSTADDR]](%rip), [[MASK]]
; SSE-NEXT: psrld $16, %xmm0
; SSE-NEXT: por [[HIGHCSTADDR]](%rip), %xmm0
; SSE-NEXT: addps [[MAGICCSTADDR]](%rip), %xmm0
; SSE-NEXT: addps [[MASK]], %xmm0
; SSE-NEXT: retq
;
; Currently we commute the arguments of the first blend, but this could be
; improved to match the lowering of the second blend.
; SSE41: movdqa [[LOWCSTADDR]](%rip), [[LOWVEC:%xmm[0-9]+]]
; SSE41-NEXT: pblendw $85, %xmm0, [[LOWVEC]]
; SSE41-NEXT: psrld $16, %xmm0
; SSE41-NEXT: pblendw $170, [[HIGHCSTADDR]](%rip), %xmm0
; SSE41-NEXT: addps [[MAGICCSTADDR]](%rip), %xmm0
; SSE41-NEXT: addps [[LOWVEC]], %xmm0
; SSE41-NEXT: retq
;
; AVX: vpblendw $170, [[LOWCSTADDR]](%rip), %xmm0, [[LOWVEC:%xmm[0-9]+]]
; AVX-NEXT: vpsrld $16, %xmm0, [[SHIFTVEC:%xmm[0-9]+]]
; AVX-NEXT: vpblendw $170, [[HIGHCSTADDR]](%rip), [[SHIFTVEC]], [[HIGHVEC:%xmm[0-9]+]]
; AVX-NEXT: vaddps [[MAGICCSTADDR]](%rip), [[HIGHVEC]], [[TMP:%xmm[0-9]+]]
; AVX-NEXT: vaddps [[TMP]], [[LOWVEC]], %xmm0
; AVX-NEXT: retq
;
; The lowering for AVX2 is a bit messy, because we select broadcast
; instructions, instead of folding the constant loads.
; AVX2: vpbroadcastd [[LOWCSTADDR]](%rip), [[LOWCST:%xmm[0-9]+]]
; AVX2-NEXT: vpblendw $170, [[LOWCST]], %xmm0, [[LOWVEC:%xmm[0-9]+]]
; AVX2-NEXT: vpsrld $16, %xmm0, [[SHIFTVEC:%xmm[0-9]+]]
; AVX2-NEXT: vpbroadcastd [[HIGHCSTADDR]](%rip), [[HIGHCST:%xmm[0-9]+]]
; AVX2-NEXT: vpblendw $170, [[HIGHCST]], [[SHIFTVEC]], [[HIGHVEC:%xmm[0-9]+]]
; AVX2-NEXT: vbroadcastss [[MAGICCSTADDR]](%rip), [[MAGICCST:%xmm[0-9]+]]
; AVX2-NEXT: vaddps [[MAGICCST]], [[HIGHVEC]], [[TMP:%xmm[0-9]+]]
; AVX2-NEXT: vaddps [[TMP]], [[LOWVEC]], %xmm0
; AVX2-NEXT: retq
%C = uitofp <4 x i32> %A to <4 x float>
ret <4 x float> %C
}
; Match the AVX2 constants used in the next function
; AVX2: [[LOWCSTADDR:LCPI1_[0-9]+]]:
; AVX2-NEXT: .long 1258291200 ## 0x4b000000
; AVX2: [[HIGHCSTADDR:LCPI1_[0-9]+]]:
; AVX2-NEXT: .long 1392508928 ## 0x53000000
; AVX2: [[MAGICCSTADDR:LCPI1_[0-9]+]]:
; AVX2-NEXT: .long 3539992704 ## float -5.49764202E+11
define <8 x float> @test2(<8 x i32> %A) nounwind {
; CHECK-LABEL: test2:
; Legalization will break the thing is 2 x <4 x i32> on anthing prior AVX.
; The constant used for in the vector instruction are shared between the
; two sequences of instructions.
;
; SSE: movdqa {{.*#+}} [[MASK:xmm[0-9]+]] = [65535,65535,65535,65535]
; SSE-NEXT: movdqa %xmm0, [[VECLOW:%xmm[0-9]+]]
; SSE-NEXT: pand %[[MASK]], [[VECLOW]]
; SSE-NEXT: movdqa {{.*#+}} [[LOWCST:xmm[0-9]+]] = [1258291200,1258291200,1258291200,1258291200]
; SSE-NEXT: por %[[LOWCST]], [[VECLOW]]
; SSE-NEXT: psrld $16, %xmm0
; SSE-NEXT: movdqa {{.*#+}} [[HIGHCST:xmm[0-9]+]] = [1392508928,1392508928,1392508928,1392508928]
; SSE-NEXT: por %[[HIGHCST]], %xmm0
; SSE-NEXT: movaps {{.*#+}} [[MAGICCST:xmm[0-9]+]] = [-5.497642e+11,-5.497642e+11,-5.497642e+11,-5.497642e+11]
; SSE-NEXT: addps %[[MAGICCST]], %xmm0
; SSE-NEXT: addps [[VECLOW]], %xmm0
; MASK is the low vector of the second part after this point.
; SSE-NEXT: pand %xmm1, %[[MASK]]
; SSE-NEXT: por %[[LOWCST]], %[[MASK]]
; SSE-NEXT: psrld $16, %xmm1
; SSE-NEXT: por %[[HIGHCST]], %xmm1
; SSE-NEXT: addps %[[MAGICCST]], %xmm1
; SSE-NEXT: addps %[[MASK]], %xmm1
; SSE-NEXT: retq
;
; SSE41: movdqa {{.*#+}} [[LOWCST:xmm[0-9]+]] = [1258291200,1258291200,1258291200,1258291200]
; SSE41-NEXT: movdqa %xmm0, [[VECLOW:%xmm[0-9]+]]
; SSE41-NEXT: pblendw $170, %[[LOWCST]], [[VECLOW]]
; SSE41-NEXT: psrld $16, %xmm0
; SSE41-NEXT: movdqa {{.*#+}} [[HIGHCST:xmm[0-9]+]] = [1392508928,1392508928,1392508928,1392508928]
; SSE41-NEXT: pblendw $170, %[[HIGHCST]], %xmm0
; SSE41-NEXT: movaps {{.*#+}} [[MAGICCST:xmm[0-9]+]] = [-5.497642e+11,-5.497642e+11,-5.497642e+11,-5.497642e+11]
; SSE41-NEXT: addps %[[MAGICCST]], %xmm0
; SSE41-NEXT: addps [[VECLOW]], %xmm0
; LOWCST is the low vector of the second part after this point.
; The operands of the blend are inverted because we reuse xmm1
; in the next shift.
; SSE41-NEXT: pblendw $85, %xmm1, %[[LOWCST]]
; SSE41-NEXT: psrld $16, %xmm1
; SSE41-NEXT: pblendw $170, %[[HIGHCST]], %xmm1
; SSE41-NEXT: addps %[[MAGICCST]], %xmm1
; SSE41-NEXT: addps %[[LOWCST]], %xmm1
; SSE41-NEXT: retq
;
; Test that we are not lowering uinttofp to scalars
; AVX-NOT: cvtsd2ss
; AVX: retq
;
; AVX2: vpbroadcastd [[LOWCSTADDR]](%rip), [[LOWCST:%ymm[0-9]+]]
; AVX2-NEXT: vpblendw $170, [[LOWCST]], %ymm0, [[LOWVEC:%ymm[0-9]+]]
; AVX2-NEXT: vpsrld $16, %ymm0, [[SHIFTVEC:%ymm[0-9]+]]
; AVX2-NEXT: vpbroadcastd [[HIGHCSTADDR]](%rip), [[HIGHCST:%ymm[0-9]+]]
; AVX2-NEXT: vpblendw $170, [[HIGHCST]], [[SHIFTVEC]], [[HIGHVEC:%ymm[0-9]+]]
; AVX2-NEXT: vbroadcastss [[MAGICCSTADDR]](%rip), [[MAGICCST:%ymm[0-9]+]]
; AVX2-NEXT: vaddps [[MAGICCST]], [[HIGHVEC]], [[TMP:%ymm[0-9]+]]
; AVX2-NEXT: vaddps [[TMP]], [[LOWVEC]], %ymm0
; AVX2-NEXT: retq
%C = uitofp <8 x i32> %A to <8 x float>
ret <8 x float> %C
}
define <4 x double> @test3(<4 x i32> %arg) {
; CHECK-LABEL: test3:
; This test used to crash because we were custom lowering it as if it was
; a conversion between <4 x i32> and <4 x float>.
; AVX: vcvtdq2pd
; AVX2: vcvtdq2pd
; CHECK: retq
%tmp = uitofp <4 x i32> %arg to <4 x double>
ret <4 x double> %tmp
}