llvm/lib/Transforms/Utils/GlobalStatus.cpp
Peter Collingbourne 63b34cdf34 IR: Introduce local_unnamed_addr attribute.
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.

This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
  the normal rule that the global must have a unique address can be broken without
  being observable by the program by performing comparisons against the global's
  address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
  its own copy of the global if it requires one, and the copy in each linkage unit
  must be the same)
- It is a constant or a function (which means that the program cannot observe that
  the unique-address rule has been broken by writing to the global)

Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.

See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.

Part of the fix for PR27553.

Differential Revision: http://reviews.llvm.org/D20348

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272709 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-14 21:01:22 +00:00

189 lines
7.1 KiB
C++

//===-- GlobalStatus.cpp - Compute status info for globals -----------------==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"
using namespace llvm;
/// Return the stronger of the two ordering. If the two orderings are acquire
/// and release, then return AcquireRelease.
///
static AtomicOrdering strongerOrdering(AtomicOrdering X, AtomicOrdering Y) {
if (X == AtomicOrdering::Acquire && Y == AtomicOrdering::Release)
return AtomicOrdering::AcquireRelease;
if (Y == AtomicOrdering::Acquire && X == AtomicOrdering::Release)
return AtomicOrdering::AcquireRelease;
return (AtomicOrdering)std::max((unsigned)X, (unsigned)Y);
}
/// It is safe to destroy a constant iff it is only used by constants itself.
/// Note that constants cannot be cyclic, so this test is pretty easy to
/// implement recursively.
///
bool llvm::isSafeToDestroyConstant(const Constant *C) {
if (isa<GlobalValue>(C))
return false;
if (isa<ConstantInt>(C) || isa<ConstantFP>(C))
return false;
for (const User *U : C->users())
if (const Constant *CU = dyn_cast<Constant>(U)) {
if (!isSafeToDestroyConstant(CU))
return false;
} else
return false;
return true;
}
static bool analyzeGlobalAux(const Value *V, GlobalStatus &GS,
SmallPtrSetImpl<const PHINode *> &PhiUsers) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
if (GV->isExternallyInitialized())
GS.StoredType = GlobalStatus::StoredOnce;
for (const Use &U : V->uses()) {
const User *UR = U.getUser();
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(UR)) {
GS.HasNonInstructionUser = true;
// If the result of the constantexpr isn't pointer type, then we won't
// know to expect it in various places. Just reject early.
if (!isa<PointerType>(CE->getType()))
return true;
if (analyzeGlobalAux(CE, GS, PhiUsers))
return true;
} else if (const Instruction *I = dyn_cast<Instruction>(UR)) {
if (!GS.HasMultipleAccessingFunctions) {
const Function *F = I->getParent()->getParent();
if (!GS.AccessingFunction)
GS.AccessingFunction = F;
else if (GS.AccessingFunction != F)
GS.HasMultipleAccessingFunctions = true;
}
if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
GS.IsLoaded = true;
// Don't hack on volatile loads.
if (LI->isVolatile())
return true;
GS.Ordering = strongerOrdering(GS.Ordering, LI->getOrdering());
} else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Don't allow a store OF the address, only stores TO the address.
if (SI->getOperand(0) == V)
return true;
// Don't hack on volatile stores.
if (SI->isVolatile())
return true;
GS.Ordering = strongerOrdering(GS.Ordering, SI->getOrdering());
// If this is a direct store to the global (i.e., the global is a scalar
// value, not an aggregate), keep more specific information about
// stores.
if (GS.StoredType != GlobalStatus::Stored) {
if (const GlobalVariable *GV =
dyn_cast<GlobalVariable>(SI->getOperand(1))) {
Value *StoredVal = SI->getOperand(0);
if (Constant *C = dyn_cast<Constant>(StoredVal)) {
if (C->isThreadDependent()) {
// The stored value changes between threads; don't track it.
return true;
}
}
if (GV->hasInitializer() && StoredVal == GV->getInitializer()) {
if (GS.StoredType < GlobalStatus::InitializerStored)
GS.StoredType = GlobalStatus::InitializerStored;
} else if (isa<LoadInst>(StoredVal) &&
cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
if (GS.StoredType < GlobalStatus::InitializerStored)
GS.StoredType = GlobalStatus::InitializerStored;
} else if (GS.StoredType < GlobalStatus::StoredOnce) {
GS.StoredType = GlobalStatus::StoredOnce;
GS.StoredOnceValue = StoredVal;
} else if (GS.StoredType == GlobalStatus::StoredOnce &&
GS.StoredOnceValue == StoredVal) {
// noop.
} else {
GS.StoredType = GlobalStatus::Stored;
}
} else {
GS.StoredType = GlobalStatus::Stored;
}
}
} else if (isa<BitCastInst>(I)) {
if (analyzeGlobalAux(I, GS, PhiUsers))
return true;
} else if (isa<GetElementPtrInst>(I)) {
if (analyzeGlobalAux(I, GS, PhiUsers))
return true;
} else if (isa<SelectInst>(I)) {
if (analyzeGlobalAux(I, GS, PhiUsers))
return true;
} else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
// PHI nodes we can check just like select or GEP instructions, but we
// have to be careful about infinite recursion.
if (PhiUsers.insert(PN).second) // Not already visited.
if (analyzeGlobalAux(I, GS, PhiUsers))
return true;
} else if (isa<CmpInst>(I)) {
GS.IsCompared = true;
} else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
if (MTI->isVolatile())
return true;
if (MTI->getArgOperand(0) == V)
GS.StoredType = GlobalStatus::Stored;
if (MTI->getArgOperand(1) == V)
GS.IsLoaded = true;
} else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
if (MSI->isVolatile())
return true;
GS.StoredType = GlobalStatus::Stored;
} else if (auto C = ImmutableCallSite(I)) {
if (!C.isCallee(&U))
return true;
GS.IsLoaded = true;
} else {
return true; // Any other non-load instruction might take address!
}
} else if (const Constant *C = dyn_cast<Constant>(UR)) {
GS.HasNonInstructionUser = true;
// We might have a dead and dangling constant hanging off of here.
if (!isSafeToDestroyConstant(C))
return true;
} else {
GS.HasNonInstructionUser = true;
// Otherwise must be some other user.
return true;
}
}
return false;
}
bool GlobalStatus::analyzeGlobal(const Value *V, GlobalStatus &GS) {
SmallPtrSet<const PHINode *, 16> PhiUsers;
return analyzeGlobalAux(V, GS, PhiUsers);
}
GlobalStatus::GlobalStatus()
: IsCompared(false), IsLoaded(false), StoredType(NotStored),
StoredOnceValue(nullptr), AccessingFunction(nullptr),
HasMultipleAccessingFunctions(false), HasNonInstructionUser(false),
Ordering(AtomicOrdering::NotAtomic) {}