mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-11 05:35:11 +00:00
6673ea81f6
This is a mechanical change of comments in switches like fallthrough, fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278902 91177308-0d34-0410-b5e6-96231b3b80d8
435 lines
15 KiB
C++
435 lines
15 KiB
C++
//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCTargetTransformInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ppctti"
|
|
|
|
static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
|
|
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
|
|
|
|
// This is currently only used for the data prefetch pass which is only enabled
|
|
// for BG/Q by default.
|
|
static cl::opt<unsigned>
|
|
CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
|
|
cl::desc("The loop prefetch cache line size"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// PPC cost model.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
|
|
return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
|
|
TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
|
|
return TTI::PSK_Software;
|
|
}
|
|
|
|
int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
|
|
if (DisablePPCConstHoist)
|
|
return BaseT::getIntImmCost(Imm, Ty);
|
|
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
if (Imm == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
if (Imm.getBitWidth() <= 64) {
|
|
if (isInt<16>(Imm.getSExtValue()))
|
|
return TTI::TCC_Basic;
|
|
|
|
if (isInt<32>(Imm.getSExtValue())) {
|
|
// A constant that can be materialized using lis.
|
|
if ((Imm.getZExtValue() & 0xFFFF) == 0)
|
|
return TTI::TCC_Basic;
|
|
|
|
return 2 * TTI::TCC_Basic;
|
|
}
|
|
}
|
|
|
|
return 4 * TTI::TCC_Basic;
|
|
}
|
|
|
|
int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) {
|
|
if (DisablePPCConstHoist)
|
|
return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
|
|
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
switch (IID) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_stackmap:
|
|
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
}
|
|
return PPCTTIImpl::getIntImmCost(Imm, Ty);
|
|
}
|
|
|
|
int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) {
|
|
if (DisablePPCConstHoist)
|
|
return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
|
|
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
unsigned ImmIdx = ~0U;
|
|
bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
|
|
ZeroFree = false;
|
|
switch (Opcode) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Instruction::GetElementPtr:
|
|
// Always hoist the base address of a GetElementPtr. This prevents the
|
|
// creation of new constants for every base constant that gets constant
|
|
// folded with the offset.
|
|
if (Idx == 0)
|
|
return 2 * TTI::TCC_Basic;
|
|
return TTI::TCC_Free;
|
|
case Instruction::And:
|
|
RunFree = true; // (for the rotate-and-mask instructions)
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::Add:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
ShiftedFree = true;
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
ImmIdx = 1;
|
|
break;
|
|
case Instruction::ICmp:
|
|
UnsignedFree = true;
|
|
ImmIdx = 1;
|
|
// Zero comparisons can use record-form instructions.
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::Select:
|
|
ZeroFree = true;
|
|
break;
|
|
case Instruction::PHI:
|
|
case Instruction::Call:
|
|
case Instruction::Ret:
|
|
case Instruction::Load:
|
|
case Instruction::Store:
|
|
break;
|
|
}
|
|
|
|
if (ZeroFree && Imm == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
|
|
if (isInt<16>(Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
|
|
if (RunFree) {
|
|
if (Imm.getBitWidth() <= 32 &&
|
|
(isShiftedMask_32(Imm.getZExtValue()) ||
|
|
isShiftedMask_32(~Imm.getZExtValue())))
|
|
return TTI::TCC_Free;
|
|
|
|
if (ST->isPPC64() &&
|
|
(isShiftedMask_64(Imm.getZExtValue()) ||
|
|
isShiftedMask_64(~Imm.getZExtValue())))
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
|
|
return TTI::TCC_Free;
|
|
|
|
if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
return PPCTTIImpl::getIntImmCost(Imm, Ty);
|
|
}
|
|
|
|
void PPCTTIImpl::getUnrollingPreferences(Loop *L,
|
|
TTI::UnrollingPreferences &UP) {
|
|
if (ST->getDarwinDirective() == PPC::DIR_A2) {
|
|
// The A2 is in-order with a deep pipeline, and concatenation unrolling
|
|
// helps expose latency-hiding opportunities to the instruction scheduler.
|
|
UP.Partial = UP.Runtime = true;
|
|
|
|
// We unroll a lot on the A2 (hundreds of instructions), and the benefits
|
|
// often outweigh the cost of a division to compute the trip count.
|
|
UP.AllowExpensiveTripCount = true;
|
|
}
|
|
|
|
BaseT::getUnrollingPreferences(L, UP);
|
|
}
|
|
|
|
bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
|
|
// On the A2, always unroll aggressively. For QPX unaligned loads, we depend
|
|
// on combining the loads generated for consecutive accesses, and failure to
|
|
// do so is particularly expensive. This makes it much more likely (compared
|
|
// to only using concatenation unrolling).
|
|
if (ST->getDarwinDirective() == PPC::DIR_A2)
|
|
return true;
|
|
|
|
return LoopHasReductions;
|
|
}
|
|
|
|
bool PPCTTIImpl::enableInterleavedAccessVectorization() {
|
|
return true;
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
|
|
if (Vector && !ST->hasAltivec() && !ST->hasQPX())
|
|
return 0;
|
|
return ST->hasVSX() ? 64 : 32;
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) {
|
|
if (Vector) {
|
|
if (ST->hasQPX()) return 256;
|
|
if (ST->hasAltivec()) return 128;
|
|
return 0;
|
|
}
|
|
|
|
if (ST->isPPC64())
|
|
return 64;
|
|
return 32;
|
|
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getCacheLineSize() {
|
|
// This is currently only used for the data prefetch pass which is only
|
|
// enabled for BG/Q by default.
|
|
return CacheLineSize;
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getPrefetchDistance() {
|
|
// This seems like a reasonable default for the BG/Q (this pass is enabled, by
|
|
// default, only on the BG/Q).
|
|
return 300;
|
|
}
|
|
|
|
unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
|
|
unsigned Directive = ST->getDarwinDirective();
|
|
// The 440 has no SIMD support, but floating-point instructions
|
|
// have a 5-cycle latency, so unroll by 5x for latency hiding.
|
|
if (Directive == PPC::DIR_440)
|
|
return 5;
|
|
|
|
// The A2 has no SIMD support, but floating-point instructions
|
|
// have a 6-cycle latency, so unroll by 6x for latency hiding.
|
|
if (Directive == PPC::DIR_A2)
|
|
return 6;
|
|
|
|
// FIXME: For lack of any better information, do no harm...
|
|
if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
|
|
return 1;
|
|
|
|
// For P7 and P8, floating-point instructions have a 6-cycle latency and
|
|
// there are two execution units, so unroll by 12x for latency hiding.
|
|
// FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
|
|
if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
|
|
Directive == PPC::DIR_PWR9)
|
|
return 12;
|
|
|
|
// For most things, modern systems have two execution units (and
|
|
// out-of-order execution).
|
|
return 2;
|
|
}
|
|
|
|
int PPCTTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
|
|
TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo) {
|
|
assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
|
|
|
|
// Fallback to the default implementation.
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
|
|
Opd1PropInfo, Opd2PropInfo);
|
|
}
|
|
|
|
int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) {
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
|
|
// PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
|
|
// (at least in the sense that there need only be one non-loop-invariant
|
|
// instruction). We need one such shuffle instruction for each actual
|
|
// register (this is not true for arbitrary shuffles, but is true for the
|
|
// structured types of shuffles covered by TTI::ShuffleKind).
|
|
return LT.first;
|
|
}
|
|
|
|
int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
|
|
assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
|
|
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
|
|
// Double-precision scalars are already located in index #0.
|
|
if (Index == 0)
|
|
return 0;
|
|
|
|
return BaseT::getVectorInstrCost(Opcode, Val, Index);
|
|
} else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
|
|
// Floating point scalars are already located in index #0.
|
|
if (Index == 0)
|
|
return 0;
|
|
|
|
return BaseT::getVectorInstrCost(Opcode, Val, Index);
|
|
}
|
|
|
|
// Estimated cost of a load-hit-store delay. This was obtained
|
|
// experimentally as a minimum needed to prevent unprofitable
|
|
// vectorization for the paq8p benchmark. It may need to be
|
|
// raised further if other unprofitable cases remain.
|
|
unsigned LHSPenalty = 2;
|
|
if (ISD == ISD::INSERT_VECTOR_ELT)
|
|
LHSPenalty += 7;
|
|
|
|
// Vector element insert/extract with Altivec is very expensive,
|
|
// because they require store and reload with the attendant
|
|
// processor stall for load-hit-store. Until VSX is available,
|
|
// these need to be estimated as very costly.
|
|
if (ISD == ISD::EXTRACT_VECTOR_ELT ||
|
|
ISD == ISD::INSERT_VECTOR_ELT)
|
|
return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
|
|
|
|
return BaseT::getVectorInstrCost(Opcode, Val, Index);
|
|
}
|
|
|
|
int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
|
|
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
|
|
"Invalid Opcode");
|
|
|
|
int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
|
|
|
|
// Aligned loads and stores are easy.
|
|
unsigned SrcBytes = LT.second.getStoreSize();
|
|
if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
|
|
return Cost;
|
|
|
|
bool IsAltivecType = ST->hasAltivec() &&
|
|
(LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
|
|
LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
|
|
bool IsVSXType = ST->hasVSX() &&
|
|
(LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
|
|
bool IsQPXType = ST->hasQPX() &&
|
|
(LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
|
|
|
|
// If we can use the permutation-based load sequence, then this is also
|
|
// relatively cheap (not counting loop-invariant instructions): one load plus
|
|
// one permute (the last load in a series has extra cost, but we're
|
|
// neglecting that here). Note that on the P7, we could do unaligned loads
|
|
// for Altivec types using the VSX instructions, but that's more expensive
|
|
// than using the permutation-based load sequence. On the P8, that's no
|
|
// longer true.
|
|
if (Opcode == Instruction::Load &&
|
|
((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
|
|
Alignment >= LT.second.getScalarType().getStoreSize())
|
|
return Cost + LT.first; // Add the cost of the permutations.
|
|
|
|
// For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
|
|
// P7, unaligned vector loads are more expensive than the permutation-based
|
|
// load sequence, so that might be used instead, but regardless, the net cost
|
|
// is about the same (not counting loop-invariant instructions).
|
|
if (IsVSXType || (ST->hasVSX() && IsAltivecType))
|
|
return Cost;
|
|
|
|
// PPC in general does not support unaligned loads and stores. They'll need
|
|
// to be decomposed based on the alignment factor.
|
|
|
|
// Add the cost of each scalar load or store.
|
|
Cost += LT.first*(SrcBytes/Alignment-1);
|
|
|
|
// For a vector type, there is also scalarization overhead (only for
|
|
// stores, loads are expanded using the vector-load + permutation sequence,
|
|
// which is much less expensive).
|
|
if (Src->isVectorTy() && Opcode == Instruction::Store)
|
|
for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
|
|
Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
|
|
|
|
return Cost;
|
|
}
|
|
|
|
int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
|
|
unsigned Factor,
|
|
ArrayRef<unsigned> Indices,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
assert(isa<VectorType>(VecTy) &&
|
|
"Expect a vector type for interleaved memory op");
|
|
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
|
|
|
|
// Firstly, the cost of load/store operation.
|
|
int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
|
|
|
|
// PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
|
|
// (at least in the sense that there need only be one non-loop-invariant
|
|
// instruction). For each result vector, we need one shuffle per incoming
|
|
// vector (except that the first shuffle can take two incoming vectors
|
|
// because it does not need to take itself).
|
|
Cost += Factor*(LT.first-1);
|
|
|
|
return Cost;
|
|
}
|
|
|