mirror of
https://github.com/RPCSX/llvm.git
synced 2025-03-03 02:17:41 +00:00

LAA will be an on-demand analysis pass, so we need to cache the result of the analysis. canVectorizeMemory is renamed to analyzeLoop which computes the result. canVectorizeMemory becomes the query function for the cached result. This is part of the patchset that converts LoopAccessAnalysis into an actual analysis pass. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229624 91177308-0d34-0410-b5e6-96231b3b80d8
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//