mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-13 14:46:53 +00:00
af539c40a3
For the same reason as the corresponding load change. Note that ExpandStore is completely broken for non-byte sized element vector stores, but preserve the current broken behavior which has tests for it. The behavior should be the same, but now introduces a new typed store that is incorrectly split later rather than doing it directly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264928 91177308-0d34-0410-b5e6-96231b3b80d8
4745 lines
191 KiB
C++
4745 lines
191 KiB
C++
//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SelectionDAG::Legalize method.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetFrameLowering.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "legalizedag"
|
|
|
|
namespace {
|
|
|
|
struct FloatSignAsInt;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// This takes an arbitrary SelectionDAG as input and
|
|
/// hacks on it until the target machine can handle it. This involves
|
|
/// eliminating value sizes the machine cannot handle (promoting small sizes to
|
|
/// large sizes or splitting up large values into small values) as well as
|
|
/// eliminating operations the machine cannot handle.
|
|
///
|
|
/// This code also does a small amount of optimization and recognition of idioms
|
|
/// as part of its processing. For example, if a target does not support a
|
|
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
|
|
/// will attempt merge setcc and brc instructions into brcc's.
|
|
///
|
|
class SelectionDAGLegalize {
|
|
const TargetMachine &TM;
|
|
const TargetLowering &TLI;
|
|
SelectionDAG &DAG;
|
|
|
|
/// \brief The set of nodes which have already been legalized. We hold a
|
|
/// reference to it in order to update as necessary on node deletion.
|
|
SmallPtrSetImpl<SDNode *> &LegalizedNodes;
|
|
|
|
/// \brief A set of all the nodes updated during legalization.
|
|
SmallSetVector<SDNode *, 16> *UpdatedNodes;
|
|
|
|
EVT getSetCCResultType(EVT VT) const {
|
|
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
}
|
|
|
|
// Libcall insertion helpers.
|
|
|
|
public:
|
|
SelectionDAGLegalize(SelectionDAG &DAG,
|
|
SmallPtrSetImpl<SDNode *> &LegalizedNodes,
|
|
SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
|
|
: TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
|
|
LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
|
|
|
|
/// \brief Legalizes the given operation.
|
|
void LegalizeOp(SDNode *Node);
|
|
|
|
private:
|
|
SDValue OptimizeFloatStore(StoreSDNode *ST);
|
|
|
|
void LegalizeLoadOps(SDNode *Node);
|
|
void LegalizeStoreOps(SDNode *Node);
|
|
|
|
/// Some targets cannot handle a variable
|
|
/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
|
|
/// is necessary to spill the vector being inserted into to memory, perform
|
|
/// the insert there, and then read the result back.
|
|
SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
|
|
SDValue Idx, SDLoc dl);
|
|
SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
|
|
SDValue Idx, SDLoc dl);
|
|
|
|
/// Return a vector shuffle operation which
|
|
/// performs the same shuffe in terms of order or result bytes, but on a type
|
|
/// whose vector element type is narrower than the original shuffle type.
|
|
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
|
|
SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
|
|
SDValue N1, SDValue N2,
|
|
ArrayRef<int> Mask) const;
|
|
|
|
bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
|
|
bool &NeedInvert, SDLoc dl);
|
|
|
|
SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
|
|
SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
|
|
unsigned NumOps, bool isSigned, SDLoc dl);
|
|
|
|
std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
|
|
SDNode *Node, bool isSigned);
|
|
SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
|
|
RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
|
|
RTLIB::Libcall Call_F128,
|
|
RTLIB::Libcall Call_PPCF128);
|
|
SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
|
|
RTLIB::Libcall Call_I8,
|
|
RTLIB::Libcall Call_I16,
|
|
RTLIB::Libcall Call_I32,
|
|
RTLIB::Libcall Call_I64,
|
|
RTLIB::Libcall Call_I128);
|
|
void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
|
|
SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
|
|
SDValue ExpandBUILD_VECTOR(SDNode *Node);
|
|
SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
|
|
void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results);
|
|
void getSignAsIntValue(FloatSignAsInt &State, SDLoc DL, SDValue Value) const;
|
|
SDValue modifySignAsInt(const FloatSignAsInt &State, SDLoc DL,
|
|
SDValue NewIntValue) const;
|
|
SDValue ExpandFCOPYSIGN(SDNode *Node) const;
|
|
SDValue ExpandFABS(SDNode *Node) const;
|
|
SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
|
|
SDLoc dl);
|
|
SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
|
|
SDLoc dl);
|
|
SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
|
|
SDLoc dl);
|
|
|
|
SDValue ExpandBITREVERSE(SDValue Op, SDLoc dl);
|
|
SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
|
|
SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
|
|
|
|
SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
|
|
SDValue ExpandInsertToVectorThroughStack(SDValue Op);
|
|
SDValue ExpandVectorBuildThroughStack(SDNode* Node);
|
|
|
|
SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
|
|
SDValue ExpandConstant(ConstantSDNode *CP);
|
|
|
|
// if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
|
|
bool ExpandNode(SDNode *Node);
|
|
void ConvertNodeToLibcall(SDNode *Node);
|
|
void PromoteNode(SDNode *Node);
|
|
|
|
public:
|
|
// Node replacement helpers
|
|
void ReplacedNode(SDNode *N) {
|
|
LegalizedNodes.erase(N);
|
|
if (UpdatedNodes)
|
|
UpdatedNodes->insert(N);
|
|
}
|
|
void ReplaceNode(SDNode *Old, SDNode *New) {
|
|
DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
|
|
dbgs() << " with: "; New->dump(&DAG));
|
|
|
|
assert(Old->getNumValues() == New->getNumValues() &&
|
|
"Replacing one node with another that produces a different number "
|
|
"of values!");
|
|
DAG.ReplaceAllUsesWith(Old, New);
|
|
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
|
|
DAG.TransferDbgValues(SDValue(Old, i), SDValue(New, i));
|
|
if (UpdatedNodes)
|
|
UpdatedNodes->insert(New);
|
|
ReplacedNode(Old);
|
|
}
|
|
void ReplaceNode(SDValue Old, SDValue New) {
|
|
DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
|
|
dbgs() << " with: "; New->dump(&DAG));
|
|
|
|
DAG.ReplaceAllUsesWith(Old, New);
|
|
DAG.TransferDbgValues(Old, New);
|
|
if (UpdatedNodes)
|
|
UpdatedNodes->insert(New.getNode());
|
|
ReplacedNode(Old.getNode());
|
|
}
|
|
void ReplaceNode(SDNode *Old, const SDValue *New) {
|
|
DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
|
|
|
|
DAG.ReplaceAllUsesWith(Old, New);
|
|
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
|
|
DEBUG(dbgs() << (i == 0 ? " with: "
|
|
: " and: ");
|
|
New[i]->dump(&DAG));
|
|
DAG.TransferDbgValues(SDValue(Old, i), New[i]);
|
|
if (UpdatedNodes)
|
|
UpdatedNodes->insert(New[i].getNode());
|
|
}
|
|
ReplacedNode(Old);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Return a vector shuffle operation which
|
|
/// performs the same shuffe in terms of order or result bytes, but on a type
|
|
/// whose vector element type is narrower than the original shuffle type.
|
|
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
|
|
SDValue
|
|
SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
|
|
SDValue N1, SDValue N2,
|
|
ArrayRef<int> Mask) const {
|
|
unsigned NumMaskElts = VT.getVectorNumElements();
|
|
unsigned NumDestElts = NVT.getVectorNumElements();
|
|
unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
|
|
|
|
assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
|
|
|
|
if (NumEltsGrowth == 1)
|
|
return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
|
|
|
|
SmallVector<int, 8> NewMask;
|
|
for (unsigned i = 0; i != NumMaskElts; ++i) {
|
|
int Idx = Mask[i];
|
|
for (unsigned j = 0; j != NumEltsGrowth; ++j) {
|
|
if (Idx < 0)
|
|
NewMask.push_back(-1);
|
|
else
|
|
NewMask.push_back(Idx * NumEltsGrowth + j);
|
|
}
|
|
}
|
|
assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
|
|
assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
|
|
return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
|
|
}
|
|
|
|
/// Expands the ConstantFP node to an integer constant or
|
|
/// a load from the constant pool.
|
|
SDValue
|
|
SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
|
|
bool Extend = false;
|
|
SDLoc dl(CFP);
|
|
|
|
// If a FP immediate is precise when represented as a float and if the
|
|
// target can do an extending load from float to double, we put it into
|
|
// the constant pool as a float, even if it's is statically typed as a
|
|
// double. This shrinks FP constants and canonicalizes them for targets where
|
|
// an FP extending load is the same cost as a normal load (such as on the x87
|
|
// fp stack or PPC FP unit).
|
|
EVT VT = CFP->getValueType(0);
|
|
ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
|
|
if (!UseCP) {
|
|
assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
|
|
return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
|
|
(VT == MVT::f64) ? MVT::i64 : MVT::i32);
|
|
}
|
|
|
|
EVT OrigVT = VT;
|
|
EVT SVT = VT;
|
|
while (SVT != MVT::f32 && SVT != MVT::f16) {
|
|
SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
|
|
if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
|
|
// Only do this if the target has a native EXTLOAD instruction from
|
|
// smaller type.
|
|
TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
|
|
TLI.ShouldShrinkFPConstant(OrigVT)) {
|
|
Type *SType = SVT.getTypeForEVT(*DAG.getContext());
|
|
LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
|
|
VT = SVT;
|
|
Extend = true;
|
|
}
|
|
}
|
|
|
|
SDValue CPIdx =
|
|
DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
|
|
if (Extend) {
|
|
SDValue Result = DAG.getExtLoad(
|
|
ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
|
|
false, false, false, Alignment);
|
|
return Result;
|
|
}
|
|
SDValue Result =
|
|
DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
|
|
false, false, false, Alignment);
|
|
return Result;
|
|
}
|
|
|
|
/// Expands the Constant node to a load from the constant pool.
|
|
SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
|
|
SDLoc dl(CP);
|
|
EVT VT = CP->getValueType(0);
|
|
SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
|
|
SDValue Result =
|
|
DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
|
|
false, false, false, Alignment);
|
|
return Result;
|
|
}
|
|
|
|
/// Expands an unaligned store to 2 half-size stores.
|
|
static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
|
|
const TargetLowering &TLI,
|
|
SelectionDAGLegalize *DAGLegalize) {
|
|
assert(ST->getAddressingMode() == ISD::UNINDEXED &&
|
|
"unaligned indexed stores not implemented!");
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
SDValue Val = ST->getValue();
|
|
EVT VT = Val.getValueType();
|
|
int Alignment = ST->getAlignment();
|
|
|
|
SDLoc dl(ST);
|
|
if (ST->getMemoryVT().isFloatingPoint() ||
|
|
ST->getMemoryVT().isVector()) {
|
|
EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
|
|
if (TLI.isTypeLegal(intVT)) {
|
|
if (!TLI.isOperationLegalOrCustom(ISD::STORE, intVT)) {
|
|
// Scalarize the store and let the individual components be handled.
|
|
SDValue Result = TLI.scalarizeVectorStore(ST, DAG);
|
|
DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
|
|
return;
|
|
}
|
|
// Expand to a bitconvert of the value to the integer type of the
|
|
// same size, then a (misaligned) int store.
|
|
// FIXME: Does not handle truncating floating point stores!
|
|
SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
|
|
Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
|
|
ST->isVolatile(), ST->isNonTemporal(), Alignment);
|
|
DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
|
|
return;
|
|
}
|
|
// Do a (aligned) store to a stack slot, then copy from the stack slot
|
|
// to the final destination using (unaligned) integer loads and stores.
|
|
EVT StoredVT = ST->getMemoryVT();
|
|
MVT RegVT =
|
|
TLI.getRegisterType(*DAG.getContext(),
|
|
EVT::getIntegerVT(*DAG.getContext(),
|
|
StoredVT.getSizeInBits()));
|
|
EVT PtrVT = Ptr.getValueType();
|
|
unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
|
|
unsigned RegBytes = RegVT.getSizeInBits() / 8;
|
|
unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
|
|
|
|
// Make sure the stack slot is also aligned for the register type.
|
|
SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
|
|
|
|
// Perform the original store, only redirected to the stack slot.
|
|
SDValue Store = DAG.getTruncStore(Chain, dl,
|
|
Val, StackPtr, MachinePointerInfo(),
|
|
StoredVT, false, false, 0);
|
|
|
|
EVT StackPtrVT = StackPtr.getValueType();
|
|
|
|
SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
|
|
SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
|
|
SmallVector<SDValue, 8> Stores;
|
|
unsigned Offset = 0;
|
|
|
|
// Do all but one copies using the full register width.
|
|
for (unsigned i = 1; i < NumRegs; i++) {
|
|
// Load one integer register's worth from the stack slot.
|
|
SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
// Store it to the final location. Remember the store.
|
|
Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
|
|
ST->getPointerInfo().getWithOffset(Offset),
|
|
ST->isVolatile(), ST->isNonTemporal(),
|
|
MinAlign(ST->getAlignment(), Offset)));
|
|
// Increment the pointers.
|
|
Offset += RegBytes;
|
|
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
|
|
StackPtr, StackPtrIncrement);
|
|
Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
|
|
}
|
|
|
|
// The last store may be partial. Do a truncating store. On big-endian
|
|
// machines this requires an extending load from the stack slot to ensure
|
|
// that the bits are in the right place.
|
|
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
|
|
8 * (StoredBytes - Offset));
|
|
|
|
// Load from the stack slot.
|
|
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
|
|
MachinePointerInfo(),
|
|
MemVT, false, false, false, 0);
|
|
|
|
Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
|
|
ST->getPointerInfo()
|
|
.getWithOffset(Offset),
|
|
MemVT, ST->isVolatile(),
|
|
ST->isNonTemporal(),
|
|
MinAlign(ST->getAlignment(), Offset),
|
|
ST->getAAInfo()));
|
|
// The order of the stores doesn't matter - say it with a TokenFactor.
|
|
SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
|
|
DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
|
|
return;
|
|
}
|
|
assert(ST->getMemoryVT().isInteger() &&
|
|
!ST->getMemoryVT().isVector() &&
|
|
"Unaligned store of unknown type.");
|
|
// Get the half-size VT
|
|
EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
|
|
int NumBits = NewStoredVT.getSizeInBits();
|
|
int IncrementSize = NumBits / 8;
|
|
|
|
// Divide the stored value in two parts.
|
|
SDValue ShiftAmount =
|
|
DAG.getConstant(NumBits, dl, TLI.getShiftAmountTy(Val.getValueType(),
|
|
DAG.getDataLayout()));
|
|
SDValue Lo = Val;
|
|
SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
|
|
|
|
// Store the two parts
|
|
SDValue Store1, Store2;
|
|
Store1 = DAG.getTruncStore(Chain, dl,
|
|
DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
|
|
Ptr, ST->getPointerInfo(), NewStoredVT,
|
|
ST->isVolatile(), ST->isNonTemporal(), Alignment);
|
|
|
|
EVT PtrVT = Ptr.getValueType();
|
|
Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
|
|
DAG.getConstant(IncrementSize, dl, PtrVT));
|
|
Alignment = MinAlign(Alignment, IncrementSize);
|
|
Store2 = DAG.getTruncStore(
|
|
Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
|
|
ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT,
|
|
ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo());
|
|
|
|
SDValue Result =
|
|
DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
|
|
DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
|
|
}
|
|
|
|
/// Expands an unaligned load to 2 half-size loads.
|
|
static void
|
|
ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
|
|
const TargetLowering &TLI,
|
|
SDValue &ValResult, SDValue &ChainResult) {
|
|
assert(LD->getAddressingMode() == ISD::UNINDEXED &&
|
|
"unaligned indexed loads not implemented!");
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Ptr = LD->getBasePtr();
|
|
EVT VT = LD->getValueType(0);
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
SDLoc dl(LD);
|
|
if (VT.isFloatingPoint() || VT.isVector()) {
|
|
EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
|
|
if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
|
|
if (!TLI.isOperationLegalOrCustom(ISD::LOAD, intVT)) {
|
|
// Scalarize the load and let the individual components be handled.
|
|
SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
|
|
ValResult = Scalarized.getValue(0);
|
|
ChainResult = Scalarized.getValue(1);
|
|
return;
|
|
}
|
|
|
|
// Expand to a (misaligned) integer load of the same size,
|
|
// then bitconvert to floating point or vector.
|
|
SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
|
|
LD->getMemOperand());
|
|
SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
|
|
if (LoadedVT != VT)
|
|
Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
|
|
ISD::ANY_EXTEND, dl, VT, Result);
|
|
|
|
ValResult = Result;
|
|
ChainResult = newLoad.getValue(1);
|
|
return;
|
|
}
|
|
|
|
// Copy the value to a (aligned) stack slot using (unaligned) integer
|
|
// loads and stores, then do a (aligned) load from the stack slot.
|
|
MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
|
|
unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
|
|
unsigned RegBytes = RegVT.getSizeInBits() / 8;
|
|
unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
|
|
|
|
// Make sure the stack slot is also aligned for the register type.
|
|
SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
|
|
|
|
SmallVector<SDValue, 8> Stores;
|
|
SDValue StackPtr = StackBase;
|
|
unsigned Offset = 0;
|
|
|
|
EVT PtrVT = Ptr.getValueType();
|
|
EVT StackPtrVT = StackPtr.getValueType();
|
|
|
|
SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
|
|
SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
|
|
|
|
// Do all but one copies using the full register width.
|
|
for (unsigned i = 1; i < NumRegs; i++) {
|
|
// Load one integer register's worth from the original location.
|
|
SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(Offset),
|
|
LD->isVolatile(), LD->isNonTemporal(),
|
|
LD->isInvariant(),
|
|
MinAlign(LD->getAlignment(), Offset),
|
|
LD->getAAInfo());
|
|
// Follow the load with a store to the stack slot. Remember the store.
|
|
Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
|
|
MachinePointerInfo(), false, false, 0));
|
|
// Increment the pointers.
|
|
Offset += RegBytes;
|
|
Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
|
|
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
|
|
StackPtrIncrement);
|
|
}
|
|
|
|
// The last copy may be partial. Do an extending load.
|
|
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
|
|
8 * (LoadedBytes - Offset));
|
|
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(Offset),
|
|
MemVT, LD->isVolatile(),
|
|
LD->isNonTemporal(),
|
|
LD->isInvariant(),
|
|
MinAlign(LD->getAlignment(), Offset),
|
|
LD->getAAInfo());
|
|
// Follow the load with a store to the stack slot. Remember the store.
|
|
// On big-endian machines this requires a truncating store to ensure
|
|
// that the bits end up in the right place.
|
|
Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
|
|
MachinePointerInfo(), MemVT,
|
|
false, false, 0));
|
|
|
|
// The order of the stores doesn't matter - say it with a TokenFactor.
|
|
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
|
|
|
|
// Finally, perform the original load only redirected to the stack slot.
|
|
Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
|
|
MachinePointerInfo(), LoadedVT, false,false, false,
|
|
0);
|
|
|
|
// Callers expect a MERGE_VALUES node.
|
|
ValResult = Load;
|
|
ChainResult = TF;
|
|
return;
|
|
}
|
|
assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
|
|
"Unaligned load of unsupported type.");
|
|
|
|
// Compute the new VT that is half the size of the old one. This is an
|
|
// integer MVT.
|
|
unsigned NumBits = LoadedVT.getSizeInBits();
|
|
EVT NewLoadedVT;
|
|
NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
|
|
NumBits >>= 1;
|
|
|
|
unsigned Alignment = LD->getAlignment();
|
|
unsigned IncrementSize = NumBits / 8;
|
|
ISD::LoadExtType HiExtType = LD->getExtensionType();
|
|
|
|
// If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
|
|
if (HiExtType == ISD::NON_EXTLOAD)
|
|
HiExtType = ISD::ZEXTLOAD;
|
|
|
|
// Load the value in two parts
|
|
SDValue Lo, Hi;
|
|
if (DAG.getDataLayout().isLittleEndian()) {
|
|
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
|
|
NewLoadedVT, LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->isInvariant(), Alignment,
|
|
LD->getAAInfo());
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
|
|
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(IncrementSize),
|
|
NewLoadedVT, LD->isVolatile(),
|
|
LD->isNonTemporal(),LD->isInvariant(),
|
|
MinAlign(Alignment, IncrementSize), LD->getAAInfo());
|
|
} else {
|
|
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
|
|
NewLoadedVT, LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->isInvariant(), Alignment,
|
|
LD->getAAInfo());
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
|
|
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(IncrementSize),
|
|
NewLoadedVT, LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->isInvariant(),
|
|
MinAlign(Alignment, IncrementSize), LD->getAAInfo());
|
|
}
|
|
|
|
// aggregate the two parts
|
|
SDValue ShiftAmount =
|
|
DAG.getConstant(NumBits, dl, TLI.getShiftAmountTy(Hi.getValueType(),
|
|
DAG.getDataLayout()));
|
|
SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
|
|
Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
|
|
|
|
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
|
|
Hi.getValue(1));
|
|
|
|
ValResult = Result;
|
|
ChainResult = TF;
|
|
}
|
|
|
|
/// Some target cannot handle a variable insertion index for the
|
|
/// INSERT_VECTOR_ELT instruction. In this case, it
|
|
/// is necessary to spill the vector being inserted into to memory, perform
|
|
/// the insert there, and then read the result back.
|
|
SDValue SelectionDAGLegalize::
|
|
PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
|
|
SDLoc dl) {
|
|
SDValue Tmp1 = Vec;
|
|
SDValue Tmp2 = Val;
|
|
SDValue Tmp3 = Idx;
|
|
|
|
// If the target doesn't support this, we have to spill the input vector
|
|
// to a temporary stack slot, update the element, then reload it. This is
|
|
// badness. We could also load the value into a vector register (either
|
|
// with a "move to register" or "extload into register" instruction, then
|
|
// permute it into place, if the idx is a constant and if the idx is
|
|
// supported by the target.
|
|
EVT VT = Tmp1.getValueType();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
EVT IdxVT = Tmp3.getValueType();
|
|
EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
|
|
SDValue StackPtr = DAG.CreateStackTemporary(VT);
|
|
|
|
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
|
|
|
|
// Store the vector.
|
|
SDValue Ch = DAG.getStore(
|
|
DAG.getEntryNode(), dl, Tmp1, StackPtr,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false,
|
|
false, 0);
|
|
|
|
// Truncate or zero extend offset to target pointer type.
|
|
Tmp3 = DAG.getZExtOrTrunc(Tmp3, dl, PtrVT);
|
|
// Add the offset to the index.
|
|
unsigned EltSize = EltVT.getSizeInBits()/8;
|
|
Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,
|
|
DAG.getConstant(EltSize, dl, IdxVT));
|
|
SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
|
|
// Store the scalar value.
|
|
Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
|
|
false, false, 0);
|
|
// Load the updated vector.
|
|
return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
|
|
DAG.getMachineFunction(), SPFI),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
|
|
SDValue SelectionDAGLegalize::
|
|
ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
|
|
if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
|
|
// SCALAR_TO_VECTOR requires that the type of the value being inserted
|
|
// match the element type of the vector being created, except for
|
|
// integers in which case the inserted value can be over width.
|
|
EVT EltVT = Vec.getValueType().getVectorElementType();
|
|
if (Val.getValueType() == EltVT ||
|
|
(EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
|
|
SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
Vec.getValueType(), Val);
|
|
|
|
unsigned NumElts = Vec.getValueType().getVectorNumElements();
|
|
// We generate a shuffle of InVec and ScVec, so the shuffle mask
|
|
// should be 0,1,2,3,4,5... with the appropriate element replaced with
|
|
// elt 0 of the RHS.
|
|
SmallVector<int, 8> ShufOps;
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
|
|
|
|
return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
|
|
&ShufOps[0]);
|
|
}
|
|
}
|
|
return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
|
|
}
|
|
|
|
SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
|
|
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
|
|
// FIXME: We shouldn't do this for TargetConstantFP's.
|
|
// FIXME: move this to the DAG Combiner! Note that we can't regress due
|
|
// to phase ordering between legalized code and the dag combiner. This
|
|
// probably means that we need to integrate dag combiner and legalizer
|
|
// together.
|
|
// We generally can't do this one for long doubles.
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
unsigned Alignment = ST->getAlignment();
|
|
bool isVolatile = ST->isVolatile();
|
|
bool isNonTemporal = ST->isNonTemporal();
|
|
AAMDNodes AAInfo = ST->getAAInfo();
|
|
SDLoc dl(ST);
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
|
|
if (CFP->getValueType(0) == MVT::f32 &&
|
|
TLI.isTypeLegal(MVT::i32)) {
|
|
SDValue Con = DAG.getConstant(CFP->getValueAPF().
|
|
bitcastToAPInt().zextOrTrunc(32),
|
|
SDLoc(CFP), MVT::i32);
|
|
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
|
|
isVolatile, isNonTemporal, Alignment, AAInfo);
|
|
}
|
|
|
|
if (CFP->getValueType(0) == MVT::f64) {
|
|
// If this target supports 64-bit registers, do a single 64-bit store.
|
|
if (TLI.isTypeLegal(MVT::i64)) {
|
|
SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
|
|
zextOrTrunc(64), SDLoc(CFP), MVT::i64);
|
|
return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
|
|
isVolatile, isNonTemporal, Alignment, AAInfo);
|
|
}
|
|
|
|
if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
|
|
// Otherwise, if the target supports 32-bit registers, use 2 32-bit
|
|
// stores. If the target supports neither 32- nor 64-bits, this
|
|
// xform is certainly not worth it.
|
|
const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
|
|
SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
|
|
SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
std::swap(Lo, Hi);
|
|
|
|
Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
|
|
isNonTemporal, Alignment, AAInfo);
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(4, dl, Ptr.getValueType()));
|
|
Hi = DAG.getStore(Chain, dl, Hi, Ptr,
|
|
ST->getPointerInfo().getWithOffset(4),
|
|
isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
|
|
AAInfo);
|
|
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
|
|
}
|
|
}
|
|
}
|
|
return SDValue(nullptr, 0);
|
|
}
|
|
|
|
void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(Node);
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
SDLoc dl(Node);
|
|
|
|
unsigned Alignment = ST->getAlignment();
|
|
bool isVolatile = ST->isVolatile();
|
|
bool isNonTemporal = ST->isNonTemporal();
|
|
AAMDNodes AAInfo = ST->getAAInfo();
|
|
|
|
if (!ST->isTruncatingStore()) {
|
|
if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
|
|
ReplaceNode(ST, OptStore);
|
|
return;
|
|
}
|
|
|
|
{
|
|
SDValue Value = ST->getValue();
|
|
MVT VT = Value.getSimpleValueType();
|
|
switch (TLI.getOperationAction(ISD::STORE, VT)) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Legal: {
|
|
// If this is an unaligned store and the target doesn't support it,
|
|
// expand it.
|
|
EVT MemVT = ST->getMemoryVT();
|
|
unsigned AS = ST->getAddressSpace();
|
|
unsigned Align = ST->getAlignment();
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
|
|
ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
|
|
break;
|
|
}
|
|
case TargetLowering::Custom: {
|
|
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
|
|
if (Res && Res != SDValue(Node, 0))
|
|
ReplaceNode(SDValue(Node, 0), Res);
|
|
return;
|
|
}
|
|
case TargetLowering::Promote: {
|
|
MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
|
|
assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
|
|
"Can only promote stores to same size type");
|
|
Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
|
|
SDValue Result =
|
|
DAG.getStore(Chain, dl, Value, Ptr,
|
|
ST->getPointerInfo(), isVolatile,
|
|
isNonTemporal, Alignment, AAInfo);
|
|
ReplaceNode(SDValue(Node, 0), Result);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
} else {
|
|
SDValue Value = ST->getValue();
|
|
|
|
EVT StVT = ST->getMemoryVT();
|
|
unsigned StWidth = StVT.getSizeInBits();
|
|
auto &DL = DAG.getDataLayout();
|
|
|
|
if (StWidth != StVT.getStoreSizeInBits()) {
|
|
// Promote to a byte-sized store with upper bits zero if not
|
|
// storing an integral number of bytes. For example, promote
|
|
// TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
|
|
EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
|
|
StVT.getStoreSizeInBits());
|
|
Value = DAG.getZeroExtendInReg(Value, dl, StVT);
|
|
SDValue Result =
|
|
DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
|
|
NVT, isVolatile, isNonTemporal, Alignment, AAInfo);
|
|
ReplaceNode(SDValue(Node, 0), Result);
|
|
} else if (StWidth & (StWidth - 1)) {
|
|
// If not storing a power-of-2 number of bits, expand as two stores.
|
|
assert(!StVT.isVector() && "Unsupported truncstore!");
|
|
unsigned RoundWidth = 1 << Log2_32(StWidth);
|
|
assert(RoundWidth < StWidth);
|
|
unsigned ExtraWidth = StWidth - RoundWidth;
|
|
assert(ExtraWidth < RoundWidth);
|
|
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
|
|
"Store size not an integral number of bytes!");
|
|
EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
|
|
EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
|
|
SDValue Lo, Hi;
|
|
unsigned IncrementSize;
|
|
|
|
if (DL.isLittleEndian()) {
|
|
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
|
|
// Store the bottom RoundWidth bits.
|
|
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
|
|
RoundVT,
|
|
isVolatile, isNonTemporal, Alignment,
|
|
AAInfo);
|
|
|
|
// Store the remaining ExtraWidth bits.
|
|
IncrementSize = RoundWidth / 8;
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(IncrementSize, dl,
|
|
Ptr.getValueType()));
|
|
Hi = DAG.getNode(
|
|
ISD::SRL, dl, Value.getValueType(), Value,
|
|
DAG.getConstant(RoundWidth, dl,
|
|
TLI.getShiftAmountTy(Value.getValueType(), DL)));
|
|
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
|
|
ST->getPointerInfo().getWithOffset(IncrementSize),
|
|
ExtraVT, isVolatile, isNonTemporal,
|
|
MinAlign(Alignment, IncrementSize), AAInfo);
|
|
} else {
|
|
// Big endian - avoid unaligned stores.
|
|
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
|
|
// Store the top RoundWidth bits.
|
|
Hi = DAG.getNode(
|
|
ISD::SRL, dl, Value.getValueType(), Value,
|
|
DAG.getConstant(ExtraWidth, dl,
|
|
TLI.getShiftAmountTy(Value.getValueType(), DL)));
|
|
Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
|
|
RoundVT, isVolatile, isNonTemporal, Alignment,
|
|
AAInfo);
|
|
|
|
// Store the remaining ExtraWidth bits.
|
|
IncrementSize = RoundWidth / 8;
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(IncrementSize, dl,
|
|
Ptr.getValueType()));
|
|
Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
|
|
ST->getPointerInfo().getWithOffset(IncrementSize),
|
|
ExtraVT, isVolatile, isNonTemporal,
|
|
MinAlign(Alignment, IncrementSize), AAInfo);
|
|
}
|
|
|
|
// The order of the stores doesn't matter.
|
|
SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
|
|
ReplaceNode(SDValue(Node, 0), Result);
|
|
} else {
|
|
switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Legal: {
|
|
EVT MemVT = ST->getMemoryVT();
|
|
unsigned AS = ST->getAddressSpace();
|
|
unsigned Align = ST->getAlignment();
|
|
// If this is an unaligned store and the target doesn't support it,
|
|
// expand it.
|
|
if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
|
|
ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
|
|
break;
|
|
}
|
|
case TargetLowering::Custom: {
|
|
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
|
|
if (Res && Res != SDValue(Node, 0))
|
|
ReplaceNode(SDValue(Node, 0), Res);
|
|
return;
|
|
}
|
|
case TargetLowering::Expand:
|
|
assert(!StVT.isVector() &&
|
|
"Vector Stores are handled in LegalizeVectorOps");
|
|
|
|
// TRUNCSTORE:i16 i32 -> STORE i16
|
|
assert(TLI.isTypeLegal(StVT) &&
|
|
"Do not know how to expand this store!");
|
|
Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
|
|
SDValue Result =
|
|
DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
|
|
isVolatile, isNonTemporal, Alignment, AAInfo);
|
|
ReplaceNode(SDValue(Node, 0), Result);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Node);
|
|
SDValue Chain = LD->getChain(); // The chain.
|
|
SDValue Ptr = LD->getBasePtr(); // The base pointer.
|
|
SDValue Value; // The value returned by the load op.
|
|
SDLoc dl(Node);
|
|
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
if (ExtType == ISD::NON_EXTLOAD) {
|
|
MVT VT = Node->getSimpleValueType(0);
|
|
SDValue RVal = SDValue(Node, 0);
|
|
SDValue RChain = SDValue(Node, 1);
|
|
|
|
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Legal: {
|
|
EVT MemVT = LD->getMemoryVT();
|
|
unsigned AS = LD->getAddressSpace();
|
|
unsigned Align = LD->getAlignment();
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
// If this is an unaligned load and the target doesn't support it,
|
|
// expand it.
|
|
if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
|
|
ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
|
|
break;
|
|
}
|
|
case TargetLowering::Custom: {
|
|
if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
|
|
RVal = Res;
|
|
RChain = Res.getValue(1);
|
|
}
|
|
break;
|
|
}
|
|
case TargetLowering::Promote: {
|
|
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
|
|
assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
|
|
"Can only promote loads to same size type");
|
|
|
|
SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
|
|
RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
|
|
RChain = Res.getValue(1);
|
|
break;
|
|
}
|
|
}
|
|
if (RChain.getNode() != Node) {
|
|
assert(RVal.getNode() != Node && "Load must be completely replaced");
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
|
|
if (UpdatedNodes) {
|
|
UpdatedNodes->insert(RVal.getNode());
|
|
UpdatedNodes->insert(RChain.getNode());
|
|
}
|
|
ReplacedNode(Node);
|
|
}
|
|
return;
|
|
}
|
|
|
|
EVT SrcVT = LD->getMemoryVT();
|
|
unsigned SrcWidth = SrcVT.getSizeInBits();
|
|
unsigned Alignment = LD->getAlignment();
|
|
bool isVolatile = LD->isVolatile();
|
|
bool isNonTemporal = LD->isNonTemporal();
|
|
bool isInvariant = LD->isInvariant();
|
|
AAMDNodes AAInfo = LD->getAAInfo();
|
|
|
|
if (SrcWidth != SrcVT.getStoreSizeInBits() &&
|
|
// Some targets pretend to have an i1 loading operation, and actually
|
|
// load an i8. This trick is correct for ZEXTLOAD because the top 7
|
|
// bits are guaranteed to be zero; it helps the optimizers understand
|
|
// that these bits are zero. It is also useful for EXTLOAD, since it
|
|
// tells the optimizers that those bits are undefined. It would be
|
|
// nice to have an effective generic way of getting these benefits...
|
|
// Until such a way is found, don't insist on promoting i1 here.
|
|
(SrcVT != MVT::i1 ||
|
|
TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
|
|
TargetLowering::Promote)) {
|
|
// Promote to a byte-sized load if not loading an integral number of
|
|
// bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
|
|
unsigned NewWidth = SrcVT.getStoreSizeInBits();
|
|
EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
|
|
SDValue Ch;
|
|
|
|
// The extra bits are guaranteed to be zero, since we stored them that
|
|
// way. A zext load from NVT thus automatically gives zext from SrcVT.
|
|
|
|
ISD::LoadExtType NewExtType =
|
|
ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
|
|
|
|
SDValue Result =
|
|
DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
|
|
Chain, Ptr, LD->getPointerInfo(),
|
|
NVT, isVolatile, isNonTemporal, isInvariant, Alignment,
|
|
AAInfo);
|
|
|
|
Ch = Result.getValue(1); // The chain.
|
|
|
|
if (ExtType == ISD::SEXTLOAD)
|
|
// Having the top bits zero doesn't help when sign extending.
|
|
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
|
|
Result.getValueType(),
|
|
Result, DAG.getValueType(SrcVT));
|
|
else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
|
|
// All the top bits are guaranteed to be zero - inform the optimizers.
|
|
Result = DAG.getNode(ISD::AssertZext, dl,
|
|
Result.getValueType(), Result,
|
|
DAG.getValueType(SrcVT));
|
|
|
|
Value = Result;
|
|
Chain = Ch;
|
|
} else if (SrcWidth & (SrcWidth - 1)) {
|
|
// If not loading a power-of-2 number of bits, expand as two loads.
|
|
assert(!SrcVT.isVector() && "Unsupported extload!");
|
|
unsigned RoundWidth = 1 << Log2_32(SrcWidth);
|
|
assert(RoundWidth < SrcWidth);
|
|
unsigned ExtraWidth = SrcWidth - RoundWidth;
|
|
assert(ExtraWidth < RoundWidth);
|
|
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
|
|
"Load size not an integral number of bytes!");
|
|
EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
|
|
EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
|
|
SDValue Lo, Hi, Ch;
|
|
unsigned IncrementSize;
|
|
auto &DL = DAG.getDataLayout();
|
|
|
|
if (DL.isLittleEndian()) {
|
|
// EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
|
|
// Load the bottom RoundWidth bits.
|
|
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
|
|
Chain, Ptr,
|
|
LD->getPointerInfo(), RoundVT, isVolatile,
|
|
isNonTemporal, isInvariant, Alignment, AAInfo);
|
|
|
|
// Load the remaining ExtraWidth bits.
|
|
IncrementSize = RoundWidth / 8;
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(IncrementSize, dl,
|
|
Ptr.getValueType()));
|
|
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(IncrementSize),
|
|
ExtraVT, isVolatile, isNonTemporal, isInvariant,
|
|
MinAlign(Alignment, IncrementSize), AAInfo);
|
|
|
|
// Build a factor node to remember that this load is independent of
|
|
// the other one.
|
|
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
|
|
Hi.getValue(1));
|
|
|
|
// Move the top bits to the right place.
|
|
Hi = DAG.getNode(
|
|
ISD::SHL, dl, Hi.getValueType(), Hi,
|
|
DAG.getConstant(RoundWidth, dl,
|
|
TLI.getShiftAmountTy(Hi.getValueType(), DL)));
|
|
|
|
// Join the hi and lo parts.
|
|
Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
|
|
} else {
|
|
// Big endian - avoid unaligned loads.
|
|
// EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
|
|
// Load the top RoundWidth bits.
|
|
Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
|
|
LD->getPointerInfo(), RoundVT, isVolatile,
|
|
isNonTemporal, isInvariant, Alignment, AAInfo);
|
|
|
|
// Load the remaining ExtraWidth bits.
|
|
IncrementSize = RoundWidth / 8;
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(IncrementSize, dl,
|
|
Ptr.getValueType()));
|
|
Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
|
|
dl, Node->getValueType(0), Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(IncrementSize),
|
|
ExtraVT, isVolatile, isNonTemporal, isInvariant,
|
|
MinAlign(Alignment, IncrementSize), AAInfo);
|
|
|
|
// Build a factor node to remember that this load is independent of
|
|
// the other one.
|
|
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
|
|
Hi.getValue(1));
|
|
|
|
// Move the top bits to the right place.
|
|
Hi = DAG.getNode(
|
|
ISD::SHL, dl, Hi.getValueType(), Hi,
|
|
DAG.getConstant(ExtraWidth, dl,
|
|
TLI.getShiftAmountTy(Hi.getValueType(), DL)));
|
|
|
|
// Join the hi and lo parts.
|
|
Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
|
|
}
|
|
|
|
Chain = Ch;
|
|
} else {
|
|
bool isCustom = false;
|
|
switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
|
|
SrcVT.getSimpleVT())) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Custom:
|
|
isCustom = true;
|
|
// FALLTHROUGH
|
|
case TargetLowering::Legal: {
|
|
Value = SDValue(Node, 0);
|
|
Chain = SDValue(Node, 1);
|
|
|
|
if (isCustom) {
|
|
if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
|
|
Value = Res;
|
|
Chain = Res.getValue(1);
|
|
}
|
|
} else {
|
|
// If this is an unaligned load and the target doesn't support it,
|
|
// expand it.
|
|
EVT MemVT = LD->getMemoryVT();
|
|
unsigned AS = LD->getAddressSpace();
|
|
unsigned Align = LD->getAlignment();
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
|
|
ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, Value, Chain);
|
|
}
|
|
break;
|
|
}
|
|
case TargetLowering::Expand:
|
|
EVT DestVT = Node->getValueType(0);
|
|
if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
|
|
// If the source type is not legal, see if there is a legal extload to
|
|
// an intermediate type that we can then extend further.
|
|
EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
|
|
if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
|
|
TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
|
|
// If we are loading a legal type, this is a non-extload followed by a
|
|
// full extend.
|
|
ISD::LoadExtType MidExtType =
|
|
(LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
|
|
|
|
SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
|
|
SrcVT, LD->getMemOperand());
|
|
unsigned ExtendOp =
|
|
ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
|
|
Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
|
|
Chain = Load.getValue(1);
|
|
break;
|
|
}
|
|
|
|
// Handle the special case of fp16 extloads. EXTLOAD doesn't have the
|
|
// normal undefined upper bits behavior to allow using an in-reg extend
|
|
// with the illegal FP type, so load as an integer and do the
|
|
// from-integer conversion.
|
|
if (SrcVT.getScalarType() == MVT::f16) {
|
|
EVT ISrcVT = SrcVT.changeTypeToInteger();
|
|
EVT IDestVT = DestVT.changeTypeToInteger();
|
|
EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
|
|
|
|
SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT,
|
|
Chain, Ptr, ISrcVT,
|
|
LD->getMemOperand());
|
|
Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
|
|
Chain = Result.getValue(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(!SrcVT.isVector() &&
|
|
"Vector Loads are handled in LegalizeVectorOps");
|
|
|
|
// FIXME: This does not work for vectors on most targets. Sign-
|
|
// and zero-extend operations are currently folded into extending
|
|
// loads, whether they are legal or not, and then we end up here
|
|
// without any support for legalizing them.
|
|
assert(ExtType != ISD::EXTLOAD &&
|
|
"EXTLOAD should always be supported!");
|
|
// Turn the unsupported load into an EXTLOAD followed by an
|
|
// explicit zero/sign extend inreg.
|
|
SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
|
|
Node->getValueType(0),
|
|
Chain, Ptr, SrcVT,
|
|
LD->getMemOperand());
|
|
SDValue ValRes;
|
|
if (ExtType == ISD::SEXTLOAD)
|
|
ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
|
|
Result.getValueType(),
|
|
Result, DAG.getValueType(SrcVT));
|
|
else
|
|
ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
|
|
Value = ValRes;
|
|
Chain = Result.getValue(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Since loads produce two values, make sure to remember that we legalized
|
|
// both of them.
|
|
if (Chain.getNode() != Node) {
|
|
assert(Value.getNode() != Node && "Load must be completely replaced");
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
|
|
if (UpdatedNodes) {
|
|
UpdatedNodes->insert(Value.getNode());
|
|
UpdatedNodes->insert(Chain.getNode());
|
|
}
|
|
ReplacedNode(Node);
|
|
}
|
|
}
|
|
|
|
/// Return a legal replacement for the given operation, with all legal operands.
|
|
void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
|
|
DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
|
|
|
|
if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
|
|
return;
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
|
|
assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
|
|
TargetLowering::TypeLegal ||
|
|
TLI.isTypeLegal(Node->getValueType(i))) &&
|
|
"Unexpected illegal type!");
|
|
|
|
for (const SDValue &Op : Node->op_values())
|
|
assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
|
|
TargetLowering::TypeLegal ||
|
|
TLI.isTypeLegal(Op.getValueType()) ||
|
|
Op.getOpcode() == ISD::TargetConstant) &&
|
|
"Unexpected illegal type!");
|
|
#endif
|
|
|
|
// Figure out the correct action; the way to query this varies by opcode
|
|
TargetLowering::LegalizeAction Action = TargetLowering::Legal;
|
|
bool SimpleFinishLegalizing = true;
|
|
switch (Node->getOpcode()) {
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::STACKSAVE:
|
|
Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
|
|
break;
|
|
case ISD::GET_DYNAMIC_AREA_OFFSET:
|
|
Action = TLI.getOperationAction(Node->getOpcode(),
|
|
Node->getValueType(0));
|
|
break;
|
|
case ISD::VAARG:
|
|
Action = TLI.getOperationAction(Node->getOpcode(),
|
|
Node->getValueType(0));
|
|
if (Action != TargetLowering::Promote)
|
|
Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
|
|
break;
|
|
case ISD::FP_TO_FP16:
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
Action = TLI.getOperationAction(Node->getOpcode(),
|
|
Node->getOperand(0).getValueType());
|
|
break;
|
|
case ISD::FP_ROUND_INREG:
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
|
|
Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
|
|
break;
|
|
}
|
|
case ISD::ATOMIC_STORE: {
|
|
Action = TLI.getOperationAction(Node->getOpcode(),
|
|
Node->getOperand(2).getValueType());
|
|
break;
|
|
}
|
|
case ISD::SELECT_CC:
|
|
case ISD::SETCC:
|
|
case ISD::BR_CC: {
|
|
unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
|
|
Node->getOpcode() == ISD::SETCC ? 2 :
|
|
Node->getOpcode() == ISD::SETCCE ? 3 : 1;
|
|
unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
|
|
MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
|
|
ISD::CondCode CCCode =
|
|
cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
|
|
Action = TLI.getCondCodeAction(CCCode, OpVT);
|
|
if (Action == TargetLowering::Legal) {
|
|
if (Node->getOpcode() == ISD::SELECT_CC)
|
|
Action = TLI.getOperationAction(Node->getOpcode(),
|
|
Node->getValueType(0));
|
|
else
|
|
Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::LOAD:
|
|
case ISD::STORE:
|
|
// FIXME: Model these properly. LOAD and STORE are complicated, and
|
|
// STORE expects the unlegalized operand in some cases.
|
|
SimpleFinishLegalizing = false;
|
|
break;
|
|
case ISD::CALLSEQ_START:
|
|
case ISD::CALLSEQ_END:
|
|
// FIXME: This shouldn't be necessary. These nodes have special properties
|
|
// dealing with the recursive nature of legalization. Removing this
|
|
// special case should be done as part of making LegalizeDAG non-recursive.
|
|
SimpleFinishLegalizing = false;
|
|
break;
|
|
case ISD::EXTRACT_ELEMENT:
|
|
case ISD::FLT_ROUNDS_:
|
|
case ISD::FPOWI:
|
|
case ISD::MERGE_VALUES:
|
|
case ISD::EH_RETURN:
|
|
case ISD::FRAME_TO_ARGS_OFFSET:
|
|
case ISD::EH_SJLJ_SETJMP:
|
|
case ISD::EH_SJLJ_LONGJMP:
|
|
case ISD::EH_SJLJ_SETUP_DISPATCH:
|
|
// These operations lie about being legal: when they claim to be legal,
|
|
// they should actually be expanded.
|
|
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
|
|
if (Action == TargetLowering::Legal)
|
|
Action = TargetLowering::Expand;
|
|
break;
|
|
case ISD::INIT_TRAMPOLINE:
|
|
case ISD::ADJUST_TRAMPOLINE:
|
|
case ISD::FRAMEADDR:
|
|
case ISD::RETURNADDR:
|
|
// These operations lie about being legal: when they claim to be legal,
|
|
// they should actually be custom-lowered.
|
|
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
|
|
if (Action == TargetLowering::Legal)
|
|
Action = TargetLowering::Custom;
|
|
break;
|
|
case ISD::READCYCLECOUNTER:
|
|
// READCYCLECOUNTER returns an i64, even if type legalization might have
|
|
// expanded that to several smaller types.
|
|
Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
|
|
break;
|
|
case ISD::READ_REGISTER:
|
|
case ISD::WRITE_REGISTER:
|
|
// Named register is legal in the DAG, but blocked by register name
|
|
// selection if not implemented by target (to chose the correct register)
|
|
// They'll be converted to Copy(To/From)Reg.
|
|
Action = TargetLowering::Legal;
|
|
break;
|
|
case ISD::DEBUGTRAP:
|
|
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
|
|
if (Action == TargetLowering::Expand) {
|
|
// replace ISD::DEBUGTRAP with ISD::TRAP
|
|
SDValue NewVal;
|
|
NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
|
|
Node->getOperand(0));
|
|
ReplaceNode(Node, NewVal.getNode());
|
|
LegalizeOp(NewVal.getNode());
|
|
return;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
|
|
Action = TargetLowering::Legal;
|
|
} else {
|
|
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (SimpleFinishLegalizing) {
|
|
SDNode *NewNode = Node;
|
|
switch (Node->getOpcode()) {
|
|
default: break;
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
// Legalizing shifts/rotates requires adjusting the shift amount
|
|
// to the appropriate width.
|
|
if (!Node->getOperand(1).getValueType().isVector()) {
|
|
SDValue SAO =
|
|
DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
|
|
Node->getOperand(1));
|
|
HandleSDNode Handle(SAO);
|
|
LegalizeOp(SAO.getNode());
|
|
NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
|
|
Handle.getValue());
|
|
}
|
|
break;
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SRA_PARTS:
|
|
case ISD::SHL_PARTS:
|
|
// Legalizing shifts/rotates requires adjusting the shift amount
|
|
// to the appropriate width.
|
|
if (!Node->getOperand(2).getValueType().isVector()) {
|
|
SDValue SAO =
|
|
DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
|
|
Node->getOperand(2));
|
|
HandleSDNode Handle(SAO);
|
|
LegalizeOp(SAO.getNode());
|
|
NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
|
|
Node->getOperand(1),
|
|
Handle.getValue());
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (NewNode != Node) {
|
|
ReplaceNode(Node, NewNode);
|
|
Node = NewNode;
|
|
}
|
|
switch (Action) {
|
|
case TargetLowering::Legal:
|
|
return;
|
|
case TargetLowering::Custom: {
|
|
// FIXME: The handling for custom lowering with multiple results is
|
|
// a complete mess.
|
|
if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
|
|
if (!(Res.getNode() != Node || Res.getResNo() != 0))
|
|
return;
|
|
|
|
if (Node->getNumValues() == 1) {
|
|
// We can just directly replace this node with the lowered value.
|
|
ReplaceNode(SDValue(Node, 0), Res);
|
|
return;
|
|
}
|
|
|
|
SmallVector<SDValue, 8> ResultVals;
|
|
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
|
|
ResultVals.push_back(Res.getValue(i));
|
|
ReplaceNode(Node, ResultVals.data());
|
|
return;
|
|
}
|
|
}
|
|
// FALL THROUGH
|
|
case TargetLowering::Expand:
|
|
if (ExpandNode(Node))
|
|
return;
|
|
// FALL THROUGH
|
|
case TargetLowering::LibCall:
|
|
ConvertNodeToLibcall(Node);
|
|
return;
|
|
case TargetLowering::Promote:
|
|
PromoteNode(Node);
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (Node->getOpcode()) {
|
|
default:
|
|
#ifndef NDEBUG
|
|
dbgs() << "NODE: ";
|
|
Node->dump( &DAG);
|
|
dbgs() << "\n";
|
|
#endif
|
|
llvm_unreachable("Do not know how to legalize this operator!");
|
|
|
|
case ISD::CALLSEQ_START:
|
|
case ISD::CALLSEQ_END:
|
|
break;
|
|
case ISD::LOAD: {
|
|
return LegalizeLoadOps(Node);
|
|
}
|
|
case ISD::STORE: {
|
|
return LegalizeStoreOps(Node);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Idx = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
|
|
// Before we generate a new store to a temporary stack slot, see if there is
|
|
// already one that we can use. There often is because when we scalarize
|
|
// vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
|
|
// series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
|
|
// the vector. If all are expanded here, we don't want one store per vector
|
|
// element.
|
|
|
|
// Caches for hasPredecessorHelper
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 16> Worklist;
|
|
Worklist.push_back(Idx.getNode());
|
|
SDValue StackPtr, Ch;
|
|
for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
|
|
UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
|
|
if (ST->isIndexed() || ST->isTruncatingStore() ||
|
|
ST->getValue() != Vec)
|
|
continue;
|
|
|
|
// Make sure that nothing else could have stored into the destination of
|
|
// this store.
|
|
if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
|
|
continue;
|
|
|
|
// If the index is dependent on the store we will introduce a cycle when
|
|
// creating the load (the load uses the index, and by replacing the chain
|
|
// we will make the index dependent on the load).
|
|
if (SDNode::hasPredecessorHelper(ST, Visited, Worklist))
|
|
continue;
|
|
|
|
StackPtr = ST->getBasePtr();
|
|
Ch = SDValue(ST, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Ch.getNode()) {
|
|
// Store the value to a temporary stack slot, then LOAD the returned part.
|
|
StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
|
|
Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
|
|
MachinePointerInfo(), false, false, 0);
|
|
}
|
|
|
|
// Add the offset to the index.
|
|
unsigned EltSize =
|
|
Vec.getValueType().getVectorElementType().getSizeInBits()/8;
|
|
Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
|
|
DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
|
|
|
|
Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
|
|
StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
|
|
|
|
SDValue NewLoad;
|
|
|
|
if (Op.getValueType().isVector())
|
|
NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
else
|
|
NewLoad = DAG.getExtLoad(
|
|
ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(),
|
|
Vec.getValueType().getVectorElementType(), false, false, false, 0);
|
|
|
|
// Replace the chain going out of the store, by the one out of the load.
|
|
DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
|
|
|
|
// We introduced a cycle though, so update the loads operands, making sure
|
|
// to use the original store's chain as an incoming chain.
|
|
SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
|
|
NewLoad->op_end());
|
|
NewLoadOperands[0] = Ch;
|
|
NewLoad =
|
|
SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
|
|
return NewLoad;
|
|
}
|
|
|
|
SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
|
|
assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
|
|
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Part = Op.getOperand(1);
|
|
SDValue Idx = Op.getOperand(2);
|
|
SDLoc dl(Op);
|
|
|
|
// Store the value to a temporary stack slot, then LOAD the returned part.
|
|
|
|
SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
|
|
int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
|
|
MachinePointerInfo PtrInfo =
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
|
|
|
|
// First store the whole vector.
|
|
SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
|
|
false, false, 0);
|
|
|
|
// Then store the inserted part.
|
|
|
|
// Add the offset to the index.
|
|
unsigned EltSize =
|
|
Vec.getValueType().getVectorElementType().getSizeInBits()/8;
|
|
|
|
Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
|
|
DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
|
|
Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
|
|
|
|
SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
|
|
StackPtr);
|
|
|
|
// Store the subvector.
|
|
Ch = DAG.getStore(Ch, dl, Part, SubStackPtr,
|
|
MachinePointerInfo(), false, false, 0);
|
|
|
|
// Finally, load the updated vector.
|
|
return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
|
|
false, false, false, 0);
|
|
}
|
|
|
|
SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
|
|
// We can't handle this case efficiently. Allocate a sufficiently
|
|
// aligned object on the stack, store each element into it, then load
|
|
// the result as a vector.
|
|
// Create the stack frame object.
|
|
EVT VT = Node->getValueType(0);
|
|
EVT EltVT = VT.getVectorElementType();
|
|
SDLoc dl(Node);
|
|
SDValue FIPtr = DAG.CreateStackTemporary(VT);
|
|
int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
|
|
MachinePointerInfo PtrInfo =
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
|
|
|
|
// Emit a store of each element to the stack slot.
|
|
SmallVector<SDValue, 8> Stores;
|
|
unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
|
|
// Store (in the right endianness) the elements to memory.
|
|
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
|
|
// Ignore undef elements.
|
|
if (Node->getOperand(i).isUndef()) continue;
|
|
|
|
unsigned Offset = TypeByteSize*i;
|
|
|
|
SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
|
|
Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
|
|
|
|
// If the destination vector element type is narrower than the source
|
|
// element type, only store the bits necessary.
|
|
if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
|
|
Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
|
|
Node->getOperand(i), Idx,
|
|
PtrInfo.getWithOffset(Offset),
|
|
EltVT, false, false, 0));
|
|
} else
|
|
Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
|
|
Node->getOperand(i), Idx,
|
|
PtrInfo.getWithOffset(Offset),
|
|
false, false, 0));
|
|
}
|
|
|
|
SDValue StoreChain;
|
|
if (!Stores.empty()) // Not all undef elements?
|
|
StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
|
|
else
|
|
StoreChain = DAG.getEntryNode();
|
|
|
|
// Result is a load from the stack slot.
|
|
return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
|
|
false, false, false, 0);
|
|
}
|
|
|
|
namespace {
|
|
/// Keeps track of state when getting the sign of a floating-point value as an
|
|
/// integer.
|
|
struct FloatSignAsInt {
|
|
EVT FloatVT;
|
|
SDValue Chain;
|
|
SDValue FloatPtr;
|
|
SDValue IntPtr;
|
|
MachinePointerInfo IntPointerInfo;
|
|
MachinePointerInfo FloatPointerInfo;
|
|
SDValue IntValue;
|
|
APInt SignMask;
|
|
uint8_t SignBit;
|
|
};
|
|
}
|
|
|
|
/// Bitcast a floating-point value to an integer value. Only bitcast the part
|
|
/// containing the sign bit if the target has no integer value capable of
|
|
/// holding all bits of the floating-point value.
|
|
void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
|
|
SDLoc DL, SDValue Value) const {
|
|
EVT FloatVT = Value.getValueType();
|
|
unsigned NumBits = FloatVT.getSizeInBits();
|
|
State.FloatVT = FloatVT;
|
|
EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
|
|
// Convert to an integer of the same size.
|
|
if (TLI.isTypeLegal(IVT)) {
|
|
State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
|
|
State.SignMask = APInt::getSignBit(NumBits);
|
|
State.SignBit = NumBits - 1;
|
|
return;
|
|
}
|
|
|
|
auto &DataLayout = DAG.getDataLayout();
|
|
// Store the float to memory, then load the sign part out as an integer.
|
|
MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
|
|
// First create a temporary that is aligned for both the load and store.
|
|
SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
|
|
int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
|
|
// Then store the float to it.
|
|
State.FloatPtr = StackPtr;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
|
|
State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
|
|
State.FloatPointerInfo, false, false, 0);
|
|
|
|
SDValue IntPtr;
|
|
if (DataLayout.isBigEndian()) {
|
|
assert(FloatVT.isByteSized() && "Unsupported floating point type!");
|
|
// Load out a legal integer with the same sign bit as the float.
|
|
IntPtr = StackPtr;
|
|
State.IntPointerInfo = State.FloatPointerInfo;
|
|
} else {
|
|
// Advance the pointer so that the loaded byte will contain the sign bit.
|
|
unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
|
|
IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
|
|
DAG.getConstant(ByteOffset, DL, StackPtr.getValueType()));
|
|
State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
|
|
ByteOffset);
|
|
}
|
|
|
|
State.IntPtr = IntPtr;
|
|
State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain,
|
|
IntPtr, State.IntPointerInfo, MVT::i8,
|
|
false, false, false, 0);
|
|
State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
|
|
State.SignBit = 7;
|
|
}
|
|
|
|
/// Replace the integer value produced by getSignAsIntValue() with a new value
|
|
/// and cast the result back to a floating-point type.
|
|
SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
|
|
SDLoc DL, SDValue NewIntValue) const {
|
|
if (!State.Chain)
|
|
return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
|
|
|
|
// Override the part containing the sign bit in the value stored on the stack.
|
|
SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
|
|
State.IntPointerInfo, MVT::i8, false, false,
|
|
0);
|
|
return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
|
|
State.FloatPointerInfo, false, false, false, 0);
|
|
}
|
|
|
|
SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
|
|
SDLoc DL(Node);
|
|
SDValue Mag = Node->getOperand(0);
|
|
SDValue Sign = Node->getOperand(1);
|
|
|
|
// Get sign bit into an integer value.
|
|
FloatSignAsInt SignAsInt;
|
|
getSignAsIntValue(SignAsInt, DL, Sign);
|
|
|
|
EVT IntVT = SignAsInt.IntValue.getValueType();
|
|
SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
|
|
SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
|
|
SignMask);
|
|
|
|
// If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
|
|
EVT FloatVT = Mag.getValueType();
|
|
if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
|
|
SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
|
|
SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
|
|
SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
|
|
DAG.getConstant(0, DL, IntVT), ISD::SETNE);
|
|
return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
|
|
}
|
|
|
|
// Transform Mag value to integer, and clear the sign bit.
|
|
FloatSignAsInt MagAsInt;
|
|
getSignAsIntValue(MagAsInt, DL, Mag);
|
|
EVT MagVT = MagAsInt.IntValue.getValueType();
|
|
SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
|
|
SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
|
|
ClearSignMask);
|
|
|
|
// Get the signbit at the right position for MagAsInt.
|
|
int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
|
|
if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
|
|
if (ShiftAmount > 0) {
|
|
SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, IntVT);
|
|
SignBit = DAG.getNode(ISD::SRL, DL, IntVT, SignBit, ShiftCnst);
|
|
} else if (ShiftAmount < 0) {
|
|
SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, IntVT);
|
|
SignBit = DAG.getNode(ISD::SHL, DL, IntVT, SignBit, ShiftCnst);
|
|
}
|
|
SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
|
|
} else if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
|
|
SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
|
|
if (ShiftAmount > 0) {
|
|
SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, MagVT);
|
|
SignBit = DAG.getNode(ISD::SRL, DL, MagVT, SignBit, ShiftCnst);
|
|
} else if (ShiftAmount < 0) {
|
|
SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, MagVT);
|
|
SignBit = DAG.getNode(ISD::SHL, DL, MagVT, SignBit, ShiftCnst);
|
|
}
|
|
}
|
|
|
|
// Store the part with the modified sign and convert back to float.
|
|
SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
|
|
return modifySignAsInt(MagAsInt, DL, CopiedSign);
|
|
}
|
|
|
|
SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
|
|
SDLoc DL(Node);
|
|
SDValue Value = Node->getOperand(0);
|
|
|
|
// Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
|
|
EVT FloatVT = Value.getValueType();
|
|
if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
|
|
SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
|
|
return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
|
|
}
|
|
|
|
// Transform value to integer, clear the sign bit and transform back.
|
|
FloatSignAsInt ValueAsInt;
|
|
getSignAsIntValue(ValueAsInt, DL, Value);
|
|
EVT IntVT = ValueAsInt.IntValue.getValueType();
|
|
SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
|
|
SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
|
|
ClearSignMask);
|
|
return modifySignAsInt(ValueAsInt, DL, ClearedSign);
|
|
}
|
|
|
|
void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
|
|
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
|
|
" not tell us which reg is the stack pointer!");
|
|
SDLoc dl(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
SDValue Tmp1 = SDValue(Node, 0);
|
|
SDValue Tmp2 = SDValue(Node, 1);
|
|
SDValue Tmp3 = Node->getOperand(2);
|
|
SDValue Chain = Tmp1.getOperand(0);
|
|
|
|
// Chain the dynamic stack allocation so that it doesn't modify the stack
|
|
// pointer when other instructions are using the stack.
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl);
|
|
|
|
SDValue Size = Tmp2.getOperand(1);
|
|
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
|
|
Chain = SP.getValue(1);
|
|
unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
|
|
unsigned StackAlign =
|
|
DAG.getSubtarget().getFrameLowering()->getStackAlignment();
|
|
Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
|
|
if (Align > StackAlign)
|
|
Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
|
|
DAG.getConstant(-(uint64_t)Align, dl, VT));
|
|
Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
|
|
|
|
Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
|
|
DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
|
|
|
|
Results.push_back(Tmp1);
|
|
Results.push_back(Tmp2);
|
|
}
|
|
|
|
/// Legalize a SETCC with given LHS and RHS and condition code CC on the current
|
|
/// target.
|
|
///
|
|
/// If the SETCC has been legalized using AND / OR, then the legalized node
|
|
/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
|
|
/// will be set to false.
|
|
///
|
|
/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
|
|
/// then the values of LHS and RHS will be swapped, CC will be set to the
|
|
/// new condition, and NeedInvert will be set to false.
|
|
///
|
|
/// If the SETCC has been legalized using the inverse condcode, then LHS and
|
|
/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
|
|
/// will be set to true. The caller must invert the result of the SETCC with
|
|
/// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
|
|
/// of a true/false result.
|
|
///
|
|
/// \returns true if the SetCC has been legalized, false if it hasn't.
|
|
bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
|
|
SDValue &LHS, SDValue &RHS,
|
|
SDValue &CC,
|
|
bool &NeedInvert,
|
|
SDLoc dl) {
|
|
MVT OpVT = LHS.getSimpleValueType();
|
|
ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
|
|
NeedInvert = false;
|
|
switch (TLI.getCondCodeAction(CCCode, OpVT)) {
|
|
default: llvm_unreachable("Unknown condition code action!");
|
|
case TargetLowering::Legal:
|
|
// Nothing to do.
|
|
break;
|
|
case TargetLowering::Expand: {
|
|
ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
|
|
if (TLI.isCondCodeLegal(InvCC, OpVT)) {
|
|
std::swap(LHS, RHS);
|
|
CC = DAG.getCondCode(InvCC);
|
|
return true;
|
|
}
|
|
ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
|
|
unsigned Opc = 0;
|
|
switch (CCCode) {
|
|
default: llvm_unreachable("Don't know how to expand this condition!");
|
|
case ISD::SETO:
|
|
assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
|
|
== TargetLowering::Legal
|
|
&& "If SETO is expanded, SETOEQ must be legal!");
|
|
CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
|
|
case ISD::SETUO:
|
|
assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
|
|
== TargetLowering::Legal
|
|
&& "If SETUO is expanded, SETUNE must be legal!");
|
|
CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
|
|
case ISD::SETOEQ:
|
|
case ISD::SETOGT:
|
|
case ISD::SETOGE:
|
|
case ISD::SETOLT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETONE:
|
|
case ISD::SETUEQ:
|
|
case ISD::SETUNE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
// If we are floating point, assign and break, otherwise fall through.
|
|
if (!OpVT.isInteger()) {
|
|
// We can use the 4th bit to tell if we are the unordered
|
|
// or ordered version of the opcode.
|
|
CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
|
|
Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
|
|
CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
|
|
break;
|
|
}
|
|
// Fallthrough if we are unsigned integer.
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
case ISD::SETLT:
|
|
// We only support using the inverted operation, which is computed above
|
|
// and not a different manner of supporting expanding these cases.
|
|
llvm_unreachable("Don't know how to expand this condition!");
|
|
case ISD::SETNE:
|
|
case ISD::SETEQ:
|
|
// Try inverting the result of the inverse condition.
|
|
InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ;
|
|
if (TLI.isCondCodeLegal(InvCC, OpVT)) {
|
|
CC = DAG.getCondCode(InvCC);
|
|
NeedInvert = true;
|
|
return true;
|
|
}
|
|
// If inverting the condition didn't work then we have no means to expand
|
|
// the condition.
|
|
llvm_unreachable("Don't know how to expand this condition!");
|
|
}
|
|
|
|
SDValue SetCC1, SetCC2;
|
|
if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
|
|
// If we aren't the ordered or unorder operation,
|
|
// then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
|
|
SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
|
|
SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
|
|
} else {
|
|
// Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
|
|
SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
|
|
SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
|
|
}
|
|
LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
|
|
RHS = SDValue();
|
|
CC = SDValue();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Emit a store/load combination to the stack. This stores
|
|
/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
|
|
/// a load from the stack slot to DestVT, extending it if needed.
|
|
/// The resultant code need not be legal.
|
|
SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
|
|
EVT SlotVT,
|
|
EVT DestVT,
|
|
SDLoc dl) {
|
|
// Create the stack frame object.
|
|
unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
|
|
SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
|
|
SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
|
|
|
|
FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
|
|
int SPFI = StackPtrFI->getIndex();
|
|
MachinePointerInfo PtrInfo =
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
|
|
|
|
unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
|
|
unsigned SlotSize = SlotVT.getSizeInBits();
|
|
unsigned DestSize = DestVT.getSizeInBits();
|
|
Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
|
|
unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
|
|
|
|
// Emit a store to the stack slot. Use a truncstore if the input value is
|
|
// later than DestVT.
|
|
SDValue Store;
|
|
|
|
if (SrcSize > SlotSize)
|
|
Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
|
|
PtrInfo, SlotVT, false, false, SrcAlign);
|
|
else {
|
|
assert(SrcSize == SlotSize && "Invalid store");
|
|
Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
|
|
PtrInfo, false, false, SrcAlign);
|
|
}
|
|
|
|
// Result is a load from the stack slot.
|
|
if (SlotSize == DestSize)
|
|
return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
|
|
false, false, false, DestAlign);
|
|
|
|
assert(SlotSize < DestSize && "Unknown extension!");
|
|
return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
|
|
PtrInfo, SlotVT, false, false, false, DestAlign);
|
|
}
|
|
|
|
SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
|
|
SDLoc dl(Node);
|
|
// Create a vector sized/aligned stack slot, store the value to element #0,
|
|
// then load the whole vector back out.
|
|
SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
|
|
|
|
FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
|
|
int SPFI = StackPtrFI->getIndex();
|
|
|
|
SDValue Ch = DAG.getTruncStore(
|
|
DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
|
|
Node->getValueType(0).getVectorElementType(), false, false, 0);
|
|
return DAG.getLoad(
|
|
Node->getValueType(0), dl, Ch, StackPtr,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false,
|
|
false, false, 0);
|
|
}
|
|
|
|
static bool
|
|
ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
|
|
const TargetLowering &TLI, SDValue &Res) {
|
|
unsigned NumElems = Node->getNumOperands();
|
|
SDLoc dl(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
|
|
// Try to group the scalars into pairs, shuffle the pairs together, then
|
|
// shuffle the pairs of pairs together, etc. until the vector has
|
|
// been built. This will work only if all of the necessary shuffle masks
|
|
// are legal.
|
|
|
|
// We do this in two phases; first to check the legality of the shuffles,
|
|
// and next, assuming that all shuffles are legal, to create the new nodes.
|
|
for (int Phase = 0; Phase < 2; ++Phase) {
|
|
SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals,
|
|
NewIntermedVals;
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue V = Node->getOperand(i);
|
|
if (V.isUndef())
|
|
continue;
|
|
|
|
SDValue Vec;
|
|
if (Phase)
|
|
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
|
|
IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
|
|
}
|
|
|
|
while (IntermedVals.size() > 2) {
|
|
NewIntermedVals.clear();
|
|
for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
|
|
// This vector and the next vector are shuffled together (simply to
|
|
// append the one to the other).
|
|
SmallVector<int, 16> ShuffleVec(NumElems, -1);
|
|
|
|
SmallVector<int, 16> FinalIndices;
|
|
FinalIndices.reserve(IntermedVals[i].second.size() +
|
|
IntermedVals[i+1].second.size());
|
|
|
|
int k = 0;
|
|
for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
|
|
++j, ++k) {
|
|
ShuffleVec[k] = j;
|
|
FinalIndices.push_back(IntermedVals[i].second[j]);
|
|
}
|
|
for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
|
|
++j, ++k) {
|
|
ShuffleVec[k] = NumElems + j;
|
|
FinalIndices.push_back(IntermedVals[i+1].second[j]);
|
|
}
|
|
|
|
SDValue Shuffle;
|
|
if (Phase)
|
|
Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
|
|
IntermedVals[i+1].first,
|
|
ShuffleVec.data());
|
|
else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
|
|
return false;
|
|
NewIntermedVals.push_back(
|
|
std::make_pair(Shuffle, std::move(FinalIndices)));
|
|
}
|
|
|
|
// If we had an odd number of defined values, then append the last
|
|
// element to the array of new vectors.
|
|
if ((IntermedVals.size() & 1) != 0)
|
|
NewIntermedVals.push_back(IntermedVals.back());
|
|
|
|
IntermedVals.swap(NewIntermedVals);
|
|
}
|
|
|
|
assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
|
|
"Invalid number of intermediate vectors");
|
|
SDValue Vec1 = IntermedVals[0].first;
|
|
SDValue Vec2;
|
|
if (IntermedVals.size() > 1)
|
|
Vec2 = IntermedVals[1].first;
|
|
else if (Phase)
|
|
Vec2 = DAG.getUNDEF(VT);
|
|
|
|
SmallVector<int, 16> ShuffleVec(NumElems, -1);
|
|
for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
|
|
ShuffleVec[IntermedVals[0].second[i]] = i;
|
|
for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
|
|
ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
|
|
|
|
if (Phase)
|
|
Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
|
|
else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Expand a BUILD_VECTOR node on targets that don't
|
|
/// support the operation, but do support the resultant vector type.
|
|
SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
|
|
unsigned NumElems = Node->getNumOperands();
|
|
SDValue Value1, Value2;
|
|
SDLoc dl(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
EVT OpVT = Node->getOperand(0).getValueType();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
|
|
// If the only non-undef value is the low element, turn this into a
|
|
// SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
|
|
bool isOnlyLowElement = true;
|
|
bool MoreThanTwoValues = false;
|
|
bool isConstant = true;
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue V = Node->getOperand(i);
|
|
if (V.isUndef())
|
|
continue;
|
|
if (i > 0)
|
|
isOnlyLowElement = false;
|
|
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
|
|
isConstant = false;
|
|
|
|
if (!Value1.getNode()) {
|
|
Value1 = V;
|
|
} else if (!Value2.getNode()) {
|
|
if (V != Value1)
|
|
Value2 = V;
|
|
} else if (V != Value1 && V != Value2) {
|
|
MoreThanTwoValues = true;
|
|
}
|
|
}
|
|
|
|
if (!Value1.getNode())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
if (isOnlyLowElement)
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
|
|
|
|
// If all elements are constants, create a load from the constant pool.
|
|
if (isConstant) {
|
|
SmallVector<Constant*, 16> CV;
|
|
for (unsigned i = 0, e = NumElems; i != e; ++i) {
|
|
if (ConstantFPSDNode *V =
|
|
dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
|
|
CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
|
|
} else if (ConstantSDNode *V =
|
|
dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
|
|
if (OpVT==EltVT)
|
|
CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
|
|
else {
|
|
// If OpVT and EltVT don't match, EltVT is not legal and the
|
|
// element values have been promoted/truncated earlier. Undo this;
|
|
// we don't want a v16i8 to become a v16i32 for example.
|
|
const ConstantInt *CI = V->getConstantIntValue();
|
|
CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
|
|
CI->getZExtValue()));
|
|
}
|
|
} else {
|
|
assert(Node->getOperand(i).isUndef());
|
|
Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
|
|
CV.push_back(UndefValue::get(OpNTy));
|
|
}
|
|
}
|
|
Constant *CP = ConstantVector::get(CV);
|
|
SDValue CPIdx =
|
|
DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
|
|
return DAG.getLoad(
|
|
VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
|
|
false, false, Alignment);
|
|
}
|
|
|
|
SmallSet<SDValue, 16> DefinedValues;
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
if (Node->getOperand(i).isUndef())
|
|
continue;
|
|
DefinedValues.insert(Node->getOperand(i));
|
|
}
|
|
|
|
if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
|
|
if (!MoreThanTwoValues) {
|
|
SmallVector<int, 8> ShuffleVec(NumElems, -1);
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue V = Node->getOperand(i);
|
|
if (V.isUndef())
|
|
continue;
|
|
ShuffleVec[i] = V == Value1 ? 0 : NumElems;
|
|
}
|
|
if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
|
|
// Get the splatted value into the low element of a vector register.
|
|
SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
|
|
SDValue Vec2;
|
|
if (Value2.getNode())
|
|
Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
|
|
else
|
|
Vec2 = DAG.getUNDEF(VT);
|
|
|
|
// Return shuffle(LowValVec, undef, <0,0,0,0>)
|
|
return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
|
|
}
|
|
} else {
|
|
SDValue Res;
|
|
if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we can't handle this case efficiently.
|
|
return ExpandVectorBuildThroughStack(Node);
|
|
}
|
|
|
|
// Expand a node into a call to a libcall. If the result value
|
|
// does not fit into a register, return the lo part and set the hi part to the
|
|
// by-reg argument. If it does fit into a single register, return the result
|
|
// and leave the Hi part unset.
|
|
SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
|
|
bool isSigned) {
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
for (const SDValue &Op : Node->op_values()) {
|
|
EVT ArgVT = Op.getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
Entry.Node = Op;
|
|
Entry.Ty = ArgTy;
|
|
Entry.isSExt = isSigned;
|
|
Entry.isZExt = !isSigned;
|
|
Args.push_back(Entry);
|
|
}
|
|
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
|
|
Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
|
|
|
|
// By default, the input chain to this libcall is the entry node of the
|
|
// function. If the libcall is going to be emitted as a tail call then
|
|
// TLI.isUsedByReturnOnly will change it to the right chain if the return
|
|
// node which is being folded has a non-entry input chain.
|
|
SDValue InChain = DAG.getEntryNode();
|
|
|
|
// isTailCall may be true since the callee does not reference caller stack
|
|
// frame. Check if it's in the right position and that the return types match.
|
|
SDValue TCChain = InChain;
|
|
const Function *F = DAG.getMachineFunction().getFunction();
|
|
bool isTailCall =
|
|
TLI.isInTailCallPosition(DAG, Node, TCChain) &&
|
|
(RetTy == F->getReturnType() || F->getReturnType()->isVoidTy());
|
|
if (isTailCall)
|
|
InChain = TCChain;
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
|
|
.setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
|
|
.setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned);
|
|
|
|
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
|
|
|
|
if (!CallInfo.second.getNode())
|
|
// It's a tailcall, return the chain (which is the DAG root).
|
|
return DAG.getRoot();
|
|
|
|
return CallInfo.first;
|
|
}
|
|
|
|
/// Generate a libcall taking the given operands as arguments
|
|
/// and returning a result of type RetVT.
|
|
SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
|
|
const SDValue *Ops, unsigned NumOps,
|
|
bool isSigned, SDLoc dl) {
|
|
TargetLowering::ArgListTy Args;
|
|
Args.reserve(NumOps);
|
|
|
|
TargetLowering::ArgListEntry Entry;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
Entry.Node = Ops[i];
|
|
Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
|
|
Entry.isSExt = isSigned;
|
|
Entry.isZExt = !isSigned;
|
|
Args.push_back(Entry);
|
|
}
|
|
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
|
|
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
|
|
.setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
|
|
.setSExtResult(isSigned).setZExtResult(!isSigned);
|
|
|
|
std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
|
|
|
|
return CallInfo.first;
|
|
}
|
|
|
|
// Expand a node into a call to a libcall. Similar to
|
|
// ExpandLibCall except that the first operand is the in-chain.
|
|
std::pair<SDValue, SDValue>
|
|
SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
|
|
SDNode *Node,
|
|
bool isSigned) {
|
|
SDValue InChain = Node->getOperand(0);
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
|
|
EVT ArgVT = Node->getOperand(i).getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
Entry.Node = Node->getOperand(i);
|
|
Entry.Ty = ArgTy;
|
|
Entry.isSExt = isSigned;
|
|
Entry.isZExt = !isSigned;
|
|
Args.push_back(Entry);
|
|
}
|
|
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
|
|
Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
|
|
.setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
|
|
.setSExtResult(isSigned).setZExtResult(!isSigned);
|
|
|
|
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
|
|
|
|
return CallInfo;
|
|
}
|
|
|
|
SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
|
|
RTLIB::Libcall Call_F32,
|
|
RTLIB::Libcall Call_F64,
|
|
RTLIB::Libcall Call_F80,
|
|
RTLIB::Libcall Call_F128,
|
|
RTLIB::Libcall Call_PPCF128) {
|
|
RTLIB::Libcall LC;
|
|
switch (Node->getSimpleValueType(0).SimpleTy) {
|
|
default: llvm_unreachable("Unexpected request for libcall!");
|
|
case MVT::f32: LC = Call_F32; break;
|
|
case MVT::f64: LC = Call_F64; break;
|
|
case MVT::f80: LC = Call_F80; break;
|
|
case MVT::f128: LC = Call_F128; break;
|
|
case MVT::ppcf128: LC = Call_PPCF128; break;
|
|
}
|
|
return ExpandLibCall(LC, Node, false);
|
|
}
|
|
|
|
SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
|
|
RTLIB::Libcall Call_I8,
|
|
RTLIB::Libcall Call_I16,
|
|
RTLIB::Libcall Call_I32,
|
|
RTLIB::Libcall Call_I64,
|
|
RTLIB::Libcall Call_I128) {
|
|
RTLIB::Libcall LC;
|
|
switch (Node->getSimpleValueType(0).SimpleTy) {
|
|
default: llvm_unreachable("Unexpected request for libcall!");
|
|
case MVT::i8: LC = Call_I8; break;
|
|
case MVT::i16: LC = Call_I16; break;
|
|
case MVT::i32: LC = Call_I32; break;
|
|
case MVT::i64: LC = Call_I64; break;
|
|
case MVT::i128: LC = Call_I128; break;
|
|
}
|
|
return ExpandLibCall(LC, Node, isSigned);
|
|
}
|
|
|
|
/// Issue libcalls to __{u}divmod to compute div / rem pairs.
|
|
void
|
|
SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
unsigned Opcode = Node->getOpcode();
|
|
bool isSigned = Opcode == ISD::SDIVREM;
|
|
|
|
RTLIB::Libcall LC;
|
|
switch (Node->getSimpleValueType(0).SimpleTy) {
|
|
default: llvm_unreachable("Unexpected request for libcall!");
|
|
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
|
|
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
|
|
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
|
|
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
|
|
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
|
|
}
|
|
|
|
// The input chain to this libcall is the entry node of the function.
|
|
// Legalizing the call will automatically add the previous call to the
|
|
// dependence.
|
|
SDValue InChain = DAG.getEntryNode();
|
|
|
|
EVT RetVT = Node->getValueType(0);
|
|
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
for (const SDValue &Op : Node->op_values()) {
|
|
EVT ArgVT = Op.getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
Entry.Node = Op;
|
|
Entry.Ty = ArgTy;
|
|
Entry.isSExt = isSigned;
|
|
Entry.isZExt = !isSigned;
|
|
Args.push_back(Entry);
|
|
}
|
|
|
|
// Also pass the return address of the remainder.
|
|
SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
|
|
Entry.Node = FIPtr;
|
|
Entry.Ty = RetTy->getPointerTo();
|
|
Entry.isSExt = isSigned;
|
|
Entry.isZExt = !isSigned;
|
|
Args.push_back(Entry);
|
|
|
|
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
|
|
SDLoc dl(Node);
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(InChain)
|
|
.setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
|
|
.setSExtResult(isSigned).setZExtResult(!isSigned);
|
|
|
|
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
|
|
|
|
// Remainder is loaded back from the stack frame.
|
|
SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
Results.push_back(CallInfo.first);
|
|
Results.push_back(Rem);
|
|
}
|
|
|
|
/// Return true if sincos libcall is available.
|
|
static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
|
|
RTLIB::Libcall LC;
|
|
switch (Node->getSimpleValueType(0).SimpleTy) {
|
|
default: llvm_unreachable("Unexpected request for libcall!");
|
|
case MVT::f32: LC = RTLIB::SINCOS_F32; break;
|
|
case MVT::f64: LC = RTLIB::SINCOS_F64; break;
|
|
case MVT::f80: LC = RTLIB::SINCOS_F80; break;
|
|
case MVT::f128: LC = RTLIB::SINCOS_F128; break;
|
|
case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
|
|
}
|
|
return TLI.getLibcallName(LC) != nullptr;
|
|
}
|
|
|
|
/// Return true if sincos libcall is available and can be used to combine sin
|
|
/// and cos.
|
|
static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
|
|
const TargetMachine &TM) {
|
|
if (!isSinCosLibcallAvailable(Node, TLI))
|
|
return false;
|
|
// GNU sin/cos functions set errno while sincos does not. Therefore
|
|
// combining sin and cos is only safe if unsafe-fpmath is enabled.
|
|
bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
|
|
if (isGNU && !TM.Options.UnsafeFPMath)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Only issue sincos libcall if both sin and cos are needed.
|
|
static bool useSinCos(SDNode *Node) {
|
|
unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
|
|
? ISD::FCOS : ISD::FSIN;
|
|
|
|
SDValue Op0 = Node->getOperand(0);
|
|
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
|
|
UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User == Node)
|
|
continue;
|
|
// The other user might have been turned into sincos already.
|
|
if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Issue libcalls to sincos to compute sin / cos pairs.
|
|
void
|
|
SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
RTLIB::Libcall LC;
|
|
switch (Node->getSimpleValueType(0).SimpleTy) {
|
|
default: llvm_unreachable("Unexpected request for libcall!");
|
|
case MVT::f32: LC = RTLIB::SINCOS_F32; break;
|
|
case MVT::f64: LC = RTLIB::SINCOS_F64; break;
|
|
case MVT::f80: LC = RTLIB::SINCOS_F80; break;
|
|
case MVT::f128: LC = RTLIB::SINCOS_F128; break;
|
|
case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
|
|
}
|
|
|
|
// The input chain to this libcall is the entry node of the function.
|
|
// Legalizing the call will automatically add the previous call to the
|
|
// dependence.
|
|
SDValue InChain = DAG.getEntryNode();
|
|
|
|
EVT RetVT = Node->getValueType(0);
|
|
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
|
|
// Pass the argument.
|
|
Entry.Node = Node->getOperand(0);
|
|
Entry.Ty = RetTy;
|
|
Entry.isSExt = false;
|
|
Entry.isZExt = false;
|
|
Args.push_back(Entry);
|
|
|
|
// Pass the return address of sin.
|
|
SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
|
|
Entry.Node = SinPtr;
|
|
Entry.Ty = RetTy->getPointerTo();
|
|
Entry.isSExt = false;
|
|
Entry.isZExt = false;
|
|
Args.push_back(Entry);
|
|
|
|
// Also pass the return address of the cos.
|
|
SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
|
|
Entry.Node = CosPtr;
|
|
Entry.Ty = RetTy->getPointerTo();
|
|
Entry.isSExt = false;
|
|
Entry.isZExt = false;
|
|
Args.push_back(Entry);
|
|
|
|
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
|
|
SDLoc dl(Node);
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(InChain)
|
|
.setCallee(TLI.getLibcallCallingConv(LC),
|
|
Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args), 0);
|
|
|
|
std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
|
|
|
|
Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
|
|
MachinePointerInfo(), false, false, false, 0));
|
|
Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
|
|
MachinePointerInfo(), false, false, false, 0));
|
|
}
|
|
|
|
/// This function is responsible for legalizing a
|
|
/// INT_TO_FP operation of the specified operand when the target requests that
|
|
/// we expand it. At this point, we know that the result and operand types are
|
|
/// legal for the target.
|
|
SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
|
|
SDValue Op0,
|
|
EVT DestVT,
|
|
SDLoc dl) {
|
|
// TODO: Should any fast-math-flags be set for the created nodes?
|
|
|
|
if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
|
|
// simple 32-bit [signed|unsigned] integer to float/double expansion
|
|
|
|
// Get the stack frame index of a 8 byte buffer.
|
|
SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
|
|
|
|
// word offset constant for Hi/Lo address computation
|
|
SDValue WordOff = DAG.getConstant(sizeof(int), dl,
|
|
StackSlot.getValueType());
|
|
// set up Hi and Lo (into buffer) address based on endian
|
|
SDValue Hi = StackSlot;
|
|
SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
|
|
StackSlot, WordOff);
|
|
if (DAG.getDataLayout().isLittleEndian())
|
|
std::swap(Hi, Lo);
|
|
|
|
// if signed map to unsigned space
|
|
SDValue Op0Mapped;
|
|
if (isSigned) {
|
|
// constant used to invert sign bit (signed to unsigned mapping)
|
|
SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
|
|
Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
|
|
} else {
|
|
Op0Mapped = Op0;
|
|
}
|
|
// store the lo of the constructed double - based on integer input
|
|
SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
|
|
Op0Mapped, Lo, MachinePointerInfo(),
|
|
false, false, 0);
|
|
// initial hi portion of constructed double
|
|
SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
|
|
// store the hi of the constructed double - biased exponent
|
|
SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
|
|
MachinePointerInfo(),
|
|
false, false, 0);
|
|
// load the constructed double
|
|
SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
// FP constant to bias correct the final result
|
|
SDValue Bias = DAG.getConstantFP(isSigned ?
|
|
BitsToDouble(0x4330000080000000ULL) :
|
|
BitsToDouble(0x4330000000000000ULL),
|
|
dl, MVT::f64);
|
|
// subtract the bias
|
|
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
|
|
// final result
|
|
SDValue Result;
|
|
// handle final rounding
|
|
if (DestVT == MVT::f64) {
|
|
// do nothing
|
|
Result = Sub;
|
|
} else if (DestVT.bitsLT(MVT::f64)) {
|
|
Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
} else if (DestVT.bitsGT(MVT::f64)) {
|
|
Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
|
|
}
|
|
return Result;
|
|
}
|
|
assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
|
|
// Code below here assumes !isSigned without checking again.
|
|
|
|
// Implementation of unsigned i64 to f64 following the algorithm in
|
|
// __floatundidf in compiler_rt. This implementation has the advantage
|
|
// of performing rounding correctly, both in the default rounding mode
|
|
// and in all alternate rounding modes.
|
|
// TODO: Generalize this for use with other types.
|
|
if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
|
|
SDValue TwoP52 =
|
|
DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64);
|
|
SDValue TwoP84PlusTwoP52 =
|
|
DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl,
|
|
MVT::f64);
|
|
SDValue TwoP84 =
|
|
DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64);
|
|
|
|
SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
|
|
SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
|
|
DAG.getConstant(32, dl, MVT::i64));
|
|
SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
|
|
SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
|
|
SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
|
|
SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
|
|
SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
|
|
TwoP84PlusTwoP52);
|
|
return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
|
|
}
|
|
|
|
// Implementation of unsigned i64 to f32.
|
|
// TODO: Generalize this for use with other types.
|
|
if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
|
|
// For unsigned conversions, convert them to signed conversions using the
|
|
// algorithm from the x86_64 __floatundidf in compiler_rt.
|
|
if (!isSigned) {
|
|
SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
|
|
|
|
SDValue ShiftConst = DAG.getConstant(
|
|
1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout()));
|
|
SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
|
|
SDValue AndConst = DAG.getConstant(1, dl, MVT::i64);
|
|
SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
|
|
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
|
|
|
|
SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
|
|
SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
|
|
|
|
// TODO: This really should be implemented using a branch rather than a
|
|
// select. We happen to get lucky and machinesink does the right
|
|
// thing most of the time. This would be a good candidate for a
|
|
//pseudo-op, or, even better, for whole-function isel.
|
|
SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
|
|
Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
|
|
return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
|
|
}
|
|
|
|
// Otherwise, implement the fully general conversion.
|
|
|
|
SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
|
|
DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64));
|
|
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
|
|
DAG.getConstant(UINT64_C(0x800), dl, MVT::i64));
|
|
SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
|
|
DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64));
|
|
SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2,
|
|
DAG.getConstant(UINT64_C(0), dl, MVT::i64),
|
|
ISD::SETNE);
|
|
SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
|
|
SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0,
|
|
DAG.getConstant(UINT64_C(0x0020000000000000), dl,
|
|
MVT::i64),
|
|
ISD::SETUGE);
|
|
SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
|
|
EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout());
|
|
|
|
SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
|
|
DAG.getConstant(32, dl, SHVT));
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
|
|
SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
|
|
SDValue TwoP32 =
|
|
DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl,
|
|
MVT::f64);
|
|
SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
|
|
SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
|
|
SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
|
|
SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
|
|
return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
}
|
|
|
|
SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
|
|
|
|
SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
|
|
Op0,
|
|
DAG.getConstant(0, dl, Op0.getValueType()),
|
|
ISD::SETLT);
|
|
SDValue Zero = DAG.getIntPtrConstant(0, dl),
|
|
Four = DAG.getIntPtrConstant(4, dl);
|
|
SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
|
|
SignSet, Four, Zero);
|
|
|
|
// If the sign bit of the integer is set, the large number will be treated
|
|
// as a negative number. To counteract this, the dynamic code adds an
|
|
// offset depending on the data type.
|
|
uint64_t FF;
|
|
switch (Op0.getSimpleValueType().SimpleTy) {
|
|
default: llvm_unreachable("Unsupported integer type!");
|
|
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
|
|
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
|
|
case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
|
|
case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
|
|
}
|
|
if (DAG.getDataLayout().isLittleEndian())
|
|
FF <<= 32;
|
|
Constant *FudgeFactor = ConstantInt::get(
|
|
Type::getInt64Ty(*DAG.getContext()), FF);
|
|
|
|
SDValue CPIdx =
|
|
DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
|
|
CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
|
|
Alignment = std::min(Alignment, 4u);
|
|
SDValue FudgeInReg;
|
|
if (DestVT == MVT::f32)
|
|
FudgeInReg = DAG.getLoad(
|
|
MVT::f32, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
|
|
false, false, Alignment);
|
|
else {
|
|
SDValue Load = DAG.getExtLoad(
|
|
ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
|
|
false, false, false, Alignment);
|
|
HandleSDNode Handle(Load);
|
|
LegalizeOp(Load.getNode());
|
|
FudgeInReg = Handle.getValue();
|
|
}
|
|
|
|
return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
|
|
}
|
|
|
|
/// This function is responsible for legalizing a
|
|
/// *INT_TO_FP operation of the specified operand when the target requests that
|
|
/// we promote it. At this point, we know that the result and operand types are
|
|
/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
|
|
/// operation that takes a larger input.
|
|
SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
|
|
EVT DestVT,
|
|
bool isSigned,
|
|
SDLoc dl) {
|
|
// First step, figure out the appropriate *INT_TO_FP operation to use.
|
|
EVT NewInTy = LegalOp.getValueType();
|
|
|
|
unsigned OpToUse = 0;
|
|
|
|
// Scan for the appropriate larger type to use.
|
|
while (1) {
|
|
NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
|
|
assert(NewInTy.isInteger() && "Ran out of possibilities!");
|
|
|
|
// If the target supports SINT_TO_FP of this type, use it.
|
|
if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
|
|
OpToUse = ISD::SINT_TO_FP;
|
|
break;
|
|
}
|
|
if (isSigned) continue;
|
|
|
|
// If the target supports UINT_TO_FP of this type, use it.
|
|
if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
|
|
OpToUse = ISD::UINT_TO_FP;
|
|
break;
|
|
}
|
|
|
|
// Otherwise, try a larger type.
|
|
}
|
|
|
|
// Okay, we found the operation and type to use. Zero extend our input to the
|
|
// desired type then run the operation on it.
|
|
return DAG.getNode(OpToUse, dl, DestVT,
|
|
DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
|
|
dl, NewInTy, LegalOp));
|
|
}
|
|
|
|
/// This function is responsible for legalizing a
|
|
/// FP_TO_*INT operation of the specified operand when the target requests that
|
|
/// we promote it. At this point, we know that the result and operand types are
|
|
/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
|
|
/// operation that returns a larger result.
|
|
SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
|
|
EVT DestVT,
|
|
bool isSigned,
|
|
SDLoc dl) {
|
|
// First step, figure out the appropriate FP_TO*INT operation to use.
|
|
EVT NewOutTy = DestVT;
|
|
|
|
unsigned OpToUse = 0;
|
|
|
|
// Scan for the appropriate larger type to use.
|
|
while (1) {
|
|
NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
|
|
assert(NewOutTy.isInteger() && "Ran out of possibilities!");
|
|
|
|
// A larger signed type can hold all unsigned values of the requested type,
|
|
// so using FP_TO_SINT is valid
|
|
if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
|
|
OpToUse = ISD::FP_TO_SINT;
|
|
break;
|
|
}
|
|
|
|
// However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
|
|
if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
|
|
OpToUse = ISD::FP_TO_UINT;
|
|
break;
|
|
}
|
|
|
|
// Otherwise, try a larger type.
|
|
}
|
|
|
|
|
|
// Okay, we found the operation and type to use.
|
|
SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
|
|
|
|
// Truncate the result of the extended FP_TO_*INT operation to the desired
|
|
// size.
|
|
return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
|
|
}
|
|
|
|
/// Open code the operations for BITREVERSE.
|
|
SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, SDLoc dl) {
|
|
EVT VT = Op.getValueType();
|
|
EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
|
|
unsigned Sz = VT.getScalarSizeInBits();
|
|
|
|
SDValue Tmp, Tmp2;
|
|
Tmp = DAG.getConstant(0, dl, VT);
|
|
for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
|
|
if (I < J)
|
|
Tmp2 =
|
|
DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
|
|
else
|
|
Tmp2 =
|
|
DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
|
|
|
|
APInt Shift(Sz, 1);
|
|
Shift = Shift.shl(J);
|
|
Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
|
|
Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
|
|
}
|
|
|
|
return Tmp;
|
|
}
|
|
|
|
/// Open code the operations for BSWAP of the specified operation.
|
|
SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
|
|
EVT VT = Op.getValueType();
|
|
EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
|
|
SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unhandled Expand type in BSWAP!");
|
|
case MVT::i16:
|
|
Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
|
|
Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
|
|
return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
case MVT::i32:
|
|
Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
|
|
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
|
|
Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
|
|
Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
|
|
Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
|
|
DAG.getConstant(0xFF0000, dl, VT));
|
|
Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
|
|
Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
|
|
Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
|
|
return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
|
|
case MVT::i64:
|
|
Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
|
|
Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
|
|
Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
|
|
Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
|
|
Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
|
|
Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
|
|
Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
|
|
Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
|
|
Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
|
|
DAG.getConstant(255ULL<<48, dl, VT));
|
|
Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
|
|
DAG.getConstant(255ULL<<40, dl, VT));
|
|
Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
|
|
DAG.getConstant(255ULL<<32, dl, VT));
|
|
Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
|
|
DAG.getConstant(255ULL<<24, dl, VT));
|
|
Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
|
|
DAG.getConstant(255ULL<<16, dl, VT));
|
|
Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
|
|
DAG.getConstant(255ULL<<8 , dl, VT));
|
|
Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
|
|
Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
|
|
Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
|
|
Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
|
|
Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
|
|
Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
|
|
return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
|
|
}
|
|
}
|
|
|
|
/// Expand the specified bitcount instruction into operations.
|
|
SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
|
|
SDLoc dl) {
|
|
switch (Opc) {
|
|
default: llvm_unreachable("Cannot expand this yet!");
|
|
case ISD::CTPOP: {
|
|
EVT VT = Op.getValueType();
|
|
EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
|
|
unsigned Len = VT.getSizeInBits();
|
|
|
|
assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
|
|
"CTPOP not implemented for this type.");
|
|
|
|
// This is the "best" algorithm from
|
|
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
|
|
|
|
SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)),
|
|
dl, VT);
|
|
SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)),
|
|
dl, VT);
|
|
SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)),
|
|
dl, VT);
|
|
SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)),
|
|
dl, VT);
|
|
|
|
// v = v - ((v >> 1) & 0x55555555...)
|
|
Op = DAG.getNode(ISD::SUB, dl, VT, Op,
|
|
DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::SRL, dl, VT, Op,
|
|
DAG.getConstant(1, dl, ShVT)),
|
|
Mask55));
|
|
// v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
|
|
Op = DAG.getNode(ISD::ADD, dl, VT,
|
|
DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
|
|
DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::SRL, dl, VT, Op,
|
|
DAG.getConstant(2, dl, ShVT)),
|
|
Mask33));
|
|
// v = (v + (v >> 4)) & 0x0F0F0F0F...
|
|
Op = DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::ADD, dl, VT, Op,
|
|
DAG.getNode(ISD::SRL, dl, VT, Op,
|
|
DAG.getConstant(4, dl, ShVT))),
|
|
Mask0F);
|
|
// v = (v * 0x01010101...) >> (Len - 8)
|
|
Op = DAG.getNode(ISD::SRL, dl, VT,
|
|
DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
|
|
DAG.getConstant(Len - 8, dl, ShVT));
|
|
|
|
return Op;
|
|
}
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
// This trivially expands to CTLZ.
|
|
return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
|
|
case ISD::CTLZ: {
|
|
EVT VT = Op.getValueType();
|
|
unsigned len = VT.getSizeInBits();
|
|
|
|
if (TLI.isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
|
|
EVT SetCCVT = getSetCCResultType(VT);
|
|
SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
|
|
SDValue Zero = DAG.getConstant(0, dl, VT);
|
|
SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
|
|
return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
|
|
DAG.getConstant(len, dl, VT), CTLZ);
|
|
}
|
|
|
|
// for now, we do this:
|
|
// x = x | (x >> 1);
|
|
// x = x | (x >> 2);
|
|
// ...
|
|
// x = x | (x >>16);
|
|
// x = x | (x >>32); // for 64-bit input
|
|
// return popcount(~x);
|
|
//
|
|
// Ref: "Hacker's Delight" by Henry Warren
|
|
EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
|
|
for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
|
|
SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT);
|
|
Op = DAG.getNode(ISD::OR, dl, VT, Op,
|
|
DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
|
|
}
|
|
Op = DAG.getNOT(dl, Op, VT);
|
|
return DAG.getNode(ISD::CTPOP, dl, VT, Op);
|
|
}
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
// This trivially expands to CTTZ.
|
|
return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
|
|
case ISD::CTTZ: {
|
|
// for now, we use: { return popcount(~x & (x - 1)); }
|
|
// unless the target has ctlz but not ctpop, in which case we use:
|
|
// { return 32 - nlz(~x & (x-1)); }
|
|
// Ref: "Hacker's Delight" by Henry Warren
|
|
EVT VT = Op.getValueType();
|
|
SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNOT(dl, Op, VT),
|
|
DAG.getNode(ISD::SUB, dl, VT, Op,
|
|
DAG.getConstant(1, dl, VT)));
|
|
// If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
|
|
if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
|
|
return DAG.getNode(ISD::SUB, dl, VT,
|
|
DAG.getConstant(VT.getSizeInBits(), dl, VT),
|
|
DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
|
|
return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
|
|
SmallVector<SDValue, 8> Results;
|
|
SDLoc dl(Node);
|
|
SDValue Tmp1, Tmp2, Tmp3, Tmp4;
|
|
bool NeedInvert;
|
|
switch (Node->getOpcode()) {
|
|
case ISD::CTPOP:
|
|
case ISD::CTLZ:
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
case ISD::CTTZ:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::BITREVERSE:
|
|
Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
|
|
break;
|
|
case ISD::BSWAP:
|
|
Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
|
|
break;
|
|
case ISD::FRAMEADDR:
|
|
case ISD::RETURNADDR:
|
|
case ISD::FRAME_TO_ARGS_OFFSET:
|
|
Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
|
|
break;
|
|
case ISD::FLT_ROUNDS_:
|
|
Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
|
|
break;
|
|
case ISD::EH_RETURN:
|
|
case ISD::EH_LABEL:
|
|
case ISD::PREFETCH:
|
|
case ISD::VAEND:
|
|
case ISD::EH_SJLJ_LONGJMP:
|
|
// If the target didn't expand these, there's nothing to do, so just
|
|
// preserve the chain and be done.
|
|
Results.push_back(Node->getOperand(0));
|
|
break;
|
|
case ISD::READCYCLECOUNTER:
|
|
// If the target didn't expand this, just return 'zero' and preserve the
|
|
// chain.
|
|
Results.append(Node->getNumValues() - 1,
|
|
DAG.getConstant(0, dl, Node->getValueType(0)));
|
|
Results.push_back(Node->getOperand(0));
|
|
break;
|
|
case ISD::EH_SJLJ_SETJMP:
|
|
// If the target didn't expand this, just return 'zero' and preserve the
|
|
// chain.
|
|
Results.push_back(DAG.getConstant(0, dl, MVT::i32));
|
|
Results.push_back(Node->getOperand(0));
|
|
break;
|
|
case ISD::ATOMIC_LOAD: {
|
|
// There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
|
|
SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
|
|
SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
|
|
SDValue Swap = DAG.getAtomicCmpSwap(
|
|
ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
|
|
Node->getOperand(0), Node->getOperand(1), Zero, Zero,
|
|
cast<AtomicSDNode>(Node)->getMemOperand(),
|
|
cast<AtomicSDNode>(Node)->getOrdering(),
|
|
cast<AtomicSDNode>(Node)->getOrdering(),
|
|
cast<AtomicSDNode>(Node)->getSynchScope());
|
|
Results.push_back(Swap.getValue(0));
|
|
Results.push_back(Swap.getValue(1));
|
|
break;
|
|
}
|
|
case ISD::ATOMIC_STORE: {
|
|
// There is no libcall for atomic store; fake it with ATOMIC_SWAP.
|
|
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
|
|
cast<AtomicSDNode>(Node)->getMemoryVT(),
|
|
Node->getOperand(0),
|
|
Node->getOperand(1), Node->getOperand(2),
|
|
cast<AtomicSDNode>(Node)->getMemOperand(),
|
|
cast<AtomicSDNode>(Node)->getOrdering(),
|
|
cast<AtomicSDNode>(Node)->getSynchScope());
|
|
Results.push_back(Swap.getValue(1));
|
|
break;
|
|
}
|
|
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
|
|
// Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
|
|
// splits out the success value as a comparison. Expanding the resulting
|
|
// ATOMIC_CMP_SWAP will produce a libcall.
|
|
SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
|
|
SDValue Res = DAG.getAtomicCmpSwap(
|
|
ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
|
|
Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
|
|
Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(),
|
|
cast<AtomicSDNode>(Node)->getSuccessOrdering(),
|
|
cast<AtomicSDNode>(Node)->getFailureOrdering(),
|
|
cast<AtomicSDNode>(Node)->getSynchScope());
|
|
|
|
SDValue LHS = Res;
|
|
SDValue RHS = Node->getOperand(1);
|
|
|
|
EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
|
|
EVT OuterType = Node->getValueType(0);
|
|
if (TLI.hasSignExtendedAtomicOps()) {
|
|
LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
|
|
DAG.getValueType(AtomicType));
|
|
RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
|
|
Node->getOperand(2), DAG.getValueType(AtomicType));
|
|
} else {
|
|
LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, DAG.getValueType(AtomicType));
|
|
RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2));
|
|
}
|
|
|
|
SDValue Success =
|
|
DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
|
|
|
|
Results.push_back(LHS.getValue(0));
|
|
Results.push_back(Success);
|
|
Results.push_back(Res.getValue(1));
|
|
break;
|
|
}
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
ExpandDYNAMIC_STACKALLOC(Node, Results);
|
|
break;
|
|
case ISD::MERGE_VALUES:
|
|
for (unsigned i = 0; i < Node->getNumValues(); i++)
|
|
Results.push_back(Node->getOperand(i));
|
|
break;
|
|
case ISD::UNDEF: {
|
|
EVT VT = Node->getValueType(0);
|
|
if (VT.isInteger())
|
|
Results.push_back(DAG.getConstant(0, dl, VT));
|
|
else {
|
|
assert(VT.isFloatingPoint() && "Unknown value type!");
|
|
Results.push_back(DAG.getConstantFP(0, dl, VT));
|
|
}
|
|
break;
|
|
}
|
|
case ISD::FP_ROUND:
|
|
case ISD::BITCAST:
|
|
Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
|
|
Node->getValueType(0), dl);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::FP_EXTEND:
|
|
Tmp1 = EmitStackConvert(Node->getOperand(0),
|
|
Node->getOperand(0).getValueType(),
|
|
Node->getValueType(0), dl);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
// NOTE: we could fall back on load/store here too for targets without
|
|
// SAR. However, it is doubtful that any exist.
|
|
EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
|
|
EVT VT = Node->getValueType(0);
|
|
EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
|
|
if (VT.isVector())
|
|
ShiftAmountTy = VT;
|
|
unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
|
|
ExtraVT.getScalarType().getSizeInBits();
|
|
SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
|
|
Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
|
|
Node->getOperand(0), ShiftCst);
|
|
Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::FP_ROUND_INREG: {
|
|
// The only way we can lower this is to turn it into a TRUNCSTORE,
|
|
// EXTLOAD pair, targeting a temporary location (a stack slot).
|
|
|
|
// NOTE: there is a choice here between constantly creating new stack
|
|
// slots and always reusing the same one. We currently always create
|
|
// new ones, as reuse may inhibit scheduling.
|
|
EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
|
|
Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
|
|
Node->getValueType(0), dl);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
|
|
Node->getOperand(0), Node->getValueType(0), dl);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::FP_TO_SINT:
|
|
if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::FP_TO_UINT: {
|
|
SDValue True, False;
|
|
EVT VT = Node->getOperand(0).getValueType();
|
|
EVT NVT = Node->getValueType(0);
|
|
APFloat apf(DAG.EVTToAPFloatSemantics(VT),
|
|
APInt::getNullValue(VT.getSizeInBits()));
|
|
APInt x = APInt::getSignBit(NVT.getSizeInBits());
|
|
(void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
|
|
Tmp1 = DAG.getConstantFP(apf, dl, VT);
|
|
Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
|
|
Node->getOperand(0),
|
|
Tmp1, ISD::SETLT);
|
|
True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
|
|
// TODO: Should any fast-math-flags be set for the FSUB?
|
|
False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
|
|
DAG.getNode(ISD::FSUB, dl, VT,
|
|
Node->getOperand(0), Tmp1));
|
|
False = DAG.getNode(ISD::XOR, dl, NVT, False,
|
|
DAG.getConstant(x, dl, NVT));
|
|
Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::VAARG:
|
|
Results.push_back(DAG.expandVAArg(Node));
|
|
Results.push_back(Results[0].getValue(1));
|
|
break;
|
|
case ISD::VACOPY:
|
|
Results.push_back(DAG.expandVACopy(Node));
|
|
break;
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
|
|
// This must be an access of the only element. Return it.
|
|
Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
|
|
Node->getOperand(0));
|
|
else
|
|
Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
|
|
break;
|
|
case ISD::INSERT_SUBVECTOR:
|
|
Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
|
|
break;
|
|
case ISD::CONCAT_VECTORS: {
|
|
Results.push_back(ExpandVectorBuildThroughStack(Node));
|
|
break;
|
|
}
|
|
case ISD::SCALAR_TO_VECTOR:
|
|
Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
|
|
break;
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
|
|
Node->getOperand(1),
|
|
Node->getOperand(2), dl));
|
|
break;
|
|
case ISD::VECTOR_SHUFFLE: {
|
|
SmallVector<int, 32> NewMask;
|
|
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
|
|
|
|
EVT VT = Node->getValueType(0);
|
|
EVT EltVT = VT.getVectorElementType();
|
|
SDValue Op0 = Node->getOperand(0);
|
|
SDValue Op1 = Node->getOperand(1);
|
|
if (!TLI.isTypeLegal(EltVT)) {
|
|
|
|
EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
|
|
|
|
// BUILD_VECTOR operands are allowed to be wider than the element type.
|
|
// But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
|
|
// it.
|
|
if (NewEltVT.bitsLT(EltVT)) {
|
|
|
|
// Convert shuffle node.
|
|
// If original node was v4i64 and the new EltVT is i32,
|
|
// cast operands to v8i32 and re-build the mask.
|
|
|
|
// Calculate new VT, the size of the new VT should be equal to original.
|
|
EVT NewVT =
|
|
EVT::getVectorVT(*DAG.getContext(), NewEltVT,
|
|
VT.getSizeInBits() / NewEltVT.getSizeInBits());
|
|
assert(NewVT.bitsEq(VT));
|
|
|
|
// cast operands to new VT
|
|
Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
|
|
Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
|
|
|
|
// Convert the shuffle mask
|
|
unsigned int factor =
|
|
NewVT.getVectorNumElements()/VT.getVectorNumElements();
|
|
|
|
// EltVT gets smaller
|
|
assert(factor > 0);
|
|
|
|
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
|
|
if (Mask[i] < 0) {
|
|
for (unsigned fi = 0; fi < factor; ++fi)
|
|
NewMask.push_back(Mask[i]);
|
|
}
|
|
else {
|
|
for (unsigned fi = 0; fi < factor; ++fi)
|
|
NewMask.push_back(Mask[i]*factor+fi);
|
|
}
|
|
}
|
|
Mask = NewMask;
|
|
VT = NewVT;
|
|
}
|
|
EltVT = NewEltVT;
|
|
}
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<SDValue, 16> Ops;
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
if (Mask[i] < 0) {
|
|
Ops.push_back(DAG.getUNDEF(EltVT));
|
|
continue;
|
|
}
|
|
unsigned Idx = Mask[i];
|
|
if (Idx < NumElems)
|
|
Ops.push_back(DAG.getNode(
|
|
ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
|
|
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
|
|
else
|
|
Ops.push_back(DAG.getNode(
|
|
ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
|
|
DAG.getConstant(Idx - NumElems, dl,
|
|
TLI.getVectorIdxTy(DAG.getDataLayout()))));
|
|
}
|
|
|
|
Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
|
|
// We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
|
|
Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::EXTRACT_ELEMENT: {
|
|
EVT OpTy = Node->getOperand(0).getValueType();
|
|
if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
|
|
// 1 -> Hi
|
|
Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
|
|
DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
|
|
TLI.getShiftAmountTy(
|
|
Node->getOperand(0).getValueType(),
|
|
DAG.getDataLayout())));
|
|
Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
|
|
} else {
|
|
// 0 -> Lo
|
|
Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
|
|
Node->getOperand(0));
|
|
}
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::STACKSAVE:
|
|
// Expand to CopyFromReg if the target set
|
|
// StackPointerRegisterToSaveRestore.
|
|
if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
|
|
Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
|
|
Node->getValueType(0)));
|
|
Results.push_back(Results[0].getValue(1));
|
|
} else {
|
|
Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
|
|
Results.push_back(Node->getOperand(0));
|
|
}
|
|
break;
|
|
case ISD::STACKRESTORE:
|
|
// Expand to CopyToReg if the target set
|
|
// StackPointerRegisterToSaveRestore.
|
|
if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
|
|
Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
|
|
Node->getOperand(1)));
|
|
} else {
|
|
Results.push_back(Node->getOperand(0));
|
|
}
|
|
break;
|
|
case ISD::GET_DYNAMIC_AREA_OFFSET:
|
|
Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
|
|
Results.push_back(Results[0].getValue(0));
|
|
break;
|
|
case ISD::FCOPYSIGN:
|
|
Results.push_back(ExpandFCOPYSIGN(Node));
|
|
break;
|
|
case ISD::FNEG:
|
|
// Expand Y = FNEG(X) -> Y = SUB -0.0, X
|
|
Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
|
|
// TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
|
|
Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
|
|
Node->getOperand(0));
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::FABS:
|
|
Results.push_back(ExpandFABS(Node));
|
|
break;
|
|
case ISD::SMIN:
|
|
case ISD::SMAX:
|
|
case ISD::UMIN:
|
|
case ISD::UMAX: {
|
|
// Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
|
|
ISD::CondCode Pred;
|
|
switch (Node->getOpcode()) {
|
|
default: llvm_unreachable("How did we get here?");
|
|
case ISD::SMAX: Pred = ISD::SETGT; break;
|
|
case ISD::SMIN: Pred = ISD::SETLT; break;
|
|
case ISD::UMAX: Pred = ISD::SETUGT; break;
|
|
case ISD::UMIN: Pred = ISD::SETULT; break;
|
|
}
|
|
Tmp1 = Node->getOperand(0);
|
|
Tmp2 = Node->getOperand(1);
|
|
Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
|
|
case ISD::FSIN:
|
|
case ISD::FCOS: {
|
|
EVT VT = Node->getValueType(0);
|
|
// Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
|
|
// fcos which share the same operand and both are used.
|
|
if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
|
|
canCombineSinCosLibcall(Node, TLI, TM))
|
|
&& useSinCos(Node)) {
|
|
SDVTList VTs = DAG.getVTList(VT, VT);
|
|
Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
|
|
if (Node->getOpcode() == ISD::FCOS)
|
|
Tmp1 = Tmp1.getValue(1);
|
|
Results.push_back(Tmp1);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::FMAD:
|
|
llvm_unreachable("Illegal fmad should never be formed");
|
|
|
|
case ISD::FP16_TO_FP:
|
|
if (Node->getValueType(0) != MVT::f32) {
|
|
// We can extend to types bigger than f32 in two steps without changing
|
|
// the result. Since "f16 -> f32" is much more commonly available, give
|
|
// CodeGen the option of emitting that before resorting to a libcall.
|
|
SDValue Res =
|
|
DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
|
|
Results.push_back(
|
|
DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
|
|
}
|
|
break;
|
|
case ISD::FP_TO_FP16:
|
|
if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
|
|
SDValue Op = Node->getOperand(0);
|
|
MVT SVT = Op.getSimpleValueType();
|
|
if ((SVT == MVT::f64 || SVT == MVT::f80) &&
|
|
TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
|
|
// Under fastmath, we can expand this node into a fround followed by
|
|
// a float-half conversion.
|
|
SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
Results.push_back(
|
|
DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
|
|
}
|
|
}
|
|
break;
|
|
case ISD::ConstantFP: {
|
|
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
|
|
// Check to see if this FP immediate is already legal.
|
|
// If this is a legal constant, turn it into a TargetConstantFP node.
|
|
if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
|
|
Results.push_back(ExpandConstantFP(CFP, true));
|
|
break;
|
|
}
|
|
case ISD::Constant: {
|
|
ConstantSDNode *CP = cast<ConstantSDNode>(Node);
|
|
Results.push_back(ExpandConstant(CP));
|
|
break;
|
|
}
|
|
case ISD::FSUB: {
|
|
EVT VT = Node->getValueType(0);
|
|
if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
|
|
const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(Node)->Flags;
|
|
Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
|
|
Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
|
|
Results.push_back(Tmp1);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SUB: {
|
|
EVT VT = Node->getValueType(0);
|
|
assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
|
|
"Don't know how to expand this subtraction!");
|
|
Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
|
|
DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
|
|
VT));
|
|
Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
|
|
Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
|
|
break;
|
|
}
|
|
case ISD::UREM:
|
|
case ISD::SREM: {
|
|
EVT VT = Node->getValueType(0);
|
|
bool isSigned = Node->getOpcode() == ISD::SREM;
|
|
unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
|
|
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
|
|
Tmp2 = Node->getOperand(0);
|
|
Tmp3 = Node->getOperand(1);
|
|
if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
|
|
SDVTList VTs = DAG.getVTList(VT, VT);
|
|
Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
|
|
Results.push_back(Tmp1);
|
|
} else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
|
|
// X % Y -> X-X/Y*Y
|
|
Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
|
|
Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
|
|
Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
|
|
Results.push_back(Tmp1);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::UDIV:
|
|
case ISD::SDIV: {
|
|
bool isSigned = Node->getOpcode() == ISD::SDIV;
|
|
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
|
|
EVT VT = Node->getValueType(0);
|
|
if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
|
|
SDVTList VTs = DAG.getVTList(VT, VT);
|
|
Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
|
|
Node->getOperand(1));
|
|
Results.push_back(Tmp1);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::MULHU:
|
|
case ISD::MULHS: {
|
|
unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
|
|
ISD::SMUL_LOHI;
|
|
EVT VT = Node->getValueType(0);
|
|
SDVTList VTs = DAG.getVTList(VT, VT);
|
|
assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
|
|
"If this wasn't legal, it shouldn't have been created!");
|
|
Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
|
|
Node->getOperand(1));
|
|
Results.push_back(Tmp1.getValue(1));
|
|
break;
|
|
}
|
|
case ISD::MUL: {
|
|
EVT VT = Node->getValueType(0);
|
|
SDVTList VTs = DAG.getVTList(VT, VT);
|
|
// See if multiply or divide can be lowered using two-result operations.
|
|
// We just need the low half of the multiply; try both the signed
|
|
// and unsigned forms. If the target supports both SMUL_LOHI and
|
|
// UMUL_LOHI, form a preference by checking which forms of plain
|
|
// MULH it supports.
|
|
bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
|
|
bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
|
|
bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
|
|
bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
|
|
unsigned OpToUse = 0;
|
|
if (HasSMUL_LOHI && !HasMULHS) {
|
|
OpToUse = ISD::SMUL_LOHI;
|
|
} else if (HasUMUL_LOHI && !HasMULHU) {
|
|
OpToUse = ISD::UMUL_LOHI;
|
|
} else if (HasSMUL_LOHI) {
|
|
OpToUse = ISD::SMUL_LOHI;
|
|
} else if (HasUMUL_LOHI) {
|
|
OpToUse = ISD::UMUL_LOHI;
|
|
}
|
|
if (OpToUse) {
|
|
Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
|
|
Node->getOperand(1)));
|
|
break;
|
|
}
|
|
|
|
SDValue Lo, Hi;
|
|
EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
|
|
if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
|
|
TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) {
|
|
Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
|
|
Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
|
|
SDValue Shift =
|
|
DAG.getConstant(HalfType.getSizeInBits(), dl,
|
|
TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
|
|
Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
|
|
Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SADDO:
|
|
case ISD::SSUBO: {
|
|
SDValue LHS = Node->getOperand(0);
|
|
SDValue RHS = Node->getOperand(1);
|
|
SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
|
|
ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
|
|
LHS, RHS);
|
|
Results.push_back(Sum);
|
|
EVT ResultType = Node->getValueType(1);
|
|
EVT OType = getSetCCResultType(Node->getValueType(0));
|
|
|
|
SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
|
|
|
|
// LHSSign -> LHS >= 0
|
|
// RHSSign -> RHS >= 0
|
|
// SumSign -> Sum >= 0
|
|
//
|
|
// Add:
|
|
// Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
|
|
// Sub:
|
|
// Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
|
|
//
|
|
SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
|
|
SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
|
|
SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
|
|
Node->getOpcode() == ISD::SADDO ?
|
|
ISD::SETEQ : ISD::SETNE);
|
|
|
|
SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
|
|
SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
|
|
|
|
SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
|
|
Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
|
|
break;
|
|
}
|
|
case ISD::UADDO:
|
|
case ISD::USUBO: {
|
|
SDValue LHS = Node->getOperand(0);
|
|
SDValue RHS = Node->getOperand(1);
|
|
SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
|
|
ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
|
|
LHS, RHS);
|
|
Results.push_back(Sum);
|
|
|
|
EVT ResultType = Node->getValueType(1);
|
|
EVT SetCCType = getSetCCResultType(Node->getValueType(0));
|
|
ISD::CondCode CC
|
|
= Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT;
|
|
SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
|
|
|
|
Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
|
|
break;
|
|
}
|
|
case ISD::UMULO:
|
|
case ISD::SMULO: {
|
|
EVT VT = Node->getValueType(0);
|
|
EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
|
|
SDValue LHS = Node->getOperand(0);
|
|
SDValue RHS = Node->getOperand(1);
|
|
SDValue BottomHalf;
|
|
SDValue TopHalf;
|
|
static const unsigned Ops[2][3] =
|
|
{ { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
|
|
{ ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
|
|
bool isSigned = Node->getOpcode() == ISD::SMULO;
|
|
if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
|
|
BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
|
|
TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
|
|
} else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
|
|
BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
|
|
RHS);
|
|
TopHalf = BottomHalf.getValue(1);
|
|
} else if (TLI.isTypeLegal(WideVT)) {
|
|
LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
|
|
RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
|
|
Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
|
|
BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
|
|
DAG.getIntPtrConstant(1, dl));
|
|
} else {
|
|
// We can fall back to a libcall with an illegal type for the MUL if we
|
|
// have a libcall big enough.
|
|
// Also, we can fall back to a division in some cases, but that's a big
|
|
// performance hit in the general case.
|
|
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
|
|
if (WideVT == MVT::i16)
|
|
LC = RTLIB::MUL_I16;
|
|
else if (WideVT == MVT::i32)
|
|
LC = RTLIB::MUL_I32;
|
|
else if (WideVT == MVT::i64)
|
|
LC = RTLIB::MUL_I64;
|
|
else if (WideVT == MVT::i128)
|
|
LC = RTLIB::MUL_I128;
|
|
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
|
|
|
|
// The high part is obtained by SRA'ing all but one of the bits of low
|
|
// part.
|
|
unsigned LoSize = VT.getSizeInBits();
|
|
SDValue HiLHS =
|
|
DAG.getNode(ISD::SRA, dl, VT, RHS,
|
|
DAG.getConstant(LoSize - 1, dl,
|
|
TLI.getPointerTy(DAG.getDataLayout())));
|
|
SDValue HiRHS =
|
|
DAG.getNode(ISD::SRA, dl, VT, LHS,
|
|
DAG.getConstant(LoSize - 1, dl,
|
|
TLI.getPointerTy(DAG.getDataLayout())));
|
|
|
|
// Here we're passing the 2 arguments explicitly as 4 arguments that are
|
|
// pre-lowered to the correct types. This all depends upon WideVT not
|
|
// being a legal type for the architecture and thus has to be split to
|
|
// two arguments.
|
|
SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
|
|
SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
|
|
BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
|
|
DAG.getIntPtrConstant(1, dl));
|
|
// Ret is a node with an illegal type. Because such things are not
|
|
// generally permitted during this phase of legalization, make sure the
|
|
// node has no more uses. The above EXTRACT_ELEMENT nodes should have been
|
|
// folded.
|
|
assert(Ret->use_empty() &&
|
|
"Unexpected uses of illegally type from expanded lib call.");
|
|
}
|
|
|
|
if (isSigned) {
|
|
Tmp1 = DAG.getConstant(
|
|
VT.getSizeInBits() - 1, dl,
|
|
TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
|
|
Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
|
|
TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
|
|
ISD::SETNE);
|
|
} else {
|
|
TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
|
|
DAG.getConstant(0, dl, VT), ISD::SETNE);
|
|
}
|
|
Results.push_back(BottomHalf);
|
|
Results.push_back(TopHalf);
|
|
break;
|
|
}
|
|
case ISD::BUILD_PAIR: {
|
|
EVT PairTy = Node->getValueType(0);
|
|
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
|
|
Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
|
|
Tmp2 = DAG.getNode(
|
|
ISD::SHL, dl, PairTy, Tmp2,
|
|
DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
|
|
TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
|
|
Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
|
|
break;
|
|
}
|
|
case ISD::SELECT:
|
|
Tmp1 = Node->getOperand(0);
|
|
Tmp2 = Node->getOperand(1);
|
|
Tmp3 = Node->getOperand(2);
|
|
if (Tmp1.getOpcode() == ISD::SETCC) {
|
|
Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
|
|
Tmp2, Tmp3,
|
|
cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
|
|
} else {
|
|
Tmp1 = DAG.getSelectCC(dl, Tmp1,
|
|
DAG.getConstant(0, dl, Tmp1.getValueType()),
|
|
Tmp2, Tmp3, ISD::SETNE);
|
|
}
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::BR_JT: {
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue Table = Node->getOperand(1);
|
|
SDValue Index = Node->getOperand(2);
|
|
|
|
EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
|
|
|
|
const DataLayout &TD = DAG.getDataLayout();
|
|
unsigned EntrySize =
|
|
DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
|
|
|
|
Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
|
|
DAG.getConstant(EntrySize, dl, Index.getValueType()));
|
|
SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
|
|
Index, Table);
|
|
|
|
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
|
|
SDValue LD = DAG.getExtLoad(
|
|
ISD::SEXTLOAD, dl, PTy, Chain, Addr,
|
|
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT,
|
|
false, false, false, 0);
|
|
Addr = LD;
|
|
if (TM.getRelocationModel() == Reloc::PIC_) {
|
|
// For PIC, the sequence is:
|
|
// BRIND(load(Jumptable + index) + RelocBase)
|
|
// RelocBase can be JumpTable, GOT or some sort of global base.
|
|
Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
|
|
TLI.getPICJumpTableRelocBase(Table, DAG));
|
|
}
|
|
Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::BRCOND:
|
|
// Expand brcond's setcc into its constituent parts and create a BR_CC
|
|
// Node.
|
|
Tmp1 = Node->getOperand(0);
|
|
Tmp2 = Node->getOperand(1);
|
|
if (Tmp2.getOpcode() == ISD::SETCC) {
|
|
Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
|
|
Tmp1, Tmp2.getOperand(2),
|
|
Tmp2.getOperand(0), Tmp2.getOperand(1),
|
|
Node->getOperand(2));
|
|
} else {
|
|
// We test only the i1 bit. Skip the AND if UNDEF.
|
|
Tmp3 = (Tmp2.isUndef()) ? Tmp2 :
|
|
DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
|
|
DAG.getConstant(1, dl, Tmp2.getValueType()));
|
|
Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
|
|
DAG.getCondCode(ISD::SETNE), Tmp3,
|
|
DAG.getConstant(0, dl, Tmp3.getValueType()),
|
|
Node->getOperand(2));
|
|
}
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::SETCC: {
|
|
Tmp1 = Node->getOperand(0);
|
|
Tmp2 = Node->getOperand(1);
|
|
Tmp3 = Node->getOperand(2);
|
|
bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
|
|
Tmp3, NeedInvert, dl);
|
|
|
|
if (Legalized) {
|
|
// If we expanded the SETCC by swapping LHS and RHS, or by inverting the
|
|
// condition code, create a new SETCC node.
|
|
if (Tmp3.getNode())
|
|
Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
|
|
Tmp1, Tmp2, Tmp3);
|
|
|
|
// If we expanded the SETCC by inverting the condition code, then wrap
|
|
// the existing SETCC in a NOT to restore the intended condition.
|
|
if (NeedInvert)
|
|
Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
|
|
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
|
|
// Otherwise, SETCC for the given comparison type must be completely
|
|
// illegal; expand it into a SELECT_CC.
|
|
EVT VT = Node->getValueType(0);
|
|
int TrueValue;
|
|
switch (TLI.getBooleanContents(Tmp1->getValueType(0))) {
|
|
case TargetLowering::ZeroOrOneBooleanContent:
|
|
case TargetLowering::UndefinedBooleanContent:
|
|
TrueValue = 1;
|
|
break;
|
|
case TargetLowering::ZeroOrNegativeOneBooleanContent:
|
|
TrueValue = -1;
|
|
break;
|
|
}
|
|
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
|
|
DAG.getConstant(TrueValue, dl, VT),
|
|
DAG.getConstant(0, dl, VT),
|
|
Tmp3);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::SELECT_CC: {
|
|
Tmp1 = Node->getOperand(0); // LHS
|
|
Tmp2 = Node->getOperand(1); // RHS
|
|
Tmp3 = Node->getOperand(2); // True
|
|
Tmp4 = Node->getOperand(3); // False
|
|
EVT VT = Node->getValueType(0);
|
|
SDValue CC = Node->getOperand(4);
|
|
ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
|
|
|
|
if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) {
|
|
// If the condition code is legal, then we need to expand this
|
|
// node using SETCC and SELECT.
|
|
EVT CmpVT = Tmp1.getValueType();
|
|
assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
|
|
"Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
|
|
"expanded.");
|
|
EVT CCVT =
|
|
TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
|
|
SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
|
|
Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
|
|
break;
|
|
}
|
|
|
|
// SELECT_CC is legal, so the condition code must not be.
|
|
bool Legalized = false;
|
|
// Try to legalize by inverting the condition. This is for targets that
|
|
// might support an ordered version of a condition, but not the unordered
|
|
// version (or vice versa).
|
|
ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
|
|
Tmp1.getValueType().isInteger());
|
|
if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
|
|
// Use the new condition code and swap true and false
|
|
Legalized = true;
|
|
Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
|
|
} else {
|
|
// If The inverse is not legal, then try to swap the arguments using
|
|
// the inverse condition code.
|
|
ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
|
|
if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
|
|
// The swapped inverse condition is legal, so swap true and false,
|
|
// lhs and rhs.
|
|
Legalized = true;
|
|
Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
|
|
}
|
|
}
|
|
|
|
if (!Legalized) {
|
|
Legalized = LegalizeSetCCCondCode(
|
|
getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
|
|
dl);
|
|
|
|
assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
|
|
|
|
// If we expanded the SETCC by inverting the condition code, then swap
|
|
// the True/False operands to match.
|
|
if (NeedInvert)
|
|
std::swap(Tmp3, Tmp4);
|
|
|
|
// If we expanded the SETCC by swapping LHS and RHS, or by inverting the
|
|
// condition code, create a new SELECT_CC node.
|
|
if (CC.getNode()) {
|
|
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
|
|
Tmp1, Tmp2, Tmp3, Tmp4, CC);
|
|
} else {
|
|
Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
|
|
CC = DAG.getCondCode(ISD::SETNE);
|
|
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
|
|
Tmp2, Tmp3, Tmp4, CC);
|
|
}
|
|
}
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::BR_CC: {
|
|
Tmp1 = Node->getOperand(0); // Chain
|
|
Tmp2 = Node->getOperand(2); // LHS
|
|
Tmp3 = Node->getOperand(3); // RHS
|
|
Tmp4 = Node->getOperand(1); // CC
|
|
|
|
bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
|
|
Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
|
|
(void)Legalized;
|
|
assert(Legalized && "Can't legalize BR_CC with legal condition!");
|
|
|
|
// If we expanded the SETCC by inverting the condition code, then wrap
|
|
// the existing SETCC in a NOT to restore the intended condition.
|
|
if (NeedInvert)
|
|
Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0));
|
|
|
|
// If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
|
|
// node.
|
|
if (Tmp4.getNode()) {
|
|
Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
|
|
Tmp4, Tmp2, Tmp3, Node->getOperand(4));
|
|
} else {
|
|
Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
|
|
Tmp4 = DAG.getCondCode(ISD::SETNE);
|
|
Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
|
|
Tmp2, Tmp3, Node->getOperand(4));
|
|
}
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::BUILD_VECTOR:
|
|
Results.push_back(ExpandBUILD_VECTOR(Node));
|
|
break;
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::SHL: {
|
|
// Scalarize vector SRA/SRL/SHL.
|
|
EVT VT = Node->getValueType(0);
|
|
assert(VT.isVector() && "Unable to legalize non-vector shift");
|
|
assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
|
|
unsigned NumElem = VT.getVectorNumElements();
|
|
|
|
SmallVector<SDValue, 8> Scalars;
|
|
for (unsigned Idx = 0; Idx < NumElem; Idx++) {
|
|
SDValue Ex = DAG.getNode(
|
|
ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
|
|
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
|
|
SDValue Sh = DAG.getNode(
|
|
ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
|
|
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
|
|
Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
|
|
VT.getScalarType(), Ex, Sh));
|
|
}
|
|
SDValue Result =
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars);
|
|
ReplaceNode(SDValue(Node, 0), Result);
|
|
break;
|
|
}
|
|
case ISD::GLOBAL_OFFSET_TABLE:
|
|
case ISD::GlobalAddress:
|
|
case ISD::GlobalTLSAddress:
|
|
case ISD::ExternalSymbol:
|
|
case ISD::ConstantPool:
|
|
case ISD::JumpTable:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_VOID:
|
|
// FIXME: Custom lowering for these operations shouldn't return null!
|
|
break;
|
|
}
|
|
|
|
// Replace the original node with the legalized result.
|
|
if (Results.empty())
|
|
return false;
|
|
|
|
ReplaceNode(Node, Results.data());
|
|
return true;
|
|
}
|
|
|
|
void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
|
|
SmallVector<SDValue, 8> Results;
|
|
SDLoc dl(Node);
|
|
SDValue Tmp1, Tmp2, Tmp3, Tmp4;
|
|
unsigned Opc = Node->getOpcode();
|
|
switch (Opc) {
|
|
case ISD::ATOMIC_FENCE: {
|
|
// If the target didn't lower this, lower it to '__sync_synchronize()' call
|
|
// FIXME: handle "fence singlethread" more efficiently.
|
|
TargetLowering::ArgListTy Args;
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl)
|
|
.setChain(Node->getOperand(0))
|
|
.setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
|
|
DAG.getExternalSymbol("__sync_synchronize",
|
|
TLI.getPointerTy(DAG.getDataLayout())),
|
|
std::move(Args), 0);
|
|
|
|
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
|
|
|
|
Results.push_back(CallResult.second);
|
|
break;
|
|
}
|
|
// By default, atomic intrinsics are marked Legal and lowered. Targets
|
|
// which don't support them directly, however, may want libcalls, in which
|
|
// case they mark them Expand, and we get here.
|
|
case ISD::ATOMIC_SWAP:
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
case ISD::ATOMIC_CMP_SWAP: {
|
|
MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
|
|
RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
|
|
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
|
|
|
|
std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false);
|
|
Results.push_back(Tmp.first);
|
|
Results.push_back(Tmp.second);
|
|
break;
|
|
}
|
|
case ISD::TRAP: {
|
|
// If this operation is not supported, lower it to 'abort()' call
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl)
|
|
.setChain(Node->getOperand(0))
|
|
.setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
|
|
DAG.getExternalSymbol("abort",
|
|
TLI.getPointerTy(DAG.getDataLayout())),
|
|
std::move(Args), 0);
|
|
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
|
|
|
|
Results.push_back(CallResult.second);
|
|
break;
|
|
}
|
|
case ISD::FMINNUM:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
|
|
RTLIB::FMIN_F80, RTLIB::FMIN_F128,
|
|
RTLIB::FMIN_PPCF128));
|
|
break;
|
|
case ISD::FMAXNUM:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
|
|
RTLIB::FMAX_F80, RTLIB::FMAX_F128,
|
|
RTLIB::FMAX_PPCF128));
|
|
break;
|
|
case ISD::FSQRT:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
|
|
RTLIB::SQRT_F80, RTLIB::SQRT_F128,
|
|
RTLIB::SQRT_PPCF128));
|
|
break;
|
|
case ISD::FSIN:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
|
|
RTLIB::SIN_F80, RTLIB::SIN_F128,
|
|
RTLIB::SIN_PPCF128));
|
|
break;
|
|
case ISD::FCOS:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
|
|
RTLIB::COS_F80, RTLIB::COS_F128,
|
|
RTLIB::COS_PPCF128));
|
|
break;
|
|
case ISD::FSINCOS:
|
|
// Expand into sincos libcall.
|
|
ExpandSinCosLibCall(Node, Results);
|
|
break;
|
|
case ISD::FLOG:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
|
|
RTLIB::LOG_F80, RTLIB::LOG_F128,
|
|
RTLIB::LOG_PPCF128));
|
|
break;
|
|
case ISD::FLOG2:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
|
|
RTLIB::LOG2_F80, RTLIB::LOG2_F128,
|
|
RTLIB::LOG2_PPCF128));
|
|
break;
|
|
case ISD::FLOG10:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
|
|
RTLIB::LOG10_F80, RTLIB::LOG10_F128,
|
|
RTLIB::LOG10_PPCF128));
|
|
break;
|
|
case ISD::FEXP:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
|
|
RTLIB::EXP_F80, RTLIB::EXP_F128,
|
|
RTLIB::EXP_PPCF128));
|
|
break;
|
|
case ISD::FEXP2:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
|
|
RTLIB::EXP2_F80, RTLIB::EXP2_F128,
|
|
RTLIB::EXP2_PPCF128));
|
|
break;
|
|
case ISD::FTRUNC:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
|
|
RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
|
|
RTLIB::TRUNC_PPCF128));
|
|
break;
|
|
case ISD::FFLOOR:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
|
|
RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
|
|
RTLIB::FLOOR_PPCF128));
|
|
break;
|
|
case ISD::FCEIL:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
|
|
RTLIB::CEIL_F80, RTLIB::CEIL_F128,
|
|
RTLIB::CEIL_PPCF128));
|
|
break;
|
|
case ISD::FRINT:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
|
|
RTLIB::RINT_F80, RTLIB::RINT_F128,
|
|
RTLIB::RINT_PPCF128));
|
|
break;
|
|
case ISD::FNEARBYINT:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
|
|
RTLIB::NEARBYINT_F64,
|
|
RTLIB::NEARBYINT_F80,
|
|
RTLIB::NEARBYINT_F128,
|
|
RTLIB::NEARBYINT_PPCF128));
|
|
break;
|
|
case ISD::FROUND:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
|
|
RTLIB::ROUND_F64,
|
|
RTLIB::ROUND_F80,
|
|
RTLIB::ROUND_F128,
|
|
RTLIB::ROUND_PPCF128));
|
|
break;
|
|
case ISD::FPOWI:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
|
|
RTLIB::POWI_F80, RTLIB::POWI_F128,
|
|
RTLIB::POWI_PPCF128));
|
|
break;
|
|
case ISD::FPOW:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
|
|
RTLIB::POW_F80, RTLIB::POW_F128,
|
|
RTLIB::POW_PPCF128));
|
|
break;
|
|
case ISD::FDIV:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
|
|
RTLIB::DIV_F80, RTLIB::DIV_F128,
|
|
RTLIB::DIV_PPCF128));
|
|
break;
|
|
case ISD::FREM:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
|
|
RTLIB::REM_F80, RTLIB::REM_F128,
|
|
RTLIB::REM_PPCF128));
|
|
break;
|
|
case ISD::FMA:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
|
|
RTLIB::FMA_F80, RTLIB::FMA_F128,
|
|
RTLIB::FMA_PPCF128));
|
|
break;
|
|
case ISD::FADD:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
|
|
RTLIB::ADD_F80, RTLIB::ADD_F128,
|
|
RTLIB::ADD_PPCF128));
|
|
break;
|
|
case ISD::FMUL:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
|
|
RTLIB::MUL_F80, RTLIB::MUL_F128,
|
|
RTLIB::MUL_PPCF128));
|
|
break;
|
|
case ISD::FP16_TO_FP:
|
|
if (Node->getValueType(0) == MVT::f32) {
|
|
Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
|
|
}
|
|
break;
|
|
case ISD::FP_TO_FP16: {
|
|
RTLIB::Libcall LC =
|
|
RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
|
|
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
|
|
Results.push_back(ExpandLibCall(LC, Node, false));
|
|
break;
|
|
}
|
|
case ISD::FSUB:
|
|
Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
|
|
RTLIB::SUB_F80, RTLIB::SUB_F128,
|
|
RTLIB::SUB_PPCF128));
|
|
break;
|
|
case ISD::SREM:
|
|
Results.push_back(ExpandIntLibCall(Node, true,
|
|
RTLIB::SREM_I8,
|
|
RTLIB::SREM_I16, RTLIB::SREM_I32,
|
|
RTLIB::SREM_I64, RTLIB::SREM_I128));
|
|
break;
|
|
case ISD::UREM:
|
|
Results.push_back(ExpandIntLibCall(Node, false,
|
|
RTLIB::UREM_I8,
|
|
RTLIB::UREM_I16, RTLIB::UREM_I32,
|
|
RTLIB::UREM_I64, RTLIB::UREM_I128));
|
|
break;
|
|
case ISD::SDIV:
|
|
Results.push_back(ExpandIntLibCall(Node, true,
|
|
RTLIB::SDIV_I8,
|
|
RTLIB::SDIV_I16, RTLIB::SDIV_I32,
|
|
RTLIB::SDIV_I64, RTLIB::SDIV_I128));
|
|
break;
|
|
case ISD::UDIV:
|
|
Results.push_back(ExpandIntLibCall(Node, false,
|
|
RTLIB::UDIV_I8,
|
|
RTLIB::UDIV_I16, RTLIB::UDIV_I32,
|
|
RTLIB::UDIV_I64, RTLIB::UDIV_I128));
|
|
break;
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
// Expand into divrem libcall
|
|
ExpandDivRemLibCall(Node, Results);
|
|
break;
|
|
case ISD::MUL:
|
|
Results.push_back(ExpandIntLibCall(Node, false,
|
|
RTLIB::MUL_I8,
|
|
RTLIB::MUL_I16, RTLIB::MUL_I32,
|
|
RTLIB::MUL_I64, RTLIB::MUL_I128));
|
|
break;
|
|
}
|
|
|
|
// Replace the original node with the legalized result.
|
|
if (!Results.empty())
|
|
ReplaceNode(Node, Results.data());
|
|
}
|
|
|
|
// Determine the vector type to use in place of an original scalar element when
|
|
// promoting equally sized vectors.
|
|
static MVT getPromotedVectorElementType(const TargetLowering &TLI,
|
|
MVT EltVT, MVT NewEltVT) {
|
|
unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
|
|
MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
|
|
assert(TLI.isTypeLegal(MidVT) && "unexpected");
|
|
return MidVT;
|
|
}
|
|
|
|
void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
|
|
SmallVector<SDValue, 8> Results;
|
|
MVT OVT = Node->getSimpleValueType(0);
|
|
if (Node->getOpcode() == ISD::UINT_TO_FP ||
|
|
Node->getOpcode() == ISD::SINT_TO_FP ||
|
|
Node->getOpcode() == ISD::SETCC ||
|
|
Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
|
|
Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
|
|
OVT = Node->getOperand(0).getSimpleValueType();
|
|
}
|
|
if (Node->getOpcode() == ISD::BR_CC)
|
|
OVT = Node->getOperand(2).getSimpleValueType();
|
|
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
|
|
SDLoc dl(Node);
|
|
SDValue Tmp1, Tmp2, Tmp3;
|
|
switch (Node->getOpcode()) {
|
|
case ISD::CTTZ:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
case ISD::CTLZ:
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
case ISD::CTPOP:
|
|
// Zero extend the argument.
|
|
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
|
|
// Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
|
|
// already the correct result.
|
|
Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
|
|
if (Node->getOpcode() == ISD::CTTZ) {
|
|
// FIXME: This should set a bit in the zero extended value instead.
|
|
Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
|
|
Tmp1, DAG.getConstant(NVT.getSizeInBits(), dl, NVT),
|
|
ISD::SETEQ);
|
|
Tmp1 = DAG.getSelect(dl, NVT, Tmp2,
|
|
DAG.getConstant(OVT.getSizeInBits(), dl, NVT), Tmp1);
|
|
} else if (Node->getOpcode() == ISD::CTLZ ||
|
|
Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
|
|
// Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
|
|
Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
|
|
DAG.getConstant(NVT.getSizeInBits() -
|
|
OVT.getSizeInBits(), dl, NVT));
|
|
}
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
|
|
break;
|
|
case ISD::BSWAP: {
|
|
unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
|
|
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
|
|
Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
|
|
Tmp1 = DAG.getNode(
|
|
ISD::SRL, dl, NVT, Tmp1,
|
|
DAG.getConstant(DiffBits, dl,
|
|
TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FP_TO_SINT:
|
|
Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
|
|
Node->getOpcode() == ISD::FP_TO_SINT, dl);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::UINT_TO_FP:
|
|
case ISD::SINT_TO_FP:
|
|
Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
|
|
Node->getOpcode() == ISD::SINT_TO_FP, dl);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
case ISD::VAARG: {
|
|
SDValue Chain = Node->getOperand(0); // Get the chain.
|
|
SDValue Ptr = Node->getOperand(1); // Get the pointer.
|
|
|
|
unsigned TruncOp;
|
|
if (OVT.isVector()) {
|
|
TruncOp = ISD::BITCAST;
|
|
} else {
|
|
assert(OVT.isInteger()
|
|
&& "VAARG promotion is supported only for vectors or integer types");
|
|
TruncOp = ISD::TRUNCATE;
|
|
}
|
|
|
|
// Perform the larger operation, then convert back
|
|
Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
|
|
Node->getConstantOperandVal(3));
|
|
Chain = Tmp1.getValue(1);
|
|
|
|
Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
|
|
|
|
// Modified the chain result - switch anything that used the old chain to
|
|
// use the new one.
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
|
|
if (UpdatedNodes) {
|
|
UpdatedNodes->insert(Tmp2.getNode());
|
|
UpdatedNodes->insert(Chain.getNode());
|
|
}
|
|
ReplacedNode(Node);
|
|
break;
|
|
}
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
unsigned ExtOp, TruncOp;
|
|
if (OVT.isVector()) {
|
|
ExtOp = ISD::BITCAST;
|
|
TruncOp = ISD::BITCAST;
|
|
} else {
|
|
assert(OVT.isInteger() && "Cannot promote logic operation");
|
|
ExtOp = ISD::ANY_EXTEND;
|
|
TruncOp = ISD::TRUNCATE;
|
|
}
|
|
// Promote each of the values to the new type.
|
|
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
|
|
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
|
|
// Perform the larger operation, then convert back
|
|
Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
|
|
Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
|
|
break;
|
|
}
|
|
case ISD::SELECT: {
|
|
unsigned ExtOp, TruncOp;
|
|
if (Node->getValueType(0).isVector() ||
|
|
Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
|
|
ExtOp = ISD::BITCAST;
|
|
TruncOp = ISD::BITCAST;
|
|
} else if (Node->getValueType(0).isInteger()) {
|
|
ExtOp = ISD::ANY_EXTEND;
|
|
TruncOp = ISD::TRUNCATE;
|
|
} else {
|
|
ExtOp = ISD::FP_EXTEND;
|
|
TruncOp = ISD::FP_ROUND;
|
|
}
|
|
Tmp1 = Node->getOperand(0);
|
|
// Promote each of the values to the new type.
|
|
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
|
|
Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
|
|
// Perform the larger operation, then round down.
|
|
Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
|
|
if (TruncOp != ISD::FP_ROUND)
|
|
Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
|
|
else
|
|
Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
|
|
DAG.getIntPtrConstant(0, dl));
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::VECTOR_SHUFFLE: {
|
|
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
|
|
|
|
// Cast the two input vectors.
|
|
Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
|
|
Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
|
|
|
|
// Convert the shuffle mask to the right # elements.
|
|
Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
|
|
Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
|
|
Results.push_back(Tmp1);
|
|
break;
|
|
}
|
|
case ISD::SETCC: {
|
|
unsigned ExtOp = ISD::FP_EXTEND;
|
|
if (NVT.isInteger()) {
|
|
ISD::CondCode CCCode =
|
|
cast<CondCodeSDNode>(Node->getOperand(2))->get();
|
|
ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
}
|
|
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
|
|
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
|
|
Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
|
|
Tmp1, Tmp2, Node->getOperand(2)));
|
|
break;
|
|
}
|
|
case ISD::BR_CC: {
|
|
unsigned ExtOp = ISD::FP_EXTEND;
|
|
if (NVT.isInteger()) {
|
|
ISD::CondCode CCCode =
|
|
cast<CondCodeSDNode>(Node->getOperand(1))->get();
|
|
ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
}
|
|
Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
|
|
Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
|
|
Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
|
|
Node->getOperand(0), Node->getOperand(1),
|
|
Tmp1, Tmp2, Node->getOperand(4)));
|
|
break;
|
|
}
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::FMINNUM:
|
|
case ISD::FMAXNUM:
|
|
case ISD::FPOW: {
|
|
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
|
|
Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
|
|
Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
|
|
Node->getFlags());
|
|
Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
|
|
Tmp3, DAG.getIntPtrConstant(0, dl)));
|
|
break;
|
|
}
|
|
case ISD::FMA: {
|
|
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
|
|
Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
|
|
Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
|
|
Results.push_back(
|
|
DAG.getNode(ISD::FP_ROUND, dl, OVT,
|
|
DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
|
|
DAG.getIntPtrConstant(0, dl)));
|
|
break;
|
|
}
|
|
case ISD::FCOPYSIGN:
|
|
case ISD::FPOWI: {
|
|
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
|
|
Tmp2 = Node->getOperand(1);
|
|
Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
|
|
|
|
// fcopysign doesn't change anything but the sign bit, so
|
|
// (fp_round (fcopysign (fpext a), b))
|
|
// is as precise as
|
|
// (fp_round (fpext a))
|
|
// which is a no-op. Mark it as a TRUNCating FP_ROUND.
|
|
const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
|
|
Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
|
|
Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
|
|
break;
|
|
}
|
|
case ISD::FFLOOR:
|
|
case ISD::FCEIL:
|
|
case ISD::FRINT:
|
|
case ISD::FNEARBYINT:
|
|
case ISD::FROUND:
|
|
case ISD::FTRUNC:
|
|
case ISD::FNEG:
|
|
case ISD::FSQRT:
|
|
case ISD::FSIN:
|
|
case ISD::FCOS:
|
|
case ISD::FLOG:
|
|
case ISD::FLOG2:
|
|
case ISD::FLOG10:
|
|
case ISD::FABS:
|
|
case ISD::FEXP:
|
|
case ISD::FEXP2: {
|
|
Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
|
|
Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
|
|
Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
|
|
Tmp2, DAG.getIntPtrConstant(0, dl)));
|
|
break;
|
|
}
|
|
case ISD::BUILD_VECTOR: {
|
|
MVT EltVT = OVT.getVectorElementType();
|
|
MVT NewEltVT = NVT.getVectorElementType();
|
|
|
|
// Handle bitcasts to a different vector type with the same total bit size
|
|
//
|
|
// e.g. v2i64 = build_vector i64:x, i64:y => v4i32
|
|
// =>
|
|
// v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
|
|
|
|
assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
|
|
"Invalid promote type for build_vector");
|
|
assert(NewEltVT.bitsLT(EltVT) && "not handled");
|
|
|
|
MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
|
|
|
|
SmallVector<SDValue, 8> NewOps;
|
|
for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
|
|
SDValue Op = Node->getOperand(I);
|
|
NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
|
|
}
|
|
|
|
SDLoc SL(Node);
|
|
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
|
|
SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
|
|
Results.push_back(CvtVec);
|
|
break;
|
|
}
|
|
case ISD::EXTRACT_VECTOR_ELT: {
|
|
MVT EltVT = OVT.getVectorElementType();
|
|
MVT NewEltVT = NVT.getVectorElementType();
|
|
|
|
// Handle bitcasts to a different vector type with the same total bit size.
|
|
//
|
|
// e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
|
|
// =>
|
|
// v4i32:castx = bitcast x:v2i64
|
|
//
|
|
// i64 = bitcast
|
|
// (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
|
|
// (i32 (extract_vector_elt castx, (2 * y + 1)))
|
|
//
|
|
|
|
assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
|
|
"Invalid promote type for extract_vector_elt");
|
|
assert(NewEltVT.bitsLT(EltVT) && "not handled");
|
|
|
|
MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
|
|
unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
|
|
|
|
SDValue Idx = Node->getOperand(1);
|
|
EVT IdxVT = Idx.getValueType();
|
|
SDLoc SL(Node);
|
|
SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
|
|
SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
|
|
|
|
SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
|
|
|
|
SmallVector<SDValue, 8> NewOps;
|
|
for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
|
|
SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
|
|
SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
|
|
|
|
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
|
|
CastVec, TmpIdx);
|
|
NewOps.push_back(Elt);
|
|
}
|
|
|
|
SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MidVT, NewOps);
|
|
|
|
Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
|
|
break;
|
|
}
|
|
case ISD::INSERT_VECTOR_ELT: {
|
|
MVT EltVT = OVT.getVectorElementType();
|
|
MVT NewEltVT = NVT.getVectorElementType();
|
|
|
|
// Handle bitcasts to a different vector type with the same total bit size
|
|
//
|
|
// e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
|
|
// =>
|
|
// v4i32:castx = bitcast x:v2i64
|
|
// v2i32:casty = bitcast y:i64
|
|
//
|
|
// v2i64 = bitcast
|
|
// (v4i32 insert_vector_elt
|
|
// (v4i32 insert_vector_elt v4i32:castx,
|
|
// (extract_vector_elt casty, 0), 2 * z),
|
|
// (extract_vector_elt casty, 1), (2 * z + 1))
|
|
|
|
assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
|
|
"Invalid promote type for insert_vector_elt");
|
|
assert(NewEltVT.bitsLT(EltVT) && "not handled");
|
|
|
|
MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
|
|
unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
|
|
|
|
SDValue Val = Node->getOperand(1);
|
|
SDValue Idx = Node->getOperand(2);
|
|
EVT IdxVT = Idx.getValueType();
|
|
SDLoc SL(Node);
|
|
|
|
SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
|
|
SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
|
|
|
|
SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
|
|
SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
|
|
|
|
SDValue NewVec = CastVec;
|
|
for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
|
|
SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
|
|
SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
|
|
|
|
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
|
|
CastVal, IdxOffset);
|
|
|
|
NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
|
|
NewVec, Elt, InEltIdx);
|
|
}
|
|
|
|
Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
|
|
break;
|
|
}
|
|
case ISD::SCALAR_TO_VECTOR: {
|
|
MVT EltVT = OVT.getVectorElementType();
|
|
MVT NewEltVT = NVT.getVectorElementType();
|
|
|
|
// Handle bitcasts to different vector type with the smae total bit size.
|
|
//
|
|
// e.g. v2i64 = scalar_to_vector x:i64
|
|
// =>
|
|
// concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
|
|
//
|
|
|
|
MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
|
|
SDValue Val = Node->getOperand(0);
|
|
SDLoc SL(Node);
|
|
|
|
SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
|
|
SDValue Undef = DAG.getUNDEF(MidVT);
|
|
|
|
SmallVector<SDValue, 8> NewElts;
|
|
NewElts.push_back(CastVal);
|
|
for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
|
|
NewElts.push_back(Undef);
|
|
|
|
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
|
|
SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
|
|
Results.push_back(CvtVec);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Replace the original node with the legalized result.
|
|
if (!Results.empty())
|
|
ReplaceNode(Node, Results.data());
|
|
}
|
|
|
|
/// This is the entry point for the file.
|
|
void SelectionDAG::Legalize() {
|
|
AssignTopologicalOrder();
|
|
|
|
SmallPtrSet<SDNode *, 16> LegalizedNodes;
|
|
SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
|
|
|
|
// Visit all the nodes. We start in topological order, so that we see
|
|
// nodes with their original operands intact. Legalization can produce
|
|
// new nodes which may themselves need to be legalized. Iterate until all
|
|
// nodes have been legalized.
|
|
for (;;) {
|
|
bool AnyLegalized = false;
|
|
for (auto NI = allnodes_end(); NI != allnodes_begin();) {
|
|
--NI;
|
|
|
|
SDNode *N = &*NI;
|
|
if (N->use_empty() && N != getRoot().getNode()) {
|
|
++NI;
|
|
DeleteNode(N);
|
|
continue;
|
|
}
|
|
|
|
if (LegalizedNodes.insert(N).second) {
|
|
AnyLegalized = true;
|
|
Legalizer.LegalizeOp(N);
|
|
|
|
if (N->use_empty() && N != getRoot().getNode()) {
|
|
++NI;
|
|
DeleteNode(N);
|
|
}
|
|
}
|
|
}
|
|
if (!AnyLegalized)
|
|
break;
|
|
|
|
}
|
|
|
|
// Remove dead nodes now.
|
|
RemoveDeadNodes();
|
|
}
|
|
|
|
bool SelectionDAG::LegalizeOp(SDNode *N,
|
|
SmallSetVector<SDNode *, 16> &UpdatedNodes) {
|
|
SmallPtrSet<SDNode *, 16> LegalizedNodes;
|
|
SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
|
|
|
|
// Directly insert the node in question, and legalize it. This will recurse
|
|
// as needed through operands.
|
|
LegalizedNodes.insert(N);
|
|
Legalizer.LegalizeOp(N);
|
|
|
|
return LegalizedNodes.count(N);
|
|
}
|