mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-02 16:56:50 +00:00
ac53b0a48a
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131405 91177308-0d34-0410-b5e6-96231b3b80d8
648 lines
25 KiB
C++
648 lines
25 KiB
C++
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements inline cost analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// callIsSmall - If a call is likely to lower to a single target instruction,
|
|
/// or is otherwise deemed small return true.
|
|
/// TODO: Perhaps calls like memcpy, strcpy, etc?
|
|
bool llvm::callIsSmall(const Function *F) {
|
|
if (!F) return false;
|
|
|
|
if (F->hasLocalLinkage()) return false;
|
|
|
|
if (!F->hasName()) return false;
|
|
|
|
StringRef Name = F->getName();
|
|
|
|
// These will all likely lower to a single selection DAG node.
|
|
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
|
|
Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
|
|
Name == "sin" || Name == "sinf" || Name == "sinl" ||
|
|
Name == "cos" || Name == "cosf" || Name == "cosl" ||
|
|
Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" )
|
|
return true;
|
|
|
|
// These are all likely to be optimized into something smaller.
|
|
if (Name == "pow" || Name == "powf" || Name == "powl" ||
|
|
Name == "exp2" || Name == "exp2l" || Name == "exp2f" ||
|
|
Name == "floor" || Name == "floorf" || Name == "ceil" ||
|
|
Name == "round" || Name == "ffs" || Name == "ffsl" ||
|
|
Name == "abs" || Name == "labs" || Name == "llabs")
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// analyzeBasicBlock - Fill in the current structure with information gleaned
|
|
/// from the specified block.
|
|
void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
|
|
++NumBlocks;
|
|
unsigned NumInstsBeforeThisBB = NumInsts;
|
|
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
|
|
II != E; ++II) {
|
|
if (isa<PHINode>(II)) continue; // PHI nodes don't count.
|
|
|
|
// Special handling for calls.
|
|
if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
|
|
if (isa<DbgInfoIntrinsic>(II))
|
|
continue; // Debug intrinsics don't count as size.
|
|
|
|
ImmutableCallSite CS(cast<Instruction>(II));
|
|
|
|
if (const Function *F = CS.getCalledFunction()) {
|
|
// If a function is both internal and has a single use, then it is
|
|
// extremely likely to get inlined in the future (it was probably
|
|
// exposed by an interleaved devirtualization pass).
|
|
if (F->hasInternalLinkage() && F->hasOneUse())
|
|
++NumInlineCandidates;
|
|
|
|
// If this call is to function itself, then the function is recursive.
|
|
// Inlining it into other functions is a bad idea, because this is
|
|
// basically just a form of loop peeling, and our metrics aren't useful
|
|
// for that case.
|
|
if (F == BB->getParent())
|
|
isRecursive = true;
|
|
}
|
|
|
|
if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction())) {
|
|
// Each argument to a call takes on average one instruction to set up.
|
|
NumInsts += CS.arg_size();
|
|
|
|
// We don't want inline asm to count as a call - that would prevent loop
|
|
// unrolling. The argument setup cost is still real, though.
|
|
if (!isa<InlineAsm>(CS.getCalledValue()))
|
|
++NumCalls;
|
|
}
|
|
}
|
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
|
|
if (!AI->isStaticAlloca())
|
|
this->usesDynamicAlloca = true;
|
|
}
|
|
|
|
if (isa<ExtractElementInst>(II) || II->getType()->isVectorTy())
|
|
++NumVectorInsts;
|
|
|
|
if (const CastInst *CI = dyn_cast<CastInst>(II)) {
|
|
// Noop casts, including ptr <-> int, don't count.
|
|
if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
|
|
isa<PtrToIntInst>(CI))
|
|
continue;
|
|
// Result of a cmp instruction is often extended (to be used by other
|
|
// cmp instructions, logical or return instructions). These are usually
|
|
// nop on most sane targets.
|
|
if (isa<CmpInst>(CI->getOperand(0)))
|
|
continue;
|
|
} else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){
|
|
// If a GEP has all constant indices, it will probably be folded with
|
|
// a load/store.
|
|
if (GEPI->hasAllConstantIndices())
|
|
continue;
|
|
}
|
|
|
|
++NumInsts;
|
|
}
|
|
|
|
if (isa<ReturnInst>(BB->getTerminator()))
|
|
++NumRets;
|
|
|
|
// We never want to inline functions that contain an indirectbr. This is
|
|
// incorrect because all the blockaddress's (in static global initializers
|
|
// for example) would be referring to the original function, and this indirect
|
|
// jump would jump from the inlined copy of the function into the original
|
|
// function which is extremely undefined behavior.
|
|
if (isa<IndirectBrInst>(BB->getTerminator()))
|
|
containsIndirectBr = true;
|
|
|
|
// Remember NumInsts for this BB.
|
|
NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
|
|
}
|
|
|
|
// CountCodeReductionForConstant - Figure out an approximation for how many
|
|
// instructions will be constant folded if the specified value is constant.
|
|
//
|
|
unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) {
|
|
unsigned Reduction = 0;
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
User *U = *UI;
|
|
if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
|
|
// We will be able to eliminate all but one of the successors.
|
|
const TerminatorInst &TI = cast<TerminatorInst>(*U);
|
|
const unsigned NumSucc = TI.getNumSuccessors();
|
|
unsigned Instrs = 0;
|
|
for (unsigned I = 0; I != NumSucc; ++I)
|
|
Instrs += NumBBInsts[TI.getSuccessor(I)];
|
|
// We don't know which blocks will be eliminated, so use the average size.
|
|
Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc;
|
|
} else {
|
|
// Figure out if this instruction will be removed due to simple constant
|
|
// propagation.
|
|
Instruction &Inst = cast<Instruction>(*U);
|
|
|
|
// We can't constant propagate instructions which have effects or
|
|
// read memory.
|
|
//
|
|
// FIXME: It would be nice to capture the fact that a load from a
|
|
// pointer-to-constant-global is actually a *really* good thing to zap.
|
|
// Unfortunately, we don't know the pointer that may get propagated here,
|
|
// so we can't make this decision.
|
|
if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
|
|
isa<AllocaInst>(Inst))
|
|
continue;
|
|
|
|
bool AllOperandsConstant = true;
|
|
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
|
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
|
AllOperandsConstant = false;
|
|
break;
|
|
}
|
|
|
|
if (AllOperandsConstant) {
|
|
// We will get to remove this instruction...
|
|
Reduction += InlineConstants::InstrCost;
|
|
|
|
// And any other instructions that use it which become constants
|
|
// themselves.
|
|
Reduction += CountCodeReductionForConstant(&Inst);
|
|
}
|
|
}
|
|
}
|
|
return Reduction;
|
|
}
|
|
|
|
// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
|
|
// the function will be if it is inlined into a context where an argument
|
|
// becomes an alloca.
|
|
//
|
|
unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) {
|
|
if (!V->getType()->isPointerTy()) return 0; // Not a pointer
|
|
unsigned Reduction = 0;
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
Instruction *I = cast<Instruction>(*UI);
|
|
if (isa<LoadInst>(I) || isa<StoreInst>(I))
|
|
Reduction += InlineConstants::InstrCost;
|
|
else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
// If the GEP has variable indices, we won't be able to do much with it.
|
|
if (GEP->hasAllConstantIndices())
|
|
Reduction += CountCodeReductionForAlloca(GEP);
|
|
} else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
|
|
// Track pointer through bitcasts.
|
|
Reduction += CountCodeReductionForAlloca(BCI);
|
|
} else {
|
|
// If there is some other strange instruction, we're not going to be able
|
|
// to do much if we inline this.
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return Reduction;
|
|
}
|
|
|
|
/// analyzeFunction - Fill in the current structure with information gleaned
|
|
/// from the specified function.
|
|
void CodeMetrics::analyzeFunction(Function *F) {
|
|
// If this function contains a call to setjmp or _setjmp, never inline
|
|
// it. This is a hack because we depend on the user marking their local
|
|
// variables as volatile if they are live across a setjmp call, and they
|
|
// probably won't do this in callers.
|
|
if (F->callsFunctionThatReturnsTwice())
|
|
callsSetJmp = true;
|
|
|
|
// Look at the size of the callee.
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
analyzeBasicBlock(&*BB);
|
|
}
|
|
|
|
/// analyzeFunction - Fill in the current structure with information gleaned
|
|
/// from the specified function.
|
|
void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
|
|
Metrics.analyzeFunction(F);
|
|
|
|
// A function with exactly one return has it removed during the inlining
|
|
// process (see InlineFunction), so don't count it.
|
|
// FIXME: This knowledge should really be encoded outside of FunctionInfo.
|
|
if (Metrics.NumRets==1)
|
|
--Metrics.NumInsts;
|
|
|
|
// Check out all of the arguments to the function, figuring out how much
|
|
// code can be eliminated if one of the arguments is a constant.
|
|
ArgumentWeights.reserve(F->arg_size());
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
|
|
ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I),
|
|
Metrics.CountCodeReductionForAlloca(I)));
|
|
}
|
|
|
|
/// NeverInline - returns true if the function should never be inlined into
|
|
/// any caller
|
|
bool InlineCostAnalyzer::FunctionInfo::NeverInline() {
|
|
return (Metrics.callsSetJmp || Metrics.isRecursive ||
|
|
Metrics.containsIndirectBr);
|
|
}
|
|
// getSpecializationBonus - The heuristic used to determine the per-call
|
|
// performance boost for using a specialization of Callee with argument
|
|
// specializedArgNo replaced by a constant.
|
|
int InlineCostAnalyzer::getSpecializationBonus(Function *Callee,
|
|
SmallVectorImpl<unsigned> &SpecializedArgNos)
|
|
{
|
|
if (Callee->mayBeOverridden())
|
|
return 0;
|
|
|
|
int Bonus = 0;
|
|
// If this function uses the coldcc calling convention, prefer not to
|
|
// specialize it.
|
|
if (Callee->getCallingConv() == CallingConv::Cold)
|
|
Bonus -= InlineConstants::ColdccPenalty;
|
|
|
|
// Get information about the callee.
|
|
FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
if (CalleeFI->Metrics.NumBlocks == 0)
|
|
CalleeFI->analyzeFunction(Callee);
|
|
|
|
unsigned ArgNo = 0;
|
|
unsigned i = 0;
|
|
for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end();
|
|
I != E; ++I, ++ArgNo)
|
|
if (ArgNo == SpecializedArgNos[i]) {
|
|
++i;
|
|
Bonus += CountBonusForConstant(I);
|
|
}
|
|
|
|
// Calls usually take a long time, so they make the specialization gain
|
|
// smaller.
|
|
Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
|
|
|
|
return Bonus;
|
|
}
|
|
|
|
// ConstantFunctionBonus - Figure out how much of a bonus we can get for
|
|
// possibly devirtualizing a function. We'll subtract the size of the function
|
|
// we may wish to inline from the indirect call bonus providing a limit on
|
|
// growth. Leave an upper limit of 0 for the bonus - we don't want to penalize
|
|
// inlining because we decide we don't want to give a bonus for
|
|
// devirtualizing.
|
|
int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) {
|
|
|
|
// This could just be NULL.
|
|
if (!C) return 0;
|
|
|
|
Function *F = dyn_cast<Function>(C);
|
|
if (!F) return 0;
|
|
|
|
int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F);
|
|
return (Bonus > 0) ? 0 : Bonus;
|
|
}
|
|
|
|
// CountBonusForConstant - Figure out an approximation for how much per-call
|
|
// performance boost we can expect if the specified value is constant.
|
|
int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) {
|
|
unsigned Bonus = 0;
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
User *U = *UI;
|
|
if (CallInst *CI = dyn_cast<CallInst>(U)) {
|
|
// Turning an indirect call into a direct call is a BIG win
|
|
if (CI->getCalledValue() == V)
|
|
Bonus += ConstantFunctionBonus(CallSite(CI), C);
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
|
|
// Turning an indirect call into a direct call is a BIG win
|
|
if (II->getCalledValue() == V)
|
|
Bonus += ConstantFunctionBonus(CallSite(II), C);
|
|
}
|
|
// FIXME: Eliminating conditional branches and switches should
|
|
// also yield a per-call performance boost.
|
|
else {
|
|
// Figure out the bonuses that wll accrue due to simple constant
|
|
// propagation.
|
|
Instruction &Inst = cast<Instruction>(*U);
|
|
|
|
// We can't constant propagate instructions which have effects or
|
|
// read memory.
|
|
//
|
|
// FIXME: It would be nice to capture the fact that a load from a
|
|
// pointer-to-constant-global is actually a *really* good thing to zap.
|
|
// Unfortunately, we don't know the pointer that may get propagated here,
|
|
// so we can't make this decision.
|
|
if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
|
|
isa<AllocaInst>(Inst))
|
|
continue;
|
|
|
|
bool AllOperandsConstant = true;
|
|
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
|
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
|
AllOperandsConstant = false;
|
|
break;
|
|
}
|
|
|
|
if (AllOperandsConstant)
|
|
Bonus += CountBonusForConstant(&Inst);
|
|
}
|
|
}
|
|
|
|
return Bonus;
|
|
}
|
|
|
|
int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) {
|
|
// Get information about the callee.
|
|
FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
if (CalleeFI->Metrics.NumBlocks == 0)
|
|
CalleeFI->analyzeFunction(Callee);
|
|
|
|
// InlineCost - This value measures how good of an inline candidate this call
|
|
// site is to inline. A lower inline cost make is more likely for the call to
|
|
// be inlined. This value may go negative.
|
|
//
|
|
int InlineCost = 0;
|
|
|
|
// Compute any size reductions we can expect due to arguments being passed into
|
|
// the function.
|
|
//
|
|
unsigned ArgNo = 0;
|
|
CallSite::arg_iterator I = CS.arg_begin();
|
|
for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
|
|
FI != FE; ++I, ++FI, ++ArgNo) {
|
|
|
|
// If an alloca is passed in, inlining this function is likely to allow
|
|
// significant future optimization possibilities (like scalar promotion, and
|
|
// scalarization), so encourage the inlining of the function.
|
|
//
|
|
if (isa<AllocaInst>(I))
|
|
InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight;
|
|
|
|
// If this is a constant being passed into the function, use the argument
|
|
// weights calculated for the callee to determine how much will be folded
|
|
// away with this information.
|
|
else if (isa<Constant>(I))
|
|
InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight;
|
|
}
|
|
|
|
// Each argument passed in has a cost at both the caller and the callee
|
|
// sides. Measurements show that each argument costs about the same as an
|
|
// instruction.
|
|
InlineCost -= (CS.arg_size() * InlineConstants::InstrCost);
|
|
|
|
// Now that we have considered all of the factors that make the call site more
|
|
// likely to be inlined, look at factors that make us not want to inline it.
|
|
|
|
// Calls usually take a long time, so they make the inlining gain smaller.
|
|
InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
|
|
|
|
// Look at the size of the callee. Each instruction counts as 5.
|
|
InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost;
|
|
|
|
return InlineCost;
|
|
}
|
|
|
|
int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) {
|
|
// Get information about the callee.
|
|
FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
if (CalleeFI->Metrics.NumBlocks == 0)
|
|
CalleeFI->analyzeFunction(Callee);
|
|
|
|
bool isDirectCall = CS.getCalledFunction() == Callee;
|
|
Instruction *TheCall = CS.getInstruction();
|
|
int Bonus = 0;
|
|
|
|
// If there is only one call of the function, and it has internal linkage,
|
|
// make it almost guaranteed to be inlined.
|
|
//
|
|
if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall)
|
|
Bonus += InlineConstants::LastCallToStaticBonus;
|
|
|
|
// If the instruction after the call, or if the normal destination of the
|
|
// invoke is an unreachable instruction, the function is noreturn. As such,
|
|
// there is little point in inlining this.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
|
if (isa<UnreachableInst>(II->getNormalDest()->begin()))
|
|
Bonus += InlineConstants::NoreturnPenalty;
|
|
} else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
|
|
Bonus += InlineConstants::NoreturnPenalty;
|
|
|
|
// If this function uses the coldcc calling convention, prefer not to inline
|
|
// it.
|
|
if (Callee->getCallingConv() == CallingConv::Cold)
|
|
Bonus += InlineConstants::ColdccPenalty;
|
|
|
|
// Add to the inline quality for properties that make the call valuable to
|
|
// inline. This includes factors that indicate that the result of inlining
|
|
// the function will be optimizable. Currently this just looks at arguments
|
|
// passed into the function.
|
|
//
|
|
CallSite::arg_iterator I = CS.arg_begin();
|
|
for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
|
|
FI != FE; ++I, ++FI)
|
|
// Compute any constant bonus due to inlining we want to give here.
|
|
if (isa<Constant>(I))
|
|
Bonus += CountBonusForConstant(FI, cast<Constant>(I));
|
|
|
|
return Bonus;
|
|
}
|
|
|
|
// getInlineCost - The heuristic used to determine if we should inline the
|
|
// function call or not.
|
|
//
|
|
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
|
|
SmallPtrSet<const Function*, 16> &NeverInline) {
|
|
return getInlineCost(CS, CS.getCalledFunction(), NeverInline);
|
|
}
|
|
|
|
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
|
|
Function *Callee,
|
|
SmallPtrSet<const Function*, 16> &NeverInline) {
|
|
Instruction *TheCall = CS.getInstruction();
|
|
Function *Caller = TheCall->getParent()->getParent();
|
|
|
|
// Don't inline functions which can be redefined at link-time to mean
|
|
// something else. Don't inline functions marked noinline or call sites
|
|
// marked noinline.
|
|
if (Callee->mayBeOverridden() ||
|
|
Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) ||
|
|
CS.isNoInline())
|
|
return llvm::InlineCost::getNever();
|
|
|
|
// Get information about the callee.
|
|
FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
if (CalleeFI->Metrics.NumBlocks == 0)
|
|
CalleeFI->analyzeFunction(Callee);
|
|
|
|
// If we should never inline this, return a huge cost.
|
|
if (CalleeFI->NeverInline())
|
|
return InlineCost::getNever();
|
|
|
|
// FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we
|
|
// could move this up and avoid computing the FunctionInfo for
|
|
// things we are going to just return always inline for. This
|
|
// requires handling setjmp somewhere else, however.
|
|
if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
|
|
return InlineCost::getAlways();
|
|
|
|
if (CalleeFI->Metrics.usesDynamicAlloca) {
|
|
// Get information about the caller.
|
|
FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
if (CallerFI.Metrics.NumBlocks == 0) {
|
|
CallerFI.analyzeFunction(Caller);
|
|
|
|
// Recompute the CalleeFI pointer, getting Caller could have invalidated
|
|
// it.
|
|
CalleeFI = &CachedFunctionInfo[Callee];
|
|
}
|
|
|
|
// Don't inline a callee with dynamic alloca into a caller without them.
|
|
// Functions containing dynamic alloca's are inefficient in various ways;
|
|
// don't create more inefficiency.
|
|
if (!CallerFI.Metrics.usesDynamicAlloca)
|
|
return InlineCost::getNever();
|
|
}
|
|
|
|
// InlineCost - This value measures how good of an inline candidate this call
|
|
// site is to inline. A lower inline cost make is more likely for the call to
|
|
// be inlined. This value may go negative due to the fact that bonuses
|
|
// are negative numbers.
|
|
//
|
|
int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee);
|
|
return llvm::InlineCost::get(InlineCost);
|
|
}
|
|
|
|
// getSpecializationCost - The heuristic used to determine the code-size
|
|
// impact of creating a specialized version of Callee with argument
|
|
// SpecializedArgNo replaced by a constant.
|
|
InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee,
|
|
SmallVectorImpl<unsigned> &SpecializedArgNos)
|
|
{
|
|
// Don't specialize functions which can be redefined at link-time to mean
|
|
// something else.
|
|
if (Callee->mayBeOverridden())
|
|
return llvm::InlineCost::getNever();
|
|
|
|
// Get information about the callee.
|
|
FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
if (CalleeFI->Metrics.NumBlocks == 0)
|
|
CalleeFI->analyzeFunction(Callee);
|
|
|
|
int Cost = 0;
|
|
|
|
// Look at the original size of the callee. Each instruction counts as 5.
|
|
Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost;
|
|
|
|
// Offset that with the amount of code that can be constant-folded
|
|
// away with the given arguments replaced by constants.
|
|
for (SmallVectorImpl<unsigned>::iterator an = SpecializedArgNos.begin(),
|
|
ae = SpecializedArgNos.end(); an != ae; ++an)
|
|
Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight;
|
|
|
|
return llvm::InlineCost::get(Cost);
|
|
}
|
|
|
|
// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
|
|
// higher threshold to determine if the function call should be inlined.
|
|
float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
|
|
Function *Callee = CS.getCalledFunction();
|
|
|
|
// Get information about the callee.
|
|
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
if (CalleeFI.Metrics.NumBlocks == 0)
|
|
CalleeFI.analyzeFunction(Callee);
|
|
|
|
float Factor = 1.0f;
|
|
// Single BB functions are often written to be inlined.
|
|
if (CalleeFI.Metrics.NumBlocks == 1)
|
|
Factor += 0.5f;
|
|
|
|
// Be more aggressive if the function contains a good chunk (if it mades up
|
|
// at least 10% of the instructions) of vector instructions.
|
|
if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2)
|
|
Factor += 2.0f;
|
|
else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10)
|
|
Factor += 1.5f;
|
|
return Factor;
|
|
}
|
|
|
|
/// growCachedCostInfo - update the cached cost info for Caller after Callee has
|
|
/// been inlined.
|
|
void
|
|
InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) {
|
|
CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics;
|
|
|
|
// For small functions we prefer to recalculate the cost for better accuracy.
|
|
if (CallerMetrics.NumBlocks < 10 || CallerMetrics.NumInsts < 1000) {
|
|
resetCachedCostInfo(Caller);
|
|
return;
|
|
}
|
|
|
|
// For large functions, we can save a lot of computation time by skipping
|
|
// recalculations.
|
|
if (CallerMetrics.NumCalls > 0)
|
|
--CallerMetrics.NumCalls;
|
|
|
|
if (Callee == 0) return;
|
|
|
|
CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics;
|
|
|
|
// If we don't have metrics for the callee, don't recalculate them just to
|
|
// update an approximation in the caller. Instead, just recalculate the
|
|
// caller info from scratch.
|
|
if (CalleeMetrics.NumBlocks == 0) {
|
|
resetCachedCostInfo(Caller);
|
|
return;
|
|
}
|
|
|
|
// Since CalleeMetrics were already calculated, we know that the CallerMetrics
|
|
// reference isn't invalidated: both were in the DenseMap.
|
|
CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca;
|
|
|
|
// FIXME: If any of these three are true for the callee, the callee was
|
|
// not inlined into the caller, so I think they're redundant here.
|
|
CallerMetrics.callsSetJmp |= CalleeMetrics.callsSetJmp;
|
|
CallerMetrics.isRecursive |= CalleeMetrics.isRecursive;
|
|
CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr;
|
|
|
|
CallerMetrics.NumInsts += CalleeMetrics.NumInsts;
|
|
CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks;
|
|
CallerMetrics.NumCalls += CalleeMetrics.NumCalls;
|
|
CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts;
|
|
CallerMetrics.NumRets += CalleeMetrics.NumRets;
|
|
|
|
// analyzeBasicBlock counts each function argument as an inst.
|
|
if (CallerMetrics.NumInsts >= Callee->arg_size())
|
|
CallerMetrics.NumInsts -= Callee->arg_size();
|
|
else
|
|
CallerMetrics.NumInsts = 0;
|
|
|
|
// We are not updating the argument weights. We have already determined that
|
|
// Caller is a fairly large function, so we accept the loss of precision.
|
|
}
|
|
|
|
/// clear - empty the cache of inline costs
|
|
void InlineCostAnalyzer::clear() {
|
|
CachedFunctionInfo.clear();
|
|
}
|