llvm/lib/Target/Hexagon/HexagonGenMux.cpp
2016-04-26 19:46:28 +00:00

325 lines
10 KiB
C++

//===--- HexagonGenMux.cpp ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// During instruction selection, MUX instructions are generated for
// conditional assignments. Since such assignments often present an
// opportunity to predicate instructions, HexagonExpandCondsets
// expands MUXes into pairs of conditional transfers, and then proceeds
// with predication of the producers/consumers of the registers involved.
// This happens after exiting from the SSA form, but before the machine
// instruction scheduler. After the scheduler and after the register
// allocation there can be cases of pairs of conditional transfers
// resulting from a MUX where neither of them was further predicated. If
// these transfers are now placed far enough from the instruction defining
// the predicate register, they cannot use the .new form. In such cases it
// is better to collapse them back to a single MUX instruction.
#define DEBUG_TYPE "hexmux"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "HexagonTargetMachine.h"
using namespace llvm;
namespace llvm {
FunctionPass *createHexagonGenMux();
void initializeHexagonGenMuxPass(PassRegistry& Registry);
}
namespace {
class HexagonGenMux : public MachineFunctionPass {
public:
static char ID;
HexagonGenMux() : MachineFunctionPass(ID), HII(0), HRI(0) {
initializeHexagonGenMuxPass(*PassRegistry::getPassRegistry());
}
const char *getPassName() const override {
return "Hexagon generate mux instructions";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::AllVRegsAllocated);
}
private:
const HexagonInstrInfo *HII;
const HexagonRegisterInfo *HRI;
struct CondsetInfo {
unsigned PredR;
unsigned TrueX, FalseX;
CondsetInfo() : PredR(0), TrueX(UINT_MAX), FalseX(UINT_MAX) {}
};
struct DefUseInfo {
BitVector Defs, Uses;
DefUseInfo() : Defs(), Uses() {}
DefUseInfo(const BitVector &D, const BitVector &U) : Defs(D), Uses(U) {}
};
struct MuxInfo {
MachineBasicBlock::iterator At;
unsigned DefR, PredR;
MachineOperand *SrcT, *SrcF;
MachineInstr *Def1, *Def2;
MuxInfo(MachineBasicBlock::iterator It, unsigned DR, unsigned PR,
MachineOperand *TOp, MachineOperand *FOp,
MachineInstr *D1, MachineInstr *D2)
: At(It), DefR(DR), PredR(PR), SrcT(TOp), SrcF(FOp), Def1(D1),
Def2(D2) {}
};
typedef DenseMap<MachineInstr*,unsigned> InstrIndexMap;
typedef DenseMap<unsigned,DefUseInfo> DefUseInfoMap;
typedef SmallVector<MuxInfo,4> MuxInfoList;
bool isRegPair(unsigned Reg) const {
return Hexagon::DoubleRegsRegClass.contains(Reg);
}
void getSubRegs(unsigned Reg, BitVector &SRs) const;
void expandReg(unsigned Reg, BitVector &Set) const;
void getDefsUses(const MachineInstr *MI, BitVector &Defs,
BitVector &Uses) const;
void buildMaps(MachineBasicBlock &B, InstrIndexMap &I2X,
DefUseInfoMap &DUM);
bool isCondTransfer(unsigned Opc) const;
unsigned getMuxOpcode(const MachineOperand &Src1,
const MachineOperand &Src2) const;
bool genMuxInBlock(MachineBasicBlock &B);
};
char HexagonGenMux::ID = 0;
}
INITIALIZE_PASS(HexagonGenMux, "hexagon-mux",
"Hexagon generate mux instructions", false, false)
void HexagonGenMux::getSubRegs(unsigned Reg, BitVector &SRs) const {
for (MCSubRegIterator I(Reg, HRI); I.isValid(); ++I)
SRs[*I] = true;
}
void HexagonGenMux::expandReg(unsigned Reg, BitVector &Set) const {
if (isRegPair(Reg))
getSubRegs(Reg, Set);
else
Set[Reg] = true;
}
void HexagonGenMux::getDefsUses(const MachineInstr *MI, BitVector &Defs,
BitVector &Uses) const {
// First, get the implicit defs and uses for this instruction.
unsigned Opc = MI->getOpcode();
const MCInstrDesc &D = HII->get(Opc);
if (const MCPhysReg *R = D.ImplicitDefs)
while (*R)
expandReg(*R++, Defs);
if (const MCPhysReg *R = D.ImplicitUses)
while (*R)
expandReg(*R++, Uses);
// Look over all operands, and collect explicit defs and uses.
for (ConstMIOperands Mo(*MI); Mo.isValid(); ++Mo) {
if (!Mo->isReg() || Mo->isImplicit())
continue;
unsigned R = Mo->getReg();
BitVector &Set = Mo->isDef() ? Defs : Uses;
expandReg(R, Set);
}
}
void HexagonGenMux::buildMaps(MachineBasicBlock &B, InstrIndexMap &I2X,
DefUseInfoMap &DUM) {
unsigned Index = 0;
unsigned NR = HRI->getNumRegs();
BitVector Defs(NR), Uses(NR);
for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
MachineInstr *MI = &*I;
I2X.insert(std::make_pair(MI, Index));
Defs.reset();
Uses.reset();
getDefsUses(MI, Defs, Uses);
DUM.insert(std::make_pair(Index, DefUseInfo(Defs, Uses)));
Index++;
}
}
bool HexagonGenMux::isCondTransfer(unsigned Opc) const {
switch (Opc) {
case Hexagon::A2_tfrt:
case Hexagon::A2_tfrf:
case Hexagon::C2_cmoveit:
case Hexagon::C2_cmoveif:
return true;
}
return false;
}
unsigned HexagonGenMux::getMuxOpcode(const MachineOperand &Src1,
const MachineOperand &Src2) const {
bool IsReg1 = Src1.isReg(), IsReg2 = Src2.isReg();
if (IsReg1)
return IsReg2 ? Hexagon::C2_mux : Hexagon::C2_muxir;
if (IsReg2)
return Hexagon::C2_muxri;
// Neither is a register. The first source is extendable, but the second
// is not (s8).
if (Src2.isImm() && isInt<8>(Src2.getImm()))
return Hexagon::C2_muxii;
return 0;
}
bool HexagonGenMux::genMuxInBlock(MachineBasicBlock &B) {
bool Changed = false;
InstrIndexMap I2X;
DefUseInfoMap DUM;
buildMaps(B, I2X, DUM);
typedef DenseMap<unsigned,CondsetInfo> CondsetMap;
CondsetMap CM;
MuxInfoList ML;
MachineBasicBlock::iterator NextI, End = B.end();
for (MachineBasicBlock::iterator I = B.begin(); I != End; I = NextI) {
MachineInstr *MI = &*I;
NextI = std::next(I);
unsigned Opc = MI->getOpcode();
if (!isCondTransfer(Opc))
continue;
unsigned DR = MI->getOperand(0).getReg();
if (isRegPair(DR))
continue;
unsigned PR = MI->getOperand(1).getReg();
unsigned Idx = I2X.lookup(MI);
CondsetMap::iterator F = CM.find(DR);
bool IfTrue = HII->isPredicatedTrue(Opc);
// If there is no record of a conditional transfer for this register,
// or the predicate register differs, create a new record for it.
if (F != CM.end() && F->second.PredR != PR) {
CM.erase(F);
F = CM.end();
}
if (F == CM.end()) {
auto It = CM.insert(std::make_pair(DR, CondsetInfo()));
F = It.first;
F->second.PredR = PR;
}
CondsetInfo &CI = F->second;
if (IfTrue)
CI.TrueX = Idx;
else
CI.FalseX = Idx;
if (CI.TrueX == UINT_MAX || CI.FalseX == UINT_MAX)
continue;
// There is now a complete definition of DR, i.e. we have the predicate
// register, the definition if-true, and definition if-false.
// First, check if both definitions are far enough from the definition
// of the predicate register.
unsigned MinX = std::min(CI.TrueX, CI.FalseX);
unsigned MaxX = std::max(CI.TrueX, CI.FalseX);
unsigned SearchX = (MaxX > 4) ? MaxX-4 : 0;
bool NearDef = false;
for (unsigned X = SearchX; X < MaxX; ++X) {
const DefUseInfo &DU = DUM.lookup(X);
if (!DU.Defs[PR])
continue;
NearDef = true;
break;
}
if (NearDef)
continue;
// The predicate register is not defined in the last few instructions.
// Check if the conversion to MUX is possible (either "up", i.e. at the
// place of the earlier partial definition, or "down", where the later
// definition is located). Examine all defs and uses between these two
// definitions.
// SR1, SR2 - source registers from the first and the second definition.
MachineBasicBlock::iterator It1 = B.begin(), It2 = B.begin();
std::advance(It1, MinX);
std::advance(It2, MaxX);
MachineInstr *Def1 = It1, *Def2 = It2;
MachineOperand *Src1 = &Def1->getOperand(2), *Src2 = &Def2->getOperand(2);
unsigned SR1 = Src1->isReg() ? Src1->getReg() : 0;
unsigned SR2 = Src2->isReg() ? Src2->getReg() : 0;
bool Failure = false, CanUp = true, CanDown = true;
for (unsigned X = MinX+1; X < MaxX; X++) {
const DefUseInfo &DU = DUM.lookup(X);
if (DU.Defs[PR] || DU.Defs[DR] || DU.Uses[DR]) {
Failure = true;
break;
}
if (CanDown && DU.Defs[SR1])
CanDown = false;
if (CanUp && DU.Defs[SR2])
CanUp = false;
}
if (Failure || (!CanUp && !CanDown))
continue;
MachineOperand *SrcT = (MinX == CI.TrueX) ? Src1 : Src2;
MachineOperand *SrcF = (MinX == CI.FalseX) ? Src1 : Src2;
// Prefer "down", since this will move the MUX farther away from the
// predicate definition.
MachineBasicBlock::iterator At = CanDown ? Def2 : Def1;
ML.push_back(MuxInfo(At, DR, PR, SrcT, SrcF, Def1, Def2));
}
for (unsigned I = 0, N = ML.size(); I < N; ++I) {
MuxInfo &MX = ML[I];
MachineBasicBlock &B = *MX.At->getParent();
DebugLoc DL = MX.At->getDebugLoc();
unsigned MxOpc = getMuxOpcode(*MX.SrcT, *MX.SrcF);
if (!MxOpc)
continue;
BuildMI(B, MX.At, DL, HII->get(MxOpc), MX.DefR)
.addReg(MX.PredR)
.addOperand(*MX.SrcT)
.addOperand(*MX.SrcF);
B.erase(MX.Def1);
B.erase(MX.Def2);
Changed = true;
}
return Changed;
}
bool HexagonGenMux::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
bool Changed = false;
for (auto &I : MF)
Changed |= genMuxInBlock(I);
return Changed;
}
FunctionPass *llvm::createHexagonGenMux() {
return new HexagonGenMux();
}