mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-29 14:40:25 +00:00
ec7c1ab1da
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17056 91177308-0d34-0410-b5e6-96231b3b80d8
254 lines
10 KiB
C++
254 lines
10 KiB
C++
//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the post-dominator construction algorithms.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PostDominatorSet Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<PostDominatorSet>
|
|
B("postdomset", "Post-Dominator Set Construction", true);
|
|
|
|
// Postdominator set construction. This converts the specified function to only
|
|
// have a single exit node (return stmt), then calculates the post dominance
|
|
// sets for the function.
|
|
//
|
|
bool PostDominatorSet::runOnFunction(Function &F) {
|
|
Doms.clear(); // Reset from the last time we were run...
|
|
|
|
// Scan the function looking for the root nodes of the post-dominance
|
|
// relationships. These blocks end with return and unwind instructions.
|
|
// While we are iterating over the function, we also initialize all of the
|
|
// domsets to empty.
|
|
Roots.clear();
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
|
Doms[I]; // Initialize to empty
|
|
|
|
if (succ_begin(I) == succ_end(I))
|
|
Roots.push_back(I);
|
|
}
|
|
|
|
// If there are no exit nodes for the function, postdomsets are all empty.
|
|
// This can happen if the function just contains an infinite loop, for
|
|
// example.
|
|
if (Roots.empty()) return false;
|
|
|
|
// If we have more than one root, we insert an artificial "null" exit, which
|
|
// has "virtual edges" to each of the real exit nodes.
|
|
if (Roots.size() > 1)
|
|
Doms[0].insert(0);
|
|
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
|
|
std::set<BasicBlock*> Visited;
|
|
DomSetType WorkingSet;
|
|
|
|
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
|
for (idf_ext_iterator<BasicBlock*> It = idf_ext_begin(Roots[i], Visited),
|
|
E = idf_ext_end(Roots[i], Visited); It != E; ++It) {
|
|
BasicBlock *BB = *It;
|
|
succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
|
if (SI != SE) { // Is there SOME successor?
|
|
// Loop until we get to a successor that has had it's dom set filled
|
|
// in at least once. We are guaranteed to have this because we are
|
|
// traversing the graph in DFO and have handled start nodes specially.
|
|
//
|
|
while (Doms[*SI].size() == 0) ++SI;
|
|
WorkingSet = Doms[*SI];
|
|
|
|
for (++SI; SI != SE; ++SI) { // Intersect all of the successor sets
|
|
DomSetType &SuccSet = Doms[*SI];
|
|
if (SuccSet.size())
|
|
set_intersect(WorkingSet, SuccSet);
|
|
}
|
|
} else {
|
|
// If this node has no successors, it must be one of the root nodes.
|
|
// We will already take care of the notion that the node
|
|
// post-dominates itself. The only thing we have to add is that if
|
|
// there are multiple root nodes, we want to insert a special "null"
|
|
// exit node which dominates the roots as well.
|
|
if (Roots.size() > 1)
|
|
WorkingSet.insert(0);
|
|
}
|
|
|
|
WorkingSet.insert(BB); // A block always dominates itself
|
|
DomSetType &BBSet = Doms[BB];
|
|
if (BBSet != WorkingSet) {
|
|
BBSet.swap(WorkingSet); // Constant time operation!
|
|
Changed = true; // The sets changed.
|
|
}
|
|
WorkingSet.clear(); // Clear out the set for next iteration
|
|
}
|
|
} while (Changed);
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ImmediatePostDominators Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<ImmediatePostDominators>
|
|
D("postidom", "Immediate Post-Dominators Construction", true);
|
|
|
|
|
|
// calcIDoms - Calculate the immediate dominator mapping, given a set of
|
|
// dominators for every basic block.
|
|
void ImmediatePostDominators::calcIDoms(const DominatorSetBase &DS) {
|
|
// Loop over all of the nodes that have dominators... figuring out the IDOM
|
|
// for each node...
|
|
//
|
|
for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
|
|
DI != DEnd; ++DI) {
|
|
BasicBlock *BB = DI->first;
|
|
const DominatorSet::DomSetType &Dominators = DI->second;
|
|
unsigned DomSetSize = Dominators.size();
|
|
if (DomSetSize == 1) continue; // Root node... IDom = null
|
|
|
|
// Loop over all dominators of this node. This corresponds to looping over
|
|
// nodes in the dominator chain, looking for a node whose dominator set is
|
|
// equal to the current nodes, except that the current node does not exist
|
|
// in it. This means that it is one level higher in the dom chain than the
|
|
// current node, and it is our idom!
|
|
//
|
|
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
|
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
|
for (; I != End; ++I) { // Iterate over dominators...
|
|
// All of our dominators should form a chain, where the number of elements
|
|
// in the dominator set indicates what level the node is at in the chain.
|
|
// We want the node immediately above us, so it will have an identical
|
|
// dominator set, except that BB will not dominate it... therefore it's
|
|
// dominator set size will be one less than BB's...
|
|
//
|
|
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
|
IDoms[BB] = *I;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PostDominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<PostDominatorTree>
|
|
F("postdomtree", "Post-Dominator Tree Construction", true);
|
|
|
|
void PostDominatorTree::calculate(const PostDominatorSet &DS) {
|
|
if (Roots.empty()) return;
|
|
BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
|
|
|
|
Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
|
|
|
|
// Iterate over all nodes in depth first order...
|
|
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
|
for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
|
|
E = idf_end(Roots[i]); I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
|
|
unsigned DomSetSize = Dominators.size();
|
|
if (DomSetSize == 1) continue; // Root node... IDom = null
|
|
|
|
// If we have already computed the immediate dominator for this node,
|
|
// don't revisit. This can happen due to nodes reachable from multiple
|
|
// roots, but which the idf_iterator doesn't know about.
|
|
if (Nodes.find(BB) != Nodes.end()) continue;
|
|
|
|
// Loop over all dominators of this node. This corresponds to looping
|
|
// over nodes in the dominator chain, looking for a node whose dominator
|
|
// set is equal to the current nodes, except that the current node does
|
|
// not exist in it. This means that it is one level higher in the dom
|
|
// chain than the current node, and it is our idom! We know that we have
|
|
// already added a DominatorTree node for our idom, because the idom must
|
|
// be a predecessor in the depth first order that we are iterating through
|
|
// the function.
|
|
//
|
|
for (DominatorSet::DomSetType::const_iterator I = Dominators.begin(),
|
|
E = Dominators.end(); I != E; ++I) { // Iterate over dominators.
|
|
// All of our dominators should form a chain, where the number
|
|
// of elements in the dominator set indicates what level the
|
|
// node is at in the chain. We want the node immediately
|
|
// above us, so it will have an identical dominator set,
|
|
// except that BB will not dominate it... therefore it's
|
|
// dominator set size will be one less than BB's...
|
|
//
|
|
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
|
// We know that the immediate dominator should already have a node,
|
|
// because we are traversing the CFG in depth first order!
|
|
//
|
|
Node *IDomNode = Nodes[*I];
|
|
assert(IDomNode && "No node for IDOM?");
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PostDominanceFrontier Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<PostDominanceFrontier>
|
|
H("postdomfrontier", "Post-Dominance Frontier Construction", true);
|
|
|
|
const DominanceFrontier::DomSetType &
|
|
PostDominanceFrontier::calculate(const PostDominatorTree &DT,
|
|
const DominatorTree::Node *Node) {
|
|
// Loop over CFG successors to calculate DFlocal[Node]
|
|
BasicBlock *BB = Node->getBlock();
|
|
DomSetType &S = Frontiers[BB]; // The new set to fill in...
|
|
if (getRoots().empty()) return S;
|
|
|
|
if (BB)
|
|
for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
|
|
SI != SE; ++SI)
|
|
// Does Node immediately dominate this predecessor?
|
|
if (DT[*SI]->getIDom() != Node)
|
|
S.insert(*SI);
|
|
|
|
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
|
// Loop through and visit the nodes that Node immediately dominates (Node's
|
|
// children in the IDomTree)
|
|
//
|
|
for (PostDominatorTree::Node::const_iterator
|
|
NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
|
|
DominatorTree::Node *IDominee = *NI;
|
|
const DomSetType &ChildDF = calculate(DT, IDominee);
|
|
|
|
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
|
|
for (; CDFI != CDFE; ++CDFI) {
|
|
if (!Node->dominates(DT[*CDFI]))
|
|
S.insert(*CDFI);
|
|
}
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
// stub - a dummy function to make linking work ok.
|
|
void PostDominanceFrontier::stub() {
|
|
}
|
|
|