llvm/lib/Target/WebAssembly
Dan Gohman d660a5d68c [WebAssembly] Add skeleton MC support for the Wasm container format
This just adds the basic skeleton for supporting a new object file format.
All of the actual encoding will be implemented in followup patches.

Differential Revision: https://reviews.llvm.org/D26722


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295803 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-22 01:23:18 +00:00
..
Disassembler [WebAssembly] Remove old experimental disassemler code. 2017-02-11 00:02:23 +00:00
InstPrinter
MCTargetDesc [WebAssembly] Add skeleton MC support for the Wasm container format 2017-02-22 01:23:18 +00:00
TargetInfo
CMakeLists.txt
known_gcc_test_failures.txt
LLVMBuild.txt
README.txt
WebAssembly.h
WebAssembly.td
WebAssemblyArgumentMove.cpp
WebAssemblyAsmPrinter.cpp
WebAssemblyCallIndirectFixup.cpp
WebAssemblyCFGStackify.cpp
WebAssemblyExplicitLocals.cpp
WebAssemblyFastISel.cpp
WebAssemblyFixFunctionBitcasts.cpp
WebAssemblyFixIrreducibleControlFlow.cpp
WebAssemblyFrameLowering.cpp
WebAssemblyFrameLowering.h
WebAssemblyInstrAtomics.td
WebAssemblyInstrCall.td
WebAssemblyInstrControl.td
WebAssemblyInstrConv.td
WebAssemblyInstrFloat.td
WebAssemblyInstrFormats.td
WebAssemblyInstrInfo.cpp
WebAssemblyInstrInfo.h
WebAssemblyInstrInfo.td
WebAssemblyInstrInteger.td
WebAssemblyInstrMemory.td
WebAssemblyInstrSIMD.td
WebAssemblyISD.def
WebAssemblyISelDAGToDAG.cpp
WebAssemblyISelLowering.cpp
WebAssemblyISelLowering.h
WebAssemblyLowerBrUnless.cpp
WebAssemblyLowerEmscriptenEHSjLj.cpp
WebAssemblyMachineFunctionInfo.cpp
WebAssemblyMachineFunctionInfo.h
WebAssemblyMCInstLower.cpp
WebAssemblyMCInstLower.h
WebAssemblyOptimizeLiveIntervals.cpp
WebAssemblyOptimizeReturned.cpp
WebAssemblyPeephole.cpp
WebAssemblyPrepareForLiveIntervals.cpp
WebAssemblyRegColoring.cpp
WebAssemblyRegisterInfo.cpp
WebAssemblyRegisterInfo.h
WebAssemblyRegisterInfo.td
WebAssemblyRegNumbering.cpp
WebAssemblyRegStackify.cpp
WebAssemblyReplacePhysRegs.cpp
WebAssemblySelectionDAGInfo.cpp
WebAssemblySelectionDAGInfo.h
WebAssemblySetP2AlignOperands.cpp
WebAssemblyStoreResults.cpp
WebAssemblySubtarget.cpp
WebAssemblySubtarget.h
WebAssemblyTargetMachine.cpp [WebAssembly] Add skeleton MC support for the Wasm container format 2017-02-22 01:23:18 +00:00
WebAssemblyTargetMachine.h
WebAssemblyTargetObjectFile.cpp [WebAssembly] Add skeleton MC support for the Wasm container format 2017-02-22 01:23:18 +00:00
WebAssemblyTargetObjectFile.h [WebAssembly] Add skeleton MC support for the Wasm container format 2017-02-22 01:23:18 +00:00
WebAssemblyTargetTransformInfo.cpp
WebAssemblyTargetTransformInfo.h
WebAssemblyUtilities.cpp
WebAssemblyUtilities.h

//===-- README.txt - Notes for WebAssembly code gen -----------------------===//

This WebAssembly backend is presently under development.

Currently the easiest way to use it is through Emscripten, which provides a
compilation environment that includes standard libraries, tools, and packaging
for producing WebAssembly applications that can run in browsers and other
environments. For more information, see the Emscripten documentation in
general, and this page in particular:
  * https://github.com/kripken/emscripten/wiki/New-WebAssembly-Backend

Other ways of using this backend, such as via a standalone "clang", are also
under development, though they are not generally usable yet.

For more information on WebAssembly itself, see the home page:
  * https://webassembly.github.io/

The following documents contain some information on the semantics and binary
encoding of WebAssembly itself:
  * https://github.com/WebAssembly/design/blob/master/Semantics.md
  * https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md

The backend is built, tested and archived on the following waterfall:
  https://wasm-stat.us

The backend's bringup is done in part by using the GCC torture test suite, since
it doesn't require C library support. Current known failures are in
known_gcc_test_failures.txt, all other tests should pass. The waterfall will
turn red if not. Once most of these pass, further testing will use LLVM's own
test suite. The tests can be run locally using:
  https://github.com/WebAssembly/waterfall/blob/master/src/compile_torture_tests.py

//===---------------------------------------------------------------------===//

Br, br_if, and br_table instructions can support having a value on the value
stack across the jump (sometimes). We should (a) model this, and (b) extend
the stackifier to utilize it.

//===---------------------------------------------------------------------===//

The min/max instructions aren't exactly a<b?a:b because of NaN and negative zero
behavior. The ARM target has the same kind of min/max instructions and has
implemented optimizations for them; we should do similar optimizations for
WebAssembly.

//===---------------------------------------------------------------------===//

AArch64 runs SeparateConstOffsetFromGEPPass, followed by EarlyCSE and LICM.
Would these be useful to run for WebAssembly too? Also, it has an option to
run SimplifyCFG after running the AtomicExpand pass. Would this be useful for
us too?

//===---------------------------------------------------------------------===//

Register stackification uses the VALUE_STACK physical register to impose
ordering dependencies on instructions with stack operands. This is pessimistic;
we should consider alternate ways to model stack dependencies.

//===---------------------------------------------------------------------===//

Lots of things could be done in WebAssemblyTargetTransformInfo.cpp. Similarly,
there are numerous optimization-related hooks that can be overridden in
WebAssemblyTargetLowering.

//===---------------------------------------------------------------------===//

Instead of the OptimizeReturned pass, which should consider preserving the
"returned" attribute through to MachineInstrs and extending the StoreResults
pass to do this optimization on calls too. That would also let the
WebAssemblyPeephole pass clean up dead defs for such calls, as it does for
stores.

//===---------------------------------------------------------------------===//

Consider implementing optimizeSelect, optimizeCompareInstr, optimizeCondBranch,
optimizeLoadInstr, and/or getMachineCombinerPatterns.

//===---------------------------------------------------------------------===//

Find a clean way to fix the problem which leads to the Shrink Wrapping pass
being run after the WebAssembly PEI pass.

//===---------------------------------------------------------------------===//

When setting multiple local variables to the same constant, we currently get
code like this:

    i32.const   $4=, 0
    i32.const   $3=, 0

It could be done with a smaller encoding like this:

    i32.const   $push5=, 0
    tee_local   $push6=, $4=, $pop5
    copy_local  $3=, $pop6

//===---------------------------------------------------------------------===//

WebAssembly registers are implicitly initialized to zero. Explicit zeroing is
therefore often redundant and could be optimized away.

//===---------------------------------------------------------------------===//

Small indices may use smaller encodings than large indices.
WebAssemblyRegColoring and/or WebAssemblyRegRenumbering should sort registers
according to their usage frequency to maximize the usage of smaller encodings.

//===---------------------------------------------------------------------===//

Many cases of irreducible control flow could be transformed more optimally
than via the transform in WebAssemblyFixIrreducibleControlFlow.cpp.

It may also be worthwhile to do transforms before register coloring,
particularly when duplicating code, to allow register coloring to be aware of
the duplication.

//===---------------------------------------------------------------------===//

WebAssemblyRegStackify could use AliasAnalysis to reorder loads and stores more
aggressively.

//===---------------------------------------------------------------------===//

WebAssemblyRegStackify is currently a greedy algorithm. This means that, for
example, a binary operator will stackify with its user before its operands.
However, if moving the binary operator to its user moves it to a place where
its operands can't be moved to, it would be better to leave it in place, or
perhaps move it up, so that it can stackify its operands. A binary operator
has two operands and one result, so in such cases there could be a net win by
prefering the operands.

//===---------------------------------------------------------------------===//

Instruction ordering has a significant influence on register stackification and
coloring. Consider experimenting with the MachineScheduler (enable via
enableMachineScheduler) and determine if it can be configured to schedule
instructions advantageously for this purpose.

//===---------------------------------------------------------------------===//

WebAssembly is now officially a stack machine, rather than an AST, and this
comes with additional opportunities for WebAssemblyRegStackify. Specifically,
the stack doesn't need to be empty after an instruction with no return values.
WebAssemblyRegStackify could be extended, or possibly rewritten, to take
advantage of the new opportunities.

//===---------------------------------------------------------------------===//