llvm/test/Analysis/ScalarEvolution/trip-count4.ll
Dan Gohman ae3a0be92e Split the Add, Sub, and Mul instruction opcodes into separate
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.

For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.

This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
2009-06-04 22:49:04 +00:00

25 lines
893 B
LLVM

; RUN: llvm-as < %s | opt -analyze -scalar-evolution -disable-output \
; RUN: | grep {sext.*trunc.*Exits: 11}
; ScalarEvolution should be able to compute a loop exit value for %indvar.i8.
define void @another_count_down_signed(double* %d, i64 %n) nounwind {
entry:
br label %loop
loop: ; preds = %loop, %entry
%indvar = phi i64 [ %n, %entry ], [ %indvar.next, %loop ] ; <i64> [#uses=4]
%s0 = shl i64 %indvar, 8 ; <i64> [#uses=1]
%indvar.i8 = ashr i64 %s0, 8 ; <i64> [#uses=1]
%t0 = getelementptr double* %d, i64 %indvar.i8 ; <double*> [#uses=2]
%t1 = load double* %t0 ; <double> [#uses=1]
%t2 = fmul double %t1, 1.000000e-01 ; <double> [#uses=1]
store double %t2, double* %t0
%indvar.next = sub i64 %indvar, 1 ; <i64> [#uses=2]
%exitcond = icmp eq i64 %indvar.next, 10 ; <i1> [#uses=1]
br i1 %exitcond, label %return, label %loop
return: ; preds = %loop
ret void
}