mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-26 21:20:37 +00:00
e7b05504fa
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143319 91177308-0d34-0410-b5e6-96231b3b80d8
401 lines
13 KiB
C++
401 lines
13 KiB
C++
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the X86 specific subclass of TargetSubtargetInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "subtarget"
|
|
#include "X86Subtarget.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
#include "X86GenSubtargetInfo.inc"
|
|
|
|
using namespace llvm;
|
|
|
|
#if defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
#endif
|
|
|
|
/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
|
|
/// current subtarget according to how we should reference it in a non-pcrel
|
|
/// context.
|
|
unsigned char X86Subtarget::
|
|
ClassifyBlockAddressReference() const {
|
|
if (isPICStyleGOT()) // 32-bit ELF targets.
|
|
return X86II::MO_GOTOFF;
|
|
|
|
if (isPICStyleStubPIC()) // Darwin/32 in PIC mode.
|
|
return X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
// Direct static reference to label.
|
|
return X86II::MO_NO_FLAG;
|
|
}
|
|
|
|
/// ClassifyGlobalReference - Classify a global variable reference for the
|
|
/// current subtarget according to how we should reference it in a non-pcrel
|
|
/// context.
|
|
unsigned char X86Subtarget::
|
|
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
|
|
// DLLImport only exists on windows, it is implemented as a load from a
|
|
// DLLIMPORT stub.
|
|
if (GV->hasDLLImportLinkage())
|
|
return X86II::MO_DLLIMPORT;
|
|
|
|
// Determine whether this is a reference to a definition or a declaration.
|
|
// Materializable GVs (in JIT lazy compilation mode) do not require an extra
|
|
// load from stub.
|
|
bool isDecl = GV->hasAvailableExternallyLinkage();
|
|
if (GV->isDeclaration() && !GV->isMaterializable())
|
|
isDecl = true;
|
|
|
|
// X86-64 in PIC mode.
|
|
if (isPICStyleRIPRel()) {
|
|
// Large model never uses stubs.
|
|
if (TM.getCodeModel() == CodeModel::Large)
|
|
return X86II::MO_NO_FLAG;
|
|
|
|
if (isTargetDarwin()) {
|
|
// If symbol visibility is hidden, the extra load is not needed if
|
|
// target is x86-64 or the symbol is definitely defined in the current
|
|
// translation unit.
|
|
if (GV->hasDefaultVisibility() &&
|
|
(isDecl || GV->isWeakForLinker()))
|
|
return X86II::MO_GOTPCREL;
|
|
} else if (!isTargetWin64()) {
|
|
assert(isTargetELF() && "Unknown rip-relative target");
|
|
|
|
// Extra load is needed for all externally visible.
|
|
if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
|
|
return X86II::MO_GOTPCREL;
|
|
}
|
|
|
|
return X86II::MO_NO_FLAG;
|
|
}
|
|
|
|
if (isPICStyleGOT()) { // 32-bit ELF targets.
|
|
// Extra load is needed for all externally visible.
|
|
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
|
|
return X86II::MO_GOTOFF;
|
|
return X86II::MO_GOT;
|
|
}
|
|
|
|
if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
|
|
// Determine whether we have a stub reference and/or whether the reference
|
|
// is relative to the PIC base or not.
|
|
|
|
// If this is a strong reference to a definition, it is definitely not
|
|
// through a stub.
|
|
if (!isDecl && !GV->isWeakForLinker())
|
|
return X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
// Unless we have a symbol with hidden visibility, we have to go through a
|
|
// normal $non_lazy_ptr stub because this symbol might be resolved late.
|
|
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
|
|
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
|
|
|
|
// If symbol visibility is hidden, we have a stub for common symbol
|
|
// references and external declarations.
|
|
if (isDecl || GV->hasCommonLinkage()) {
|
|
// Hidden $non_lazy_ptr reference.
|
|
return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
|
|
}
|
|
|
|
// Otherwise, no stub.
|
|
return X86II::MO_PIC_BASE_OFFSET;
|
|
}
|
|
|
|
if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
|
|
// Determine whether we have a stub reference.
|
|
|
|
// If this is a strong reference to a definition, it is definitely not
|
|
// through a stub.
|
|
if (!isDecl && !GV->isWeakForLinker())
|
|
return X86II::MO_NO_FLAG;
|
|
|
|
// Unless we have a symbol with hidden visibility, we have to go through a
|
|
// normal $non_lazy_ptr stub because this symbol might be resolved late.
|
|
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
|
|
return X86II::MO_DARWIN_NONLAZY;
|
|
|
|
// Otherwise, no stub.
|
|
return X86II::MO_NO_FLAG;
|
|
}
|
|
|
|
// Direct static reference to global.
|
|
return X86II::MO_NO_FLAG;
|
|
}
|
|
|
|
|
|
/// getBZeroEntry - This function returns the name of a function which has an
|
|
/// interface like the non-standard bzero function, if such a function exists on
|
|
/// the current subtarget and it is considered prefereable over memset with zero
|
|
/// passed as the second argument. Otherwise it returns null.
|
|
const char *X86Subtarget::getBZeroEntry() const {
|
|
// Darwin 10 has a __bzero entry point for this purpose.
|
|
if (getTargetTriple().isMacOSX() &&
|
|
!getTargetTriple().isMacOSXVersionLT(10, 6))
|
|
return "__bzero";
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
|
|
/// to immediate address.
|
|
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
|
|
if (In64BitMode)
|
|
return false;
|
|
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
|
|
}
|
|
|
|
/// getSpecialAddressLatency - For targets where it is beneficial to
|
|
/// backschedule instructions that compute addresses, return a value
|
|
/// indicating the number of scheduling cycles of backscheduling that
|
|
/// should be attempted.
|
|
unsigned X86Subtarget::getSpecialAddressLatency() const {
|
|
// For x86 out-of-order targets, back-schedule address computations so
|
|
// that loads and stores aren't blocked.
|
|
// This value was chosen arbitrarily.
|
|
return 200;
|
|
}
|
|
|
|
void X86Subtarget::AutoDetectSubtargetFeatures() {
|
|
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
|
|
unsigned MaxLevel;
|
|
union {
|
|
unsigned u[3];
|
|
char c[12];
|
|
} text;
|
|
|
|
if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
|
|
MaxLevel < 1)
|
|
return;
|
|
|
|
X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
if ((EDX >> 15) & 1) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); }
|
|
if ((EDX >> 23) & 1) { X86SSELevel = MMX; ToggleFeature(X86::FeatureMMX); }
|
|
if ((EDX >> 25) & 1) { X86SSELevel = SSE1; ToggleFeature(X86::FeatureSSE1); }
|
|
if ((EDX >> 26) & 1) { X86SSELevel = SSE2; ToggleFeature(X86::FeatureSSE2); }
|
|
if (ECX & 0x1) { X86SSELevel = SSE3; ToggleFeature(X86::FeatureSSE3); }
|
|
if ((ECX >> 9) & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
|
|
if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
|
|
if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
|
|
// FIXME: AVX codegen support is not ready.
|
|
//if ((ECX >> 28) & 1) { HasAVX = true; ToggleFeature(X86::FeatureAVX); }
|
|
|
|
bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
|
|
bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
|
|
|
|
if (IsIntel && ((ECX >> 1) & 0x1)) {
|
|
HasCLMUL = true;
|
|
ToggleFeature(X86::FeatureCLMUL);
|
|
}
|
|
if (IsIntel && ((ECX >> 12) & 0x1)) {
|
|
HasFMA3 = true;
|
|
ToggleFeature(X86::FeatureFMA3);
|
|
}
|
|
if (IsIntel && ((ECX >> 22) & 0x1)) {
|
|
HasMOVBE = true;
|
|
ToggleFeature(X86::FeatureMOVBE);
|
|
}
|
|
if (IsIntel && ((ECX >> 23) & 0x1)) {
|
|
HasPOPCNT = true;
|
|
ToggleFeature(X86::FeaturePOPCNT);
|
|
}
|
|
if (IsIntel && ((ECX >> 25) & 0x1)) {
|
|
HasAES = true;
|
|
ToggleFeature(X86::FeatureAES);
|
|
}
|
|
if (IsIntel && ((ECX >> 29) & 0x1)) {
|
|
HasF16C = true;
|
|
ToggleFeature(X86::FeatureF16C);
|
|
}
|
|
if (IsIntel && ((ECX >> 30) & 0x1)) {
|
|
HasRDRAND = true;
|
|
ToggleFeature(X86::FeatureRDRAND);
|
|
}
|
|
|
|
if ((ECX >> 13) & 0x1) {
|
|
HasCmpxchg16b = true;
|
|
ToggleFeature(X86::FeatureCMPXCHG16B);
|
|
}
|
|
|
|
if (IsIntel || IsAMD) {
|
|
// Determine if bit test memory instructions are slow.
|
|
unsigned Family = 0;
|
|
unsigned Model = 0;
|
|
X86_MC::DetectFamilyModel(EAX, Family, Model);
|
|
if (IsAMD || (Family == 6 && Model >= 13)) {
|
|
IsBTMemSlow = true;
|
|
ToggleFeature(X86::FeatureSlowBTMem);
|
|
}
|
|
// If it's Nehalem, unaligned memory access is fast.
|
|
// FIXME: Nehalem is family 6. Also include Westmere and later processors?
|
|
if (Family == 15 && Model == 26) {
|
|
IsUAMemFast = true;
|
|
ToggleFeature(X86::FeatureFastUAMem);
|
|
}
|
|
|
|
unsigned MaxExtLevel;
|
|
X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
|
|
|
|
if (MaxExtLevel >= 0x80000001) {
|
|
X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
|
|
if ((EDX >> 29) & 0x1) {
|
|
HasX86_64 = true;
|
|
ToggleFeature(X86::Feature64Bit);
|
|
}
|
|
if ((ECX >> 5) & 0x1) {
|
|
HasLZCNT = true;
|
|
ToggleFeature(X86::FeatureLZCNT);
|
|
}
|
|
if (IsAMD && ((ECX >> 6) & 0x1)) {
|
|
HasSSE4A = true;
|
|
ToggleFeature(X86::FeatureSSE4A);
|
|
}
|
|
if (IsAMD && ((ECX >> 16) & 0x1)) {
|
|
HasFMA4 = true;
|
|
ToggleFeature(X86::FeatureFMA4);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (IsIntel && MaxLevel >= 7) {
|
|
if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) {
|
|
if (EBX & 0x1) {
|
|
HasFSGSBase = true;
|
|
ToggleFeature(X86::FeatureFSGSBase);
|
|
}
|
|
if ((EBX >> 3) & 0x1) {
|
|
HasBMI = true;
|
|
ToggleFeature(X86::FeatureBMI);
|
|
}
|
|
// FIXME: AVX2 codegen support is not ready.
|
|
//if ((EBX >> 5) & 0x1) {
|
|
// HasAVX2 = true;
|
|
// ToggleFeature(X86::FeatureAVX2);
|
|
//}
|
|
if ((EBX >> 8) & 0x1) {
|
|
HasBMI2 = true;
|
|
ToggleFeature(X86::FeatureBMI2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
|
|
const std::string &FS,
|
|
unsigned StackAlignOverride, bool is64Bit)
|
|
: X86GenSubtargetInfo(TT, CPU, FS)
|
|
, PICStyle(PICStyles::None)
|
|
, X86SSELevel(NoMMXSSE)
|
|
, X863DNowLevel(NoThreeDNow)
|
|
, HasCMov(false)
|
|
, HasX86_64(false)
|
|
, HasPOPCNT(false)
|
|
, HasSSE4A(false)
|
|
, HasAVX(false)
|
|
, HasAVX2(false)
|
|
, HasAES(false)
|
|
, HasCLMUL(false)
|
|
, HasFMA3(false)
|
|
, HasFMA4(false)
|
|
, HasMOVBE(false)
|
|
, HasRDRAND(false)
|
|
, HasF16C(false)
|
|
, HasFSGSBase(false)
|
|
, HasLZCNT(false)
|
|
, HasBMI(false)
|
|
, HasBMI2(false)
|
|
, IsBTMemSlow(false)
|
|
, IsUAMemFast(false)
|
|
, HasVectorUAMem(false)
|
|
, HasCmpxchg16b(false)
|
|
, stackAlignment(8)
|
|
// FIXME: this is a known good value for Yonah. How about others?
|
|
, MaxInlineSizeThreshold(128)
|
|
, TargetTriple(TT)
|
|
, In64BitMode(is64Bit) {
|
|
// Determine default and user specified characteristics
|
|
if (!FS.empty() || !CPU.empty()) {
|
|
std::string CPUName = CPU;
|
|
if (CPUName.empty()) {
|
|
#if defined (__x86_64__) || defined(__i386__)
|
|
CPUName = sys::getHostCPUName();
|
|
#else
|
|
CPUName = "generic";
|
|
#endif
|
|
}
|
|
|
|
// Make sure 64-bit features are available in 64-bit mode. (But make sure
|
|
// SSE2 can be turned off explicitly.)
|
|
std::string FullFS = FS;
|
|
if (In64BitMode) {
|
|
if (!FullFS.empty())
|
|
FullFS = "+64bit,+sse2," + FullFS;
|
|
else
|
|
FullFS = "+64bit,+sse2";
|
|
}
|
|
|
|
// If feature string is not empty, parse features string.
|
|
ParseSubtargetFeatures(CPUName, FullFS);
|
|
} else {
|
|
// Otherwise, use CPUID to auto-detect feature set.
|
|
AutoDetectSubtargetFeatures();
|
|
|
|
// Make sure 64-bit features are available in 64-bit mode.
|
|
if (In64BitMode) {
|
|
HasX86_64 = true; ToggleFeature(X86::Feature64Bit);
|
|
HasCMov = true; ToggleFeature(X86::FeatureCMOV);
|
|
|
|
if (!HasAVX && X86SSELevel < SSE2) {
|
|
X86SSELevel = SSE2;
|
|
ToggleFeature(X86::FeatureSSE1);
|
|
ToggleFeature(X86::FeatureSSE2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// It's important to keep the MCSubtargetInfo feature bits in sync with
|
|
// target data structure which is shared with MC code emitter, etc.
|
|
if (In64BitMode)
|
|
ToggleFeature(X86::Mode64Bit);
|
|
|
|
if (HasAVX)
|
|
X86SSELevel = NoMMXSSE;
|
|
|
|
DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
|
|
<< ", 3DNowLevel " << X863DNowLevel
|
|
<< ", 64bit " << HasX86_64 << "\n");
|
|
assert((!In64BitMode || HasX86_64) &&
|
|
"64-bit code requested on a subtarget that doesn't support it!");
|
|
|
|
if(EnableSegmentedStacks && !isTargetELF())
|
|
report_fatal_error("Segmented stacks are only implemented on ELF.");
|
|
|
|
// Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
|
|
// 32 and 64 bit) and for all 64-bit targets.
|
|
if (StackAlignOverride)
|
|
stackAlignment = StackAlignOverride;
|
|
else if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
|
|
isTargetSolaris() || In64BitMode)
|
|
stackAlignment = 16;
|
|
}
|