mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-06 20:10:38 +00:00
8458ab1e9c
Summary: Previously these only worked via NVPTX-specific intrinsics. This change will allow us to convert these target-specific intrinsics into the general LLVM versions, allowing existing LLVM passes to reason about their behavior. It also gets us some minor codegen improvements as-is, from situations where we canonicalize code into one of these llvm intrinsics. Reviewers: majnemer Subscribers: llvm-commits, jholewinski, tra Differential Revision: https://reviews.llvm.org/D24300 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281092 91177308-0d34-0410-b5e6-96231b3b80d8
2819 lines
118 KiB
TableGen
2819 lines
118 KiB
TableGen
//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file describes the PTX instructions in TableGen format.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
include "NVPTXInstrFormats.td"
|
|
|
|
// A NOP instruction
|
|
let hasSideEffects = 0 in {
|
|
def NOP : NVPTXInst<(outs), (ins), "", []>;
|
|
}
|
|
|
|
// List of vector specific properties
|
|
def isVecLD : VecInstTypeEnum<1>;
|
|
def isVecST : VecInstTypeEnum<2>;
|
|
def isVecBuild : VecInstTypeEnum<3>;
|
|
def isVecShuffle : VecInstTypeEnum<4>;
|
|
def isVecExtract : VecInstTypeEnum<5>;
|
|
def isVecInsert : VecInstTypeEnum<6>;
|
|
def isVecDest : VecInstTypeEnum<7>;
|
|
def isVecOther : VecInstTypeEnum<15>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NVPTX Operand Definitions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def brtarget : Operand<OtherVT>;
|
|
|
|
// CVT conversion modes
|
|
// These must match the enum in NVPTX.h
|
|
def CvtNONE : PatLeaf<(i32 0x0)>;
|
|
def CvtRNI : PatLeaf<(i32 0x1)>;
|
|
def CvtRZI : PatLeaf<(i32 0x2)>;
|
|
def CvtRMI : PatLeaf<(i32 0x3)>;
|
|
def CvtRPI : PatLeaf<(i32 0x4)>;
|
|
def CvtRN : PatLeaf<(i32 0x5)>;
|
|
def CvtRZ : PatLeaf<(i32 0x6)>;
|
|
def CvtRM : PatLeaf<(i32 0x7)>;
|
|
def CvtRP : PatLeaf<(i32 0x8)>;
|
|
|
|
def CvtNONE_FTZ : PatLeaf<(i32 0x10)>;
|
|
def CvtRNI_FTZ : PatLeaf<(i32 0x11)>;
|
|
def CvtRZI_FTZ : PatLeaf<(i32 0x12)>;
|
|
def CvtRMI_FTZ : PatLeaf<(i32 0x13)>;
|
|
def CvtRPI_FTZ : PatLeaf<(i32 0x14)>;
|
|
def CvtRN_FTZ : PatLeaf<(i32 0x15)>;
|
|
def CvtRZ_FTZ : PatLeaf<(i32 0x16)>;
|
|
def CvtRM_FTZ : PatLeaf<(i32 0x17)>;
|
|
def CvtRP_FTZ : PatLeaf<(i32 0x18)>;
|
|
|
|
def CvtSAT : PatLeaf<(i32 0x20)>;
|
|
def CvtSAT_FTZ : PatLeaf<(i32 0x30)>;
|
|
|
|
def CvtMode : Operand<i32> {
|
|
let PrintMethod = "printCvtMode";
|
|
}
|
|
|
|
// Compare modes
|
|
// These must match the enum in NVPTX.h
|
|
def CmpEQ : PatLeaf<(i32 0)>;
|
|
def CmpNE : PatLeaf<(i32 1)>;
|
|
def CmpLT : PatLeaf<(i32 2)>;
|
|
def CmpLE : PatLeaf<(i32 3)>;
|
|
def CmpGT : PatLeaf<(i32 4)>;
|
|
def CmpGE : PatLeaf<(i32 5)>;
|
|
def CmpLO : PatLeaf<(i32 6)>;
|
|
def CmpLS : PatLeaf<(i32 7)>;
|
|
def CmpHI : PatLeaf<(i32 8)>;
|
|
def CmpHS : PatLeaf<(i32 9)>;
|
|
def CmpEQU : PatLeaf<(i32 10)>;
|
|
def CmpNEU : PatLeaf<(i32 11)>;
|
|
def CmpLTU : PatLeaf<(i32 12)>;
|
|
def CmpLEU : PatLeaf<(i32 13)>;
|
|
def CmpGTU : PatLeaf<(i32 14)>;
|
|
def CmpGEU : PatLeaf<(i32 15)>;
|
|
def CmpNUM : PatLeaf<(i32 16)>;
|
|
def CmpNAN : PatLeaf<(i32 17)>;
|
|
|
|
def CmpEQ_FTZ : PatLeaf<(i32 0x100)>;
|
|
def CmpNE_FTZ : PatLeaf<(i32 0x101)>;
|
|
def CmpLT_FTZ : PatLeaf<(i32 0x102)>;
|
|
def CmpLE_FTZ : PatLeaf<(i32 0x103)>;
|
|
def CmpGT_FTZ : PatLeaf<(i32 0x104)>;
|
|
def CmpGE_FTZ : PatLeaf<(i32 0x105)>;
|
|
def CmpLO_FTZ : PatLeaf<(i32 0x106)>;
|
|
def CmpLS_FTZ : PatLeaf<(i32 0x107)>;
|
|
def CmpHI_FTZ : PatLeaf<(i32 0x108)>;
|
|
def CmpHS_FTZ : PatLeaf<(i32 0x109)>;
|
|
def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>;
|
|
def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>;
|
|
def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>;
|
|
def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>;
|
|
def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>;
|
|
def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>;
|
|
def CmpNUM_FTZ : PatLeaf<(i32 0x110)>;
|
|
def CmpNAN_FTZ : PatLeaf<(i32 0x111)>;
|
|
|
|
def CmpMode : Operand<i32> {
|
|
let PrintMethod = "printCmpMode";
|
|
}
|
|
|
|
def F32ConstZero : Operand<f32>, PatLeaf<(f32 fpimm)>, SDNodeXForm<fpimm, [{
|
|
return CurDAG->getTargetConstantFP(0.0, MVT::f32);
|
|
}]>;
|
|
def F32ConstOne : Operand<f32>, PatLeaf<(f32 fpimm)>, SDNodeXForm<fpimm, [{
|
|
return CurDAG->getTargetConstantFP(1.0, MVT::f32);
|
|
}]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NVPTX Instruction Predicate Definitions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
def hasAtomRedG32 : Predicate<"Subtarget->hasAtomRedG32()">;
|
|
def hasAtomRedS32 : Predicate<"Subtarget->hasAtomRedS32()">;
|
|
def hasAtomRedGen32 : Predicate<"Subtarget->hasAtomRedGen32()">;
|
|
def useAtomRedG32forGen32 :
|
|
Predicate<"!Subtarget->hasAtomRedGen32() && Subtarget->hasAtomRedG32()">;
|
|
def hasBrkPt : Predicate<"Subtarget->hasBrkPt()">;
|
|
def hasAtomRedG64 : Predicate<"Subtarget->hasAtomRedG64()">;
|
|
def hasAtomRedS64 : Predicate<"Subtarget->hasAtomRedS64()">;
|
|
def hasAtomRedGen64 : Predicate<"Subtarget->hasAtomRedGen64()">;
|
|
def useAtomRedG64forGen64 :
|
|
Predicate<"!Subtarget->hasAtomRedGen64() && Subtarget->hasAtomRedG64()">;
|
|
def hasAtomAddF32 : Predicate<"Subtarget->hasAtomAddF32()">;
|
|
def hasVote : Predicate<"Subtarget->hasVote()">;
|
|
def hasDouble : Predicate<"Subtarget->hasDouble()">;
|
|
def reqPTX20 : Predicate<"Subtarget->reqPTX20()">;
|
|
def hasLDG : Predicate<"Subtarget->hasLDG()">;
|
|
def hasLDU : Predicate<"Subtarget->hasLDU()">;
|
|
def hasGenericLdSt : Predicate<"Subtarget->hasGenericLdSt()">;
|
|
|
|
def doF32FTZ : Predicate<"useF32FTZ()">;
|
|
def doNoF32FTZ : Predicate<"!useF32FTZ()">;
|
|
|
|
def doMulWide : Predicate<"doMulWide">;
|
|
|
|
def allowFMA : Predicate<"allowFMA()">;
|
|
def noFMA : Predicate<"!allowFMA()">;
|
|
|
|
def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">;
|
|
def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">;
|
|
|
|
def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">;
|
|
def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">;
|
|
|
|
def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">;
|
|
def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">;
|
|
|
|
def true : Predicate<"1">;
|
|
|
|
def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Some Common Instruction Class Templates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Template for instructions which take three int64, int32, or int16 args.
|
|
// The instructions are named "<OpcStr><Width>" (e.g. "add.s64").
|
|
multiclass I3<string OpcStr, SDNode OpNode> {
|
|
def i64rr :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
|
|
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
|
|
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
|
|
def i64ri :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
|
|
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
|
|
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
|
|
def i32rr :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
|
|
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
|
|
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
|
|
def i32ri :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
|
|
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
|
|
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
|
|
def i16rr :
|
|
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
|
|
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
|
|
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
|
|
def i16ri :
|
|
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
|
|
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
|
|
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>;
|
|
}
|
|
|
|
// Template for instructions which take 3 int32 args. The instructions are
|
|
// named "<OpcStr>.s32" (e.g. "addc.cc.s32").
|
|
multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> {
|
|
def i32rr :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
|
|
!strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
|
|
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
|
|
def i32ri :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
|
|
!strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
|
|
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
|
|
}
|
|
|
|
// Template for instructions which take three fp64 or fp32 args. The
|
|
// instructions are named "<OpcStr>.f<Width>" (e.g. "min.f64").
|
|
//
|
|
// Also defines ftz (flush subnormal inputs and results to sign-preserving
|
|
// zero) variants for fp32 functions.
|
|
//
|
|
// This multiclass should be used for nodes that cannot be folded into FMAs.
|
|
// For nodes that can be folded into FMAs (i.e. adds and muls), use
|
|
// F3_fma_component.
|
|
multiclass F3<string OpcStr, SDNode OpNode> {
|
|
def f64rr :
|
|
NVPTXInst<(outs Float64Regs:$dst),
|
|
(ins Float64Regs:$a, Float64Regs:$b),
|
|
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
|
|
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>;
|
|
def f64ri :
|
|
NVPTXInst<(outs Float64Regs:$dst),
|
|
(ins Float64Regs:$a, f64imm:$b),
|
|
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
|
|
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>;
|
|
def f32rr_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[doF32FTZ]>;
|
|
def f32ri_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[doF32FTZ]>;
|
|
def f32rr :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>;
|
|
def f32ri :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>;
|
|
}
|
|
|
|
// Template for instructions which take three fp64 or fp32 args. The
|
|
// instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64").
|
|
//
|
|
// Also defines ftz (flush subnormal inputs and results to sign-preserving
|
|
// zero) variants for fp32 functions.
|
|
//
|
|
// This multiclass should be used for nodes that can be folded to make fma ops.
|
|
// In this case, we use the ".rn" variant when FMA is disabled, as this behaves
|
|
// just like the non ".rn" op, but prevents ptxas from creating FMAs.
|
|
multiclass F3_fma_component<string OpcStr, SDNode OpNode> {
|
|
def f64rr :
|
|
NVPTXInst<(outs Float64Regs:$dst),
|
|
(ins Float64Regs:$a, Float64Regs:$b),
|
|
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
|
|
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
|
|
Requires<[allowFMA]>;
|
|
def f64ri :
|
|
NVPTXInst<(outs Float64Regs:$dst),
|
|
(ins Float64Regs:$a, f64imm:$b),
|
|
!strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
|
|
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
|
|
Requires<[allowFMA]>;
|
|
def f32rr_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[allowFMA, doF32FTZ]>;
|
|
def f32ri_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[allowFMA, doF32FTZ]>;
|
|
def f32rr :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[allowFMA]>;
|
|
def f32ri :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
!strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[allowFMA]>;
|
|
|
|
// These have strange names so we don't perturb existing mir tests.
|
|
def _rnf64rr :
|
|
NVPTXInst<(outs Float64Regs:$dst),
|
|
(ins Float64Regs:$a, Float64Regs:$b),
|
|
!strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
|
|
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
|
|
Requires<[noFMA]>;
|
|
def _rnf64ri :
|
|
NVPTXInst<(outs Float64Regs:$dst),
|
|
(ins Float64Regs:$a, f64imm:$b),
|
|
!strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
|
|
[(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
|
|
Requires<[noFMA]>;
|
|
def _rnf32rr_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
!strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[noFMA, doF32FTZ]>;
|
|
def _rnf32ri_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
!strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[noFMA, doF32FTZ]>;
|
|
def _rnf32rr :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
!strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[noFMA]>;
|
|
def _rnf32ri :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
!strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[noFMA]>;
|
|
}
|
|
|
|
// Template for operations which take two f32 or f64 operands. Provides three
|
|
// instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush
|
|
// subnormal inputs and results to zero).
|
|
multiclass F2<string OpcStr, SDNode OpNode> {
|
|
def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a),
|
|
!strconcat(OpcStr, ".f64 \t$dst, $a;"),
|
|
[(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>;
|
|
def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
|
|
!strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>,
|
|
Requires<[doF32FTZ]>;
|
|
def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
|
|
!strconcat(OpcStr, ".f32 \t$dst, $a;"),
|
|
[(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NVPTX Instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//-----------------------------------
|
|
// Type Conversion
|
|
//-----------------------------------
|
|
|
|
let hasSideEffects = 0 in {
|
|
// Generate a cvt to the given type from all possible types. Each instance
|
|
// takes a CvtMode immediate that defines the conversion mode to use. It can
|
|
// be CvtNONE to omit a conversion mode.
|
|
multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> {
|
|
def _s8 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Int16Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".s8\t$dst, $src;"), []>;
|
|
def _u8 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Int16Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".u8\t$dst, $src;"), []>;
|
|
def _s16 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Int16Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".s16\t$dst, $src;"), []>;
|
|
def _u16 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Int16Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".u16\t$dst, $src;"), []>;
|
|
def _f16 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Int16Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".f16\t$dst, $src;"), []>;
|
|
def _s32 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Int32Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".s32\t$dst, $src;"), []>;
|
|
def _u32 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Int32Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".u32\t$dst, $src;"), []>;
|
|
def _s64 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Int64Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".s64\t$dst, $src;"), []>;
|
|
def _u64 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Int64Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".u64\t$dst, $src;"), []>;
|
|
def _f32 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Float32Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".f32\t$dst, $src;"), []>;
|
|
def _f64 :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins Float64Regs:$src, CvtMode:$mode),
|
|
!strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
|
|
FromName, ".f64\t$dst, $src;"), []>;
|
|
}
|
|
|
|
// Generate cvts from all types to all types.
|
|
defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>;
|
|
defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>;
|
|
defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>;
|
|
defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>;
|
|
defm CVT_f16 : CVT_FROM_ALL<"f16", Int16Regs>;
|
|
defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>;
|
|
defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>;
|
|
defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>;
|
|
defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>;
|
|
defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>;
|
|
defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>;
|
|
|
|
// These cvts are different from those above: The source and dest registers
|
|
// are of the same type.
|
|
def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
|
|
"cvt.s16.s8 \t$dst, $src;", []>;
|
|
def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
|
|
"cvt.s32.s8 \t$dst, $src;", []>;
|
|
def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
|
|
"cvt.s32.s16 \t$dst, $src;", []>;
|
|
def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
|
|
"cvt.s64.s8 \t$dst, $src;", []>;
|
|
def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
|
|
"cvt.s64.s16 \t$dst, $src;", []>;
|
|
def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
|
|
"cvt.s64.s32 \t$dst, $src;", []>;
|
|
}
|
|
|
|
//-----------------------------------
|
|
// Integer Arithmetic
|
|
//-----------------------------------
|
|
|
|
// Template for xor masquerading as int1 arithmetic.
|
|
multiclass ADD_SUB_i1<SDNode OpNode> {
|
|
def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
|
|
"xor.pred \t$dst, $a, $b;",
|
|
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
|
|
def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
|
|
"xor.pred \t$dst, $a, $b;",
|
|
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>;
|
|
}
|
|
|
|
// int1 addition and subtraction are both just xor.
|
|
defm ADD_i1 : ADD_SUB_i1<add>;
|
|
defm SUB_i1 : ADD_SUB_i1<sub>;
|
|
|
|
// int16, int32, and int64 signed addition. Since nvptx is 2's compliment, we
|
|
// also use these for unsigned arithmetic.
|
|
defm ADD : I3<"add.s", add>;
|
|
defm SUB : I3<"sub.s", sub>;
|
|
|
|
// int32 addition and subtraction with carry-out.
|
|
// FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?).
|
|
defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>;
|
|
defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>;
|
|
|
|
// int32 addition and subtraction with carry-in and carry-out.
|
|
defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>;
|
|
defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>;
|
|
|
|
defm MULT : I3<"mul.lo.s", mul>;
|
|
|
|
defm MULTHS : I3<"mul.hi.s", mulhs>;
|
|
defm MULTHU : I3<"mul.hi.u", mulhu>;
|
|
|
|
defm SDIV : I3<"div.s", sdiv>;
|
|
defm UDIV : I3<"div.u", udiv>;
|
|
|
|
// The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM
|
|
// will lower it.
|
|
defm SREM : I3<"rem.s", srem>;
|
|
defm UREM : I3<"rem.u", urem>;
|
|
|
|
|
|
//
|
|
// Wide multiplication
|
|
//
|
|
def MULWIDES64 :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
|
|
"mul.wide.s32 \t$dst, $a, $b;", []>;
|
|
def MULWIDES64Imm :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
|
|
"mul.wide.s32 \t$dst, $a, $b;", []>;
|
|
def MULWIDES64Imm64 :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
|
|
"mul.wide.s32 \t$dst, $a, $b;", []>;
|
|
|
|
def MULWIDEU64 :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
|
|
"mul.wide.u32 \t$dst, $a, $b;", []>;
|
|
def MULWIDEU64Imm :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
|
|
"mul.wide.u32 \t$dst, $a, $b;", []>;
|
|
def MULWIDEU64Imm64 :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
|
|
"mul.wide.u32 \t$dst, $a, $b;", []>;
|
|
|
|
def MULWIDES32 :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
|
|
"mul.wide.s16 \t$dst, $a, $b;", []>;
|
|
def MULWIDES32Imm :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
|
|
"mul.wide.s16 \t$dst, $a, $b;", []>;
|
|
def MULWIDES32Imm32 :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
|
|
"mul.wide.s16 \t$dst, $a, $b;", []>;
|
|
|
|
def MULWIDEU32 :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
|
|
"mul.wide.u16 \t$dst, $a, $b;", []>;
|
|
def MULWIDEU32Imm :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
|
|
"mul.wide.u16 \t$dst, $a, $b;", []>;
|
|
def MULWIDEU32Imm32 :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
|
|
"mul.wide.u16 \t$dst, $a, $b;", []>;
|
|
|
|
def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>;
|
|
def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>;
|
|
def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>;
|
|
|
|
// Matchers for signed, unsigned mul.wide ISD nodes.
|
|
def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)),
|
|
(MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)),
|
|
(MULWIDES32Imm Int16Regs:$a, imm:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)),
|
|
(MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)),
|
|
(MULWIDEU32Imm Int16Regs:$a, imm:$b)>,
|
|
Requires<[doMulWide]>;
|
|
|
|
def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)),
|
|
(MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)),
|
|
(MULWIDES64Imm Int32Regs:$a, imm:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)),
|
|
(MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)),
|
|
(MULWIDEU64Imm Int32Regs:$a, imm:$b)>,
|
|
Requires<[doMulWide]>;
|
|
|
|
// Predicates used for converting some patterns to mul.wide.
|
|
def SInt32Const : PatLeaf<(imm), [{
|
|
const APInt &v = N->getAPIntValue();
|
|
return v.isSignedIntN(32);
|
|
}]>;
|
|
|
|
def UInt32Const : PatLeaf<(imm), [{
|
|
const APInt &v = N->getAPIntValue();
|
|
return v.isIntN(32);
|
|
}]>;
|
|
|
|
def SInt16Const : PatLeaf<(imm), [{
|
|
const APInt &v = N->getAPIntValue();
|
|
return v.isSignedIntN(16);
|
|
}]>;
|
|
|
|
def UInt16Const : PatLeaf<(imm), [{
|
|
const APInt &v = N->getAPIntValue();
|
|
return v.isIntN(16);
|
|
}]>;
|
|
|
|
def Int5Const : PatLeaf<(imm), [{
|
|
// Check if 0 <= v < 32; only then will the result of (x << v) be an int32.
|
|
const APInt &v = N->getAPIntValue();
|
|
return v.sge(0) && v.slt(32);
|
|
}]>;
|
|
|
|
def Int4Const : PatLeaf<(imm), [{
|
|
// Check if 0 <= v < 16; only then will the result of (x << v) be an int16.
|
|
const APInt &v = N->getAPIntValue();
|
|
return v.sge(0) && v.slt(16);
|
|
}]>;
|
|
|
|
def SHL2MUL32 : SDNodeXForm<imm, [{
|
|
const APInt &v = N->getAPIntValue();
|
|
APInt temp(32, 1);
|
|
return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32);
|
|
}]>;
|
|
|
|
def SHL2MUL16 : SDNodeXForm<imm, [{
|
|
const APInt &v = N->getAPIntValue();
|
|
APInt temp(16, 1);
|
|
return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16);
|
|
}]>;
|
|
|
|
// Convert "sign/zero-extend, then shift left by an immediate" to mul.wide.
|
|
def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)),
|
|
(MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)),
|
|
(MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
|
|
Requires<[doMulWide]>;
|
|
|
|
def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)),
|
|
(MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)),
|
|
(MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
|
|
Requires<[doMulWide]>;
|
|
|
|
// Convert "sign/zero-extend then multiply" to mul.wide.
|
|
def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)),
|
|
(MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)),
|
|
(MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>,
|
|
Requires<[doMulWide]>;
|
|
|
|
def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)),
|
|
(MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)),
|
|
(MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>,
|
|
Requires<[doMulWide]>;
|
|
|
|
def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)),
|
|
(MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)),
|
|
(MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>,
|
|
Requires<[doMulWide]>;
|
|
|
|
def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)),
|
|
(MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
|
|
Requires<[doMulWide]>;
|
|
def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)),
|
|
(MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>,
|
|
Requires<[doMulWide]>;
|
|
|
|
//
|
|
// Integer multiply-add
|
|
//
|
|
def SDTIMAD :
|
|
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>,
|
|
SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>;
|
|
def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>;
|
|
|
|
def MAD16rrr :
|
|
NVPTXInst<(outs Int16Regs:$dst),
|
|
(ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c),
|
|
"mad.lo.s16 \t$dst, $a, $b, $c;",
|
|
[(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>;
|
|
def MAD16rri :
|
|
NVPTXInst<(outs Int16Regs:$dst),
|
|
(ins Int16Regs:$a, Int16Regs:$b, i16imm:$c),
|
|
"mad.lo.s16 \t$dst, $a, $b, $c;",
|
|
[(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>;
|
|
def MAD16rir :
|
|
NVPTXInst<(outs Int16Regs:$dst),
|
|
(ins Int16Regs:$a, i16imm:$b, Int16Regs:$c),
|
|
"mad.lo.s16 \t$dst, $a, $b, $c;",
|
|
[(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>;
|
|
def MAD16rii :
|
|
NVPTXInst<(outs Int16Regs:$dst),
|
|
(ins Int16Regs:$a, i16imm:$b, i16imm:$c),
|
|
"mad.lo.s16 \t$dst, $a, $b, $c;",
|
|
[(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>;
|
|
|
|
def MAD32rrr :
|
|
NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c),
|
|
"mad.lo.s32 \t$dst, $a, $b, $c;",
|
|
[(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>;
|
|
def MAD32rri :
|
|
NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins Int32Regs:$a, Int32Regs:$b, i32imm:$c),
|
|
"mad.lo.s32 \t$dst, $a, $b, $c;",
|
|
[(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>;
|
|
def MAD32rir :
|
|
NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins Int32Regs:$a, i32imm:$b, Int32Regs:$c),
|
|
"mad.lo.s32 \t$dst, $a, $b, $c;",
|
|
[(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>;
|
|
def MAD32rii :
|
|
NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins Int32Regs:$a, i32imm:$b, i32imm:$c),
|
|
"mad.lo.s32 \t$dst, $a, $b, $c;",
|
|
[(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>;
|
|
|
|
def MAD64rrr :
|
|
NVPTXInst<(outs Int64Regs:$dst),
|
|
(ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c),
|
|
"mad.lo.s64 \t$dst, $a, $b, $c;",
|
|
[(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>;
|
|
def MAD64rri :
|
|
NVPTXInst<(outs Int64Regs:$dst),
|
|
(ins Int64Regs:$a, Int64Regs:$b, i64imm:$c),
|
|
"mad.lo.s64 \t$dst, $a, $b, $c;",
|
|
[(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>;
|
|
def MAD64rir :
|
|
NVPTXInst<(outs Int64Regs:$dst),
|
|
(ins Int64Regs:$a, i64imm:$b, Int64Regs:$c),
|
|
"mad.lo.s64 \t$dst, $a, $b, $c;",
|
|
[(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>;
|
|
def MAD64rii :
|
|
NVPTXInst<(outs Int64Regs:$dst),
|
|
(ins Int64Regs:$a, i64imm:$b, i64imm:$c),
|
|
"mad.lo.s64 \t$dst, $a, $b, $c;",
|
|
[(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>;
|
|
|
|
def INEG16 :
|
|
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
|
|
"neg.s16 \t$dst, $src;",
|
|
[(set Int16Regs:$dst, (ineg Int16Regs:$src))]>;
|
|
def INEG32 :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
|
|
"neg.s32 \t$dst, $src;",
|
|
[(set Int32Regs:$dst, (ineg Int32Regs:$src))]>;
|
|
def INEG64 :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
|
|
"neg.s64 \t$dst, $src;",
|
|
[(set Int64Regs:$dst, (ineg Int64Regs:$src))]>;
|
|
|
|
//-----------------------------------
|
|
// Floating Point Arithmetic
|
|
//-----------------------------------
|
|
|
|
// Constant 1.0f
|
|
def FloatConst1 : PatLeaf<(fpimm), [{
|
|
return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle &&
|
|
N->getValueAPF().convertToFloat() == 1.0f;
|
|
}]>;
|
|
// Constant 1.0 (double)
|
|
def DoubleConst1 : PatLeaf<(fpimm), [{
|
|
return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble &&
|
|
N->getValueAPF().convertToDouble() == 1.0;
|
|
}]>;
|
|
|
|
defm FADD : F3_fma_component<"add", fadd>;
|
|
defm FSUB : F3_fma_component<"sub", fsub>;
|
|
defm FMUL : F3_fma_component<"mul", fmul>;
|
|
|
|
defm FMIN : F3<"min", fminnum>;
|
|
defm FMAX : F3<"max", fmaxnum>;
|
|
|
|
defm FABS : F2<"abs", fabs>;
|
|
defm FNEG : F2<"neg", fneg>;
|
|
defm FSQRT : F2<"sqrt.rn", fsqrt>;
|
|
|
|
//
|
|
// F64 division
|
|
//
|
|
def FDIV641r :
|
|
NVPTXInst<(outs Float64Regs:$dst),
|
|
(ins f64imm:$a, Float64Regs:$b),
|
|
"rcp.rn.f64 \t$dst, $b;",
|
|
[(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>;
|
|
def FDIV64rr :
|
|
NVPTXInst<(outs Float64Regs:$dst),
|
|
(ins Float64Regs:$a, Float64Regs:$b),
|
|
"div.rn.f64 \t$dst, $a, $b;",
|
|
[(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>;
|
|
def FDIV64ri :
|
|
NVPTXInst<(outs Float64Regs:$dst),
|
|
(ins Float64Regs:$a, f64imm:$b),
|
|
"div.rn.f64 \t$dst, $a, $b;",
|
|
[(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>;
|
|
|
|
//
|
|
// F32 Approximate reciprocal
|
|
//
|
|
def FDIV321r_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins f32imm:$a, Float32Regs:$b),
|
|
"rcp.approx.ftz.f32 \t$dst, $b;",
|
|
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
|
|
Requires<[do_DIVF32_APPROX, doF32FTZ]>;
|
|
def FDIV321r :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins f32imm:$a, Float32Regs:$b),
|
|
"rcp.approx.f32 \t$dst, $b;",
|
|
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
|
|
Requires<[do_DIVF32_APPROX]>;
|
|
//
|
|
// F32 Approximate division
|
|
//
|
|
def FDIV32approxrr_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
"div.approx.ftz.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[do_DIVF32_APPROX, doF32FTZ]>;
|
|
def FDIV32approxri_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
"div.approx.ftz.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[do_DIVF32_APPROX, doF32FTZ]>;
|
|
def FDIV32approxrr :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
"div.approx.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[do_DIVF32_APPROX]>;
|
|
def FDIV32approxri :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
"div.approx.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[do_DIVF32_APPROX]>;
|
|
//
|
|
// F32 Semi-accurate reciprocal
|
|
//
|
|
// rcp.approx gives the same result as div.full(1.0f, a) and is faster.
|
|
//
|
|
def FDIV321r_approx_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins f32imm:$a, Float32Regs:$b),
|
|
"rcp.approx.ftz.f32 \t$dst, $b;",
|
|
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
|
|
Requires<[do_DIVF32_FULL, doF32FTZ]>;
|
|
def FDIV321r_approx :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins f32imm:$a, Float32Regs:$b),
|
|
"rcp.approx.f32 \t$dst, $b;",
|
|
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
|
|
Requires<[do_DIVF32_FULL]>;
|
|
//
|
|
// F32 Semi-accurate division
|
|
//
|
|
def FDIV32rr_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
"div.full.ftz.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[do_DIVF32_FULL, doF32FTZ]>;
|
|
def FDIV32ri_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
"div.full.ftz.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[do_DIVF32_FULL, doF32FTZ]>;
|
|
def FDIV32rr :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
"div.full.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[do_DIVF32_FULL]>;
|
|
def FDIV32ri :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
"div.full.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[do_DIVF32_FULL]>;
|
|
//
|
|
// F32 Accurate reciprocal
|
|
//
|
|
def FDIV321r_prec_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins f32imm:$a, Float32Regs:$b),
|
|
"rcp.rn.ftz.f32 \t$dst, $b;",
|
|
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
|
|
Requires<[reqPTX20, doF32FTZ]>;
|
|
def FDIV321r_prec :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins f32imm:$a, Float32Regs:$b),
|
|
"rcp.rn.f32 \t$dst, $b;",
|
|
[(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
|
|
Requires<[reqPTX20]>;
|
|
//
|
|
// F32 Accurate division
|
|
//
|
|
def FDIV32rr_prec_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
"div.rn.ftz.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[doF32FTZ, reqPTX20]>;
|
|
def FDIV32ri_prec_ftz :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
"div.rn.ftz.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[doF32FTZ, reqPTX20]>;
|
|
def FDIV32rr_prec :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, Float32Regs:$b),
|
|
"div.rn.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
|
|
Requires<[reqPTX20]>;
|
|
def FDIV32ri_prec :
|
|
NVPTXInst<(outs Float32Regs:$dst),
|
|
(ins Float32Regs:$a, f32imm:$b),
|
|
"div.rn.f32 \t$dst, $a, $b;",
|
|
[(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
|
|
Requires<[reqPTX20]>;
|
|
|
|
//
|
|
// F32 rsqrt
|
|
//
|
|
|
|
def RSQRTF32approx1r : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$b),
|
|
"rsqrt.approx.f32 \t$dst, $b;", []>;
|
|
|
|
// Convert 1.0f/sqrt(x) to rsqrt.approx.f32. (There is an rsqrt.approx.f64, but
|
|
// it's emulated in software.)
|
|
def: Pat<(fdiv FloatConst1, (int_nvvm_sqrt_f Float32Regs:$b)),
|
|
(RSQRTF32approx1r Float32Regs:$b)>,
|
|
Requires<[do_DIVF32_FULL, do_SQRTF32_APPROX, doNoF32FTZ]>;
|
|
|
|
multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> {
|
|
def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c),
|
|
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
|
|
[(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>,
|
|
Requires<[Pred]>;
|
|
def rri : NVPTXInst<(outs RC:$dst),
|
|
(ins RC:$a, RC:$b, ImmCls:$c),
|
|
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
|
|
[(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>,
|
|
Requires<[Pred]>;
|
|
def rir : NVPTXInst<(outs RC:$dst),
|
|
(ins RC:$a, ImmCls:$b, RC:$c),
|
|
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
|
|
[(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>,
|
|
Requires<[Pred]>;
|
|
def rii : NVPTXInst<(outs RC:$dst),
|
|
(ins RC:$a, ImmCls:$b, ImmCls:$c),
|
|
!strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
|
|
[(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>,
|
|
Requires<[Pred]>;
|
|
}
|
|
|
|
defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>;
|
|
defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, true>;
|
|
defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, true>;
|
|
|
|
// sin/cos
|
|
def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
|
|
"sin.approx.f32 \t$dst, $src;",
|
|
[(set Float32Regs:$dst, (fsin Float32Regs:$src))]>;
|
|
def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
|
|
"cos.approx.f32 \t$dst, $src;",
|
|
[(set Float32Regs:$dst, (fcos Float32Regs:$src))]>;
|
|
|
|
// Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y)),
|
|
// i.e. "poor man's fmod()"
|
|
|
|
// frem - f32 FTZ
|
|
def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
|
|
(FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32
|
|
(FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRMI_FTZ),
|
|
Float32Regs:$y))>,
|
|
Requires<[doF32FTZ]>;
|
|
def : Pat<(frem Float32Regs:$x, fpimm:$y),
|
|
(FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32
|
|
(FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRMI_FTZ),
|
|
fpimm:$y))>,
|
|
Requires<[doF32FTZ]>;
|
|
|
|
// frem - f32
|
|
def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
|
|
(FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32
|
|
(FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRMI),
|
|
Float32Regs:$y))>;
|
|
def : Pat<(frem Float32Regs:$x, fpimm:$y),
|
|
(FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32
|
|
(FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRMI),
|
|
fpimm:$y))>;
|
|
|
|
// frem - f64
|
|
def : Pat<(frem Float64Regs:$x, Float64Regs:$y),
|
|
(FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64
|
|
(FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRMI),
|
|
Float64Regs:$y))>;
|
|
def : Pat<(frem Float64Regs:$x, fpimm:$y),
|
|
(FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64
|
|
(FDIV64ri Float64Regs:$x, fpimm:$y), CvtRMI),
|
|
fpimm:$y))>;
|
|
|
|
//-----------------------------------
|
|
// Bitwise operations
|
|
//-----------------------------------
|
|
|
|
// Template for three-arg bitwise operations. Takes three args, Creates .b16,
|
|
// .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr.
|
|
multiclass BITWISE<string OpcStr, SDNode OpNode> {
|
|
def b1rr :
|
|
NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
|
|
!strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
|
|
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
|
|
def b1ri :
|
|
NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
|
|
!strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
|
|
[(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>;
|
|
def b16rr :
|
|
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
|
|
!strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
|
|
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
|
|
def b16ri :
|
|
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
|
|
!strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
|
|
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>;
|
|
def b32rr :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
|
|
!strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
|
|
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
|
|
def b32ri :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
|
|
!strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
|
|
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
|
|
def b64rr :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
|
|
!strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
|
|
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
|
|
def b64ri :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
|
|
!strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
|
|
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
|
|
}
|
|
|
|
defm OR : BITWISE<"or", or>;
|
|
defm AND : BITWISE<"and", and>;
|
|
defm XOR : BITWISE<"xor", xor>;
|
|
|
|
def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src),
|
|
"not.pred \t$dst, $src;",
|
|
[(set Int1Regs:$dst, (not Int1Regs:$src))]>;
|
|
def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
|
|
"not.b16 \t$dst, $src;",
|
|
[(set Int16Regs:$dst, (not Int16Regs:$src))]>;
|
|
def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
|
|
"not.b32 \t$dst, $src;",
|
|
[(set Int32Regs:$dst, (not Int32Regs:$src))]>;
|
|
def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
|
|
"not.b64 \t$dst, $src;",
|
|
[(set Int64Regs:$dst, (not Int64Regs:$src))]>;
|
|
|
|
// Template for left/right shifts. Takes three operands,
|
|
// [dest (reg), src (reg), shift (reg or imm)].
|
|
// dest and src may be int64, int32, or int16, but shift is always int32.
|
|
//
|
|
// This template also defines a 32-bit shift (imm, imm) instruction.
|
|
multiclass SHIFT<string OpcStr, SDNode OpNode> {
|
|
def i64rr :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b),
|
|
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
|
|
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>;
|
|
def i64ri :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b),
|
|
!strconcat(OpcStr, "64 \t$dst, $a, $b;"),
|
|
[(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>;
|
|
def i32rr :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
|
|
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
|
|
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
|
|
def i32ri :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
|
|
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
|
|
[(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>;
|
|
def i32ii :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b),
|
|
!strconcat(OpcStr, "32 \t$dst, $a, $b;"),
|
|
[(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>;
|
|
def i16rr :
|
|
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b),
|
|
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
|
|
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>;
|
|
def i16ri :
|
|
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
|
|
!strconcat(OpcStr, "16 \t$dst, $a, $b;"),
|
|
[(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>;
|
|
}
|
|
|
|
defm SHL : SHIFT<"shl.b", shl>;
|
|
defm SRA : SHIFT<"shr.s", sra>;
|
|
defm SRL : SHIFT<"shr.u", srl>;
|
|
|
|
//
|
|
// Rotate: Use ptx shf instruction if available.
|
|
//
|
|
|
|
// 32 bit r2 = rotl r1, n
|
|
// =>
|
|
// r2 = shf.l r1, r1, n
|
|
def ROTL32imm_hw :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
|
|
"shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
|
|
[(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>,
|
|
Requires<[hasHWROT32]>;
|
|
|
|
def ROTL32reg_hw :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
|
|
"shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
|
|
[(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
|
|
Requires<[hasHWROT32]>;
|
|
|
|
// 32 bit r2 = rotr r1, n
|
|
// =>
|
|
// r2 = shf.r r1, r1, n
|
|
def ROTR32imm_hw :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
|
|
"shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
|
|
[(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>,
|
|
Requires<[hasHWROT32]>;
|
|
|
|
def ROTR32reg_hw :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
|
|
"shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
|
|
[(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
|
|
Requires<[hasHWROT32]>;
|
|
|
|
// 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1.
|
|
def ROT32imm_sw :
|
|
NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2),
|
|
"{{\n\t"
|
|
".reg .b32 %lhs;\n\t"
|
|
".reg .b32 %rhs;\n\t"
|
|
"shl.b32 \t%lhs, $src, $amt1;\n\t"
|
|
"shr.b32 \t%rhs, $src, $amt2;\n\t"
|
|
"add.u32 \t$dst, %lhs, %rhs;\n\t"
|
|
"}}",
|
|
[]>;
|
|
|
|
def SUB_FRM_32 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32);
|
|
}]>;
|
|
|
|
def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)),
|
|
(ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>,
|
|
Requires<[noHWROT32]>;
|
|
def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)),
|
|
(ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>,
|
|
Requires<[noHWROT32]>;
|
|
|
|
// 32-bit software rotate left by register.
|
|
def ROTL32reg_sw :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
|
|
"{{\n\t"
|
|
".reg .b32 %lhs;\n\t"
|
|
".reg .b32 %rhs;\n\t"
|
|
".reg .b32 %amt2;\n\t"
|
|
"shl.b32 \t%lhs, $src, $amt;\n\t"
|
|
"sub.s32 \t%amt2, 32, $amt;\n\t"
|
|
"shr.b32 \t%rhs, $src, %amt2;\n\t"
|
|
"add.u32 \t$dst, %lhs, %rhs;\n\t"
|
|
"}}",
|
|
[(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
|
|
Requires<[noHWROT32]>;
|
|
|
|
// 32-bit software rotate right by register.
|
|
def ROTR32reg_sw :
|
|
NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
|
|
"{{\n\t"
|
|
".reg .b32 %lhs;\n\t"
|
|
".reg .b32 %rhs;\n\t"
|
|
".reg .b32 %amt2;\n\t"
|
|
"shr.b32 \t%lhs, $src, $amt;\n\t"
|
|
"sub.s32 \t%amt2, 32, $amt;\n\t"
|
|
"shl.b32 \t%rhs, $src, %amt2;\n\t"
|
|
"add.u32 \t$dst, %lhs, %rhs;\n\t"
|
|
"}}",
|
|
[(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
|
|
Requires<[noHWROT32]>;
|
|
|
|
// 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1.
|
|
def ROT64imm_sw :
|
|
NVPTXInst<(outs Int64Regs:$dst),
|
|
(ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2),
|
|
"{{\n\t"
|
|
".reg .b64 %lhs;\n\t"
|
|
".reg .b64 %rhs;\n\t"
|
|
"shl.b64 \t%lhs, $src, $amt1;\n\t"
|
|
"shr.b64 \t%rhs, $src, $amt2;\n\t"
|
|
"add.u64 \t$dst, %lhs, %rhs;\n\t"
|
|
"}}",
|
|
[]>;
|
|
|
|
def SUB_FRM_64 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32);
|
|
}]>;
|
|
|
|
def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)),
|
|
(ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>;
|
|
def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)),
|
|
(ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>;
|
|
|
|
// 64-bit software rotate left by register.
|
|
def ROTL64reg_sw :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
|
|
"{{\n\t"
|
|
".reg .b64 %lhs;\n\t"
|
|
".reg .b64 %rhs;\n\t"
|
|
".reg .u32 %amt2;\n\t"
|
|
"shl.b64 \t%lhs, $src, $amt;\n\t"
|
|
"sub.u32 \t%amt2, 64, $amt;\n\t"
|
|
"shr.b64 \t%rhs, $src, %amt2;\n\t"
|
|
"add.u64 \t$dst, %lhs, %rhs;\n\t"
|
|
"}}",
|
|
[(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>;
|
|
|
|
def ROTR64reg_sw :
|
|
NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
|
|
"{{\n\t"
|
|
".reg .b64 %lhs;\n\t"
|
|
".reg .b64 %rhs;\n\t"
|
|
".reg .u32 %amt2;\n\t"
|
|
"shr.b64 \t%lhs, $src, $amt;\n\t"
|
|
"sub.u32 \t%amt2, 64, $amt;\n\t"
|
|
"shl.b64 \t%rhs, $src, %amt2;\n\t"
|
|
"add.u64 \t$dst, %lhs, %rhs;\n\t"
|
|
"}}",
|
|
[(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>;
|
|
|
|
//
|
|
// Funnnel shift in clamp mode
|
|
//
|
|
|
|
// Create SDNodes so they can be used in the DAG code, e.g.
|
|
// NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts)
|
|
def SDTIntShiftDOp :
|
|
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
|
|
SDTCisInt<0>, SDTCisInt<3>]>;
|
|
def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>;
|
|
def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>;
|
|
|
|
def FUNSHFLCLAMP :
|
|
NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
|
|
"shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;",
|
|
[(set Int32Regs:$dst,
|
|
(FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
|
|
|
|
def FUNSHFRCLAMP :
|
|
NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
|
|
"shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;",
|
|
[(set Int32Regs:$dst,
|
|
(FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
|
|
|
|
//
|
|
// BFE - bit-field extract
|
|
//
|
|
|
|
// Template for BFE instructions. Takes four args,
|
|
// [dest (reg), src (reg), start (reg or imm), end (reg or imm)].
|
|
// Start may be an imm only if end is also an imm. FIXME: Is this a
|
|
// restriction in PTX?
|
|
//
|
|
// dest and src may be int32 or int64, but start and end are always int32.
|
|
multiclass BFE<string TyStr, RegisterClass RC> {
|
|
def rrr
|
|
: NVPTXInst<(outs RC:$d),
|
|
(ins RC:$a, Int32Regs:$b, Int32Regs:$c),
|
|
!strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
|
|
def rri
|
|
: NVPTXInst<(outs RC:$d),
|
|
(ins RC:$a, Int32Regs:$b, i32imm:$c),
|
|
!strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
|
|
def rii
|
|
: NVPTXInst<(outs RC:$d),
|
|
(ins RC:$a, i32imm:$b, i32imm:$c),
|
|
!strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
|
|
}
|
|
|
|
let hasSideEffects = 0 in {
|
|
defm BFE_S32 : BFE<"s32", Int32Regs>;
|
|
defm BFE_U32 : BFE<"u32", Int32Regs>;
|
|
defm BFE_S64 : BFE<"s64", Int64Regs>;
|
|
defm BFE_U64 : BFE<"u64", Int64Regs>;
|
|
}
|
|
|
|
//-----------------------------------
|
|
// Comparison instructions (setp, set)
|
|
//-----------------------------------
|
|
|
|
// FIXME: This doesn't cover versions of set and setp that combine with a
|
|
// boolean predicate, e.g. setp.eq.and.b16.
|
|
|
|
let hasSideEffects = 0 in {
|
|
multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> {
|
|
def rr :
|
|
NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp),
|
|
!strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
|
|
"\t$dst, $a, $b;"), []>;
|
|
def ri :
|
|
NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp),
|
|
!strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
|
|
"\t$dst, $a, $b;"), []>;
|
|
def ir :
|
|
NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp),
|
|
!strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
|
|
"\t$dst, $a, $b;"), []>;
|
|
}
|
|
}
|
|
|
|
defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>;
|
|
defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>;
|
|
defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>;
|
|
defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>;
|
|
defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>;
|
|
defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>;
|
|
defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>;
|
|
defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>;
|
|
defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>;
|
|
defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>;
|
|
defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>;
|
|
|
|
// FIXME: This doesn't appear to be correct. The "set" mnemonic has the form
|
|
// "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination
|
|
// reg, either u32, s32, or f32. Anyway these aren't used at the moment.
|
|
|
|
let hasSideEffects = 0 in {
|
|
multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> {
|
|
def rr : NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins RC:$a, RC:$b, CmpMode:$cmp),
|
|
!strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>;
|
|
def ri : NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins RC:$a, ImmCls:$b, CmpMode:$cmp),
|
|
!strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>;
|
|
def ir : NVPTXInst<(outs Int32Regs:$dst),
|
|
(ins ImmCls:$a, RC:$b, CmpMode:$cmp),
|
|
!strconcat("set$cmp.", TypeStr, "\t$dst, $a, $b;"), []>;
|
|
}
|
|
}
|
|
|
|
defm SET_b16 : SET<"b16", Int16Regs, i16imm>;
|
|
defm SET_s16 : SET<"s16", Int16Regs, i16imm>;
|
|
defm SET_u16 : SET<"u16", Int16Regs, i16imm>;
|
|
defm SET_b32 : SET<"b32", Int32Regs, i32imm>;
|
|
defm SET_s32 : SET<"s32", Int32Regs, i32imm>;
|
|
defm SET_u32 : SET<"u32", Int32Regs, i32imm>;
|
|
defm SET_b64 : SET<"b64", Int64Regs, i64imm>;
|
|
defm SET_s64 : SET<"s64", Int64Regs, i64imm>;
|
|
defm SET_u64 : SET<"u64", Int64Regs, i64imm>;
|
|
defm SET_f32 : SET<"f32", Float32Regs, f32imm>;
|
|
defm SET_f64 : SET<"f64", Float64Regs, f64imm>;
|
|
|
|
//-----------------------------------
|
|
// Selection instructions (selp)
|
|
//-----------------------------------
|
|
|
|
// FIXME: Missing slct
|
|
|
|
// selp instructions that don't have any pattern matches; we explicitly use
|
|
// them within this file.
|
|
let hasSideEffects = 0 in {
|
|
multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> {
|
|
def rr : NVPTXInst<(outs RC:$dst),
|
|
(ins RC:$a, RC:$b, Int1Regs:$p),
|
|
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
|
|
def ri : NVPTXInst<(outs RC:$dst),
|
|
(ins RC:$a, ImmCls:$b, Int1Regs:$p),
|
|
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
|
|
def ir : NVPTXInst<(outs RC:$dst),
|
|
(ins ImmCls:$a, RC:$b, Int1Regs:$p),
|
|
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
|
|
def ii : NVPTXInst<(outs RC:$dst),
|
|
(ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
|
|
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"), []>;
|
|
}
|
|
|
|
multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls,
|
|
SDNode ImmNode> {
|
|
def rr :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins RC:$a, RC:$b, Int1Regs:$p),
|
|
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
|
|
[(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>;
|
|
def ri :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins RC:$a, ImmCls:$b, Int1Regs:$p),
|
|
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
|
|
[(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>;
|
|
def ir :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins ImmCls:$a, RC:$b, Int1Regs:$p),
|
|
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
|
|
[(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>;
|
|
def ii :
|
|
NVPTXInst<(outs RC:$dst),
|
|
(ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
|
|
!strconcat("selp.", TypeStr, "\t$dst, $a, $b, $p;"),
|
|
[(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>;
|
|
}
|
|
}
|
|
|
|
// Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as
|
|
// good.
|
|
defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>;
|
|
defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>;
|
|
defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>;
|
|
defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>;
|
|
defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>;
|
|
defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>;
|
|
defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>;
|
|
defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>;
|
|
defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>;
|
|
defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>;
|
|
defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>;
|
|
|
|
//-----------------------------------
|
|
// Data Movement (Load / Store, Move)
|
|
//-----------------------------------
|
|
|
|
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex],
|
|
[SDNPWantRoot]>;
|
|
def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex],
|
|
[SDNPWantRoot]>;
|
|
|
|
def MEMri : Operand<i32> {
|
|
let PrintMethod = "printMemOperand";
|
|
let MIOperandInfo = (ops Int32Regs, i32imm);
|
|
}
|
|
def MEMri64 : Operand<i64> {
|
|
let PrintMethod = "printMemOperand";
|
|
let MIOperandInfo = (ops Int64Regs, i64imm);
|
|
}
|
|
|
|
def imem : Operand<iPTR> {
|
|
let PrintMethod = "printOperand";
|
|
}
|
|
|
|
def imemAny : Operand<iPTRAny> {
|
|
let PrintMethod = "printOperand";
|
|
}
|
|
|
|
def LdStCode : Operand<i32> {
|
|
let PrintMethod = "printLdStCode";
|
|
}
|
|
|
|
def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
|
|
def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>;
|
|
|
|
// Load a memory address into a u32 or u64 register.
|
|
def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a),
|
|
"mov.u32 \t$dst, $a;",
|
|
[(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>;
|
|
def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a),
|
|
"mov.u64 \t$dst, $a;",
|
|
[(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>;
|
|
|
|
// Get pointer to local stack.
|
|
let hasSideEffects = 0 in {
|
|
def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num),
|
|
"mov.u32 \t$d, __local_depot$num;", []>;
|
|
def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num),
|
|
"mov.u64 \t$d, __local_depot$num;", []>;
|
|
}
|
|
|
|
|
|
// copyPhysreg is hard-coded in NVPTXInstrInfo.cpp
|
|
let IsSimpleMove=1, hasSideEffects=0 in {
|
|
def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss),
|
|
"mov.pred \t$dst, $sss;", []>;
|
|
def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss),
|
|
"mov.u16 \t$dst, $sss;", []>;
|
|
def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss),
|
|
"mov.u32 \t$dst, $sss;", []>;
|
|
def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss),
|
|
"mov.u64 \t$dst, $sss;", []>;
|
|
|
|
def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
|
|
"mov.f32 \t$dst, $src;", []>;
|
|
def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src),
|
|
"mov.f64 \t$dst, $src;", []>;
|
|
}
|
|
|
|
def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src),
|
|
"mov.pred \t$dst, $src;",
|
|
[(set Int1Regs:$dst, imm:$src)]>;
|
|
def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src),
|
|
"mov.u16 \t$dst, $src;",
|
|
[(set Int16Regs:$dst, imm:$src)]>;
|
|
def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src),
|
|
"mov.u32 \t$dst, $src;",
|
|
[(set Int32Regs:$dst, imm:$src)]>;
|
|
def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src),
|
|
"mov.u64 \t$dst, $src;",
|
|
[(set Int64Regs:$dst, imm:$src)]>;
|
|
|
|
def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src),
|
|
"mov.f32 \t$dst, $src;",
|
|
[(set Float32Regs:$dst, fpimm:$src)]>;
|
|
def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src),
|
|
"mov.f64 \t$dst, $src;",
|
|
[(set Float64Regs:$dst, fpimm:$src)]>;
|
|
|
|
def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>;
|
|
|
|
//---- Copy Frame Index ----
|
|
def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr),
|
|
"add.u32 \t$dst, ${addr:add};",
|
|
[(set Int32Regs:$dst, ADDRri:$addr)]>;
|
|
def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr),
|
|
"add.u64 \t$dst, ${addr:add};",
|
|
[(set Int64Regs:$dst, ADDRri64:$addr)]>;
|
|
|
|
//-----------------------------------
|
|
// Comparison and Selection
|
|
//-----------------------------------
|
|
|
|
multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode,
|
|
Instruction setp_16rr,
|
|
Instruction setp_16ri,
|
|
Instruction setp_16ir,
|
|
Instruction setp_32rr,
|
|
Instruction setp_32ri,
|
|
Instruction setp_32ir,
|
|
Instruction setp_64rr,
|
|
Instruction setp_64ri,
|
|
Instruction setp_64ir,
|
|
Instruction set_16rr,
|
|
Instruction set_16ri,
|
|
Instruction set_16ir,
|
|
Instruction set_32rr,
|
|
Instruction set_32ri,
|
|
Instruction set_32ir,
|
|
Instruction set_64rr,
|
|
Instruction set_64ri,
|
|
Instruction set_64ir> {
|
|
// i16 -> pred
|
|
def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)),
|
|
(setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)),
|
|
(setp_16ri Int16Regs:$a, imm:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)),
|
|
(setp_16ir imm:$a, Int16Regs:$b, Mode)>;
|
|
// i32 -> pred
|
|
def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)),
|
|
(setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)),
|
|
(setp_32ri Int32Regs:$a, imm:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)),
|
|
(setp_32ir imm:$a, Int32Regs:$b, Mode)>;
|
|
// i64 -> pred
|
|
def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)),
|
|
(setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)),
|
|
(setp_64ri Int64Regs:$a, imm:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)),
|
|
(setp_64ir imm:$a, Int64Regs:$b, Mode)>;
|
|
|
|
// i16 -> i32
|
|
def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)),
|
|
(set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)),
|
|
(set_16ri Int16Regs:$a, imm:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)),
|
|
(set_16ir imm:$a, Int16Regs:$b, Mode)>;
|
|
// i32 -> i32
|
|
def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)),
|
|
(set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)),
|
|
(set_32ri Int32Regs:$a, imm:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)),
|
|
(set_32ir imm:$a, Int32Regs:$b, Mode)>;
|
|
// i64 -> i32
|
|
def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)),
|
|
(set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)),
|
|
(set_64ri Int64Regs:$a, imm:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)),
|
|
(set_64ir imm:$a, Int64Regs:$b, Mode)>;
|
|
}
|
|
|
|
multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode>
|
|
: ISET_FORMAT<OpNode, Mode,
|
|
SETP_s16rr, SETP_s16ri, SETP_s16ir,
|
|
SETP_s32rr, SETP_s32ri, SETP_s32ir,
|
|
SETP_s64rr, SETP_s64ri, SETP_s64ir,
|
|
SET_s16rr, SET_s16ri, SET_s16ir,
|
|
SET_s32rr, SET_s32ri, SET_s32ir,
|
|
SET_s64rr, SET_s64ri, SET_s64ir> {
|
|
// TableGen doesn't like empty multiclasses.
|
|
def : PatLeaf<(i32 0)>;
|
|
}
|
|
|
|
multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode>
|
|
: ISET_FORMAT<OpNode, Mode,
|
|
SETP_u16rr, SETP_u16ri, SETP_u16ir,
|
|
SETP_u32rr, SETP_u32ri, SETP_u32ir,
|
|
SETP_u64rr, SETP_u64ri, SETP_u64ir,
|
|
SET_u16rr, SET_u16ri, SET_u16ir,
|
|
SET_u32rr, SET_u32ri, SET_u32ir,
|
|
SET_u64rr, SET_u64ri, SET_u64ir> {
|
|
// TableGen doesn't like empty multiclasses.
|
|
def : PatLeaf<(i32 0)>;
|
|
}
|
|
|
|
defm : ISET_FORMAT_SIGNED<setgt, CmpGT>;
|
|
defm : ISET_FORMAT_SIGNED<setlt, CmpLT>;
|
|
defm : ISET_FORMAT_SIGNED<setge, CmpGE>;
|
|
defm : ISET_FORMAT_SIGNED<setle, CmpLE>;
|
|
defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>;
|
|
defm : ISET_FORMAT_SIGNED<setne, CmpNE>;
|
|
defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>;
|
|
defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>;
|
|
defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>;
|
|
defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>;
|
|
defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>;
|
|
defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>;
|
|
|
|
// i1 compares
|
|
def : Pat<(setne Int1Regs:$a, Int1Regs:$b),
|
|
(XORb1rr Int1Regs:$a, Int1Regs:$b)>;
|
|
def : Pat<(setune Int1Regs:$a, Int1Regs:$b),
|
|
(XORb1rr Int1Regs:$a, Int1Regs:$b)>;
|
|
|
|
def : Pat<(seteq Int1Regs:$a, Int1Regs:$b),
|
|
(NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
|
|
def : Pat<(setueq Int1Regs:$a, Int1Regs:$b),
|
|
(NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
|
|
|
|
// i1 compare -> i32
|
|
def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
|
|
(SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
|
|
def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
|
|
(SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
|
|
|
|
|
|
|
|
multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> {
|
|
// f32 -> pred
|
|
def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
|
|
(SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
|
|
Requires<[doF32FTZ]>;
|
|
def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
|
|
(SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
|
|
(SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
|
|
Requires<[doF32FTZ]>;
|
|
def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
|
|
(SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
|
|
(SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
|
|
Requires<[doF32FTZ]>;
|
|
def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
|
|
(SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
|
|
|
|
// f64 -> pred
|
|
def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)),
|
|
(SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)),
|
|
(SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
|
|
def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)),
|
|
(SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
|
|
|
|
// f32 -> i32
|
|
def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
|
|
(SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
|
|
Requires<[doF32FTZ]>;
|
|
def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
|
|
(SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
|
|
(SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
|
|
Requires<[doF32FTZ]>;
|
|
def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
|
|
(SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
|
|
(SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
|
|
Requires<[doF32FTZ]>;
|
|
def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
|
|
(SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
|
|
|
|
// f64 -> i32
|
|
def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)),
|
|
(SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)),
|
|
(SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
|
|
def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)),
|
|
(SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
|
|
}
|
|
|
|
defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>;
|
|
defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>;
|
|
defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>;
|
|
defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>;
|
|
defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>;
|
|
defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>;
|
|
|
|
defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>;
|
|
defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>;
|
|
defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>;
|
|
defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>;
|
|
defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>;
|
|
defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>;
|
|
|
|
defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>;
|
|
defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>;
|
|
defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>;
|
|
defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>;
|
|
defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>;
|
|
defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>;
|
|
|
|
defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>;
|
|
defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>;
|
|
|
|
// FIXME: What is this doing here? Can it be deleted?
|
|
// def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad,
|
|
// [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
|
|
|
|
def SDTDeclareParamProfile :
|
|
SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
|
|
def SDTDeclareScalarParamProfile :
|
|
SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
|
|
def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
|
|
def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>;
|
|
def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>;
|
|
def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
|
|
def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
|
|
def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
|
|
def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>;
|
|
def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>;
|
|
def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
|
|
def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
|
|
def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>;
|
|
def SDTCallVoidProfile : SDTypeProfile<0, 1, []>;
|
|
def SDTCallValProfile : SDTypeProfile<1, 0, []>;
|
|
def SDTMoveParamProfile : SDTypeProfile<1, 1, []>;
|
|
def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
|
|
def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>;
|
|
def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>;
|
|
def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>;
|
|
|
|
def DeclareParam :
|
|
SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def DeclareScalarParam :
|
|
SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def DeclareRetParam :
|
|
SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def DeclareRet :
|
|
SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def LoadParam :
|
|
SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile,
|
|
[SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
|
|
def LoadParamV2 :
|
|
SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile,
|
|
[SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
|
|
def LoadParamV4 :
|
|
SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile,
|
|
[SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
|
|
def PrintCall :
|
|
SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def PrintConvergentCall :
|
|
SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def PrintCallUni :
|
|
SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def PrintConvergentCallUni :
|
|
SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def StoreParam :
|
|
SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def StoreParamV2 :
|
|
SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def StoreParamV4 :
|
|
SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def StoreParamU32 :
|
|
SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def StoreParamS32 :
|
|
SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def CallArgBegin :
|
|
SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def CallArg :
|
|
SDNode<"NVPTXISD::CallArg", SDTCallArgProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def LastCallArg :
|
|
SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def CallArgEnd :
|
|
SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def CallVoid :
|
|
SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def Prototype :
|
|
SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def CallVal :
|
|
SDNode<"NVPTXISD::CallVal", SDTCallValProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def MoveParam :
|
|
SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>;
|
|
def StoreRetval :
|
|
SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile,
|
|
[SDNPHasChain, SDNPSideEffect]>;
|
|
def StoreRetvalV2 :
|
|
SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile,
|
|
[SDNPHasChain, SDNPSideEffect]>;
|
|
def StoreRetvalV4 :
|
|
SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile,
|
|
[SDNPHasChain, SDNPSideEffect]>;
|
|
def PseudoUseParam :
|
|
SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def RETURNNode :
|
|
SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile,
|
|
[SDNPHasChain, SDNPSideEffect]>;
|
|
|
|
let mayLoad = 1 in {
|
|
class LoadParamMemInst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
|
|
!strconcat(!strconcat("ld.param", opstr),
|
|
"\t$dst, [retval0+$b];"),
|
|
[]>;
|
|
|
|
class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b),
|
|
!strconcat("ld.param.v2", opstr,
|
|
"\t{{$dst, $dst2}}, [retval0+$b];"), []>;
|
|
|
|
class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3,
|
|
regclass:$dst4),
|
|
(ins i32imm:$b),
|
|
!strconcat("ld.param.v4", opstr,
|
|
"\t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"),
|
|
[]>;
|
|
}
|
|
|
|
class LoadParamRegInst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
|
|
!strconcat("mov", opstr, "\t$dst, retval$b;"),
|
|
[(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>;
|
|
|
|
let mayStore = 1 in {
|
|
class StoreParamInst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b),
|
|
!strconcat("st.param", opstr, "\t[param$a+$b], $val;"),
|
|
[]>;
|
|
|
|
class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs), (ins regclass:$val, regclass:$val2,
|
|
i32imm:$a, i32imm:$b),
|
|
!strconcat("st.param.v2", opstr,
|
|
"\t[param$a+$b], {{$val, $val2}};"),
|
|
[]>;
|
|
|
|
class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3,
|
|
regclass:$val4, i32imm:$a,
|
|
i32imm:$b),
|
|
!strconcat("st.param.v4", opstr,
|
|
"\t[param$a+$b], {{$val, $val2, $val3, $val4}};"),
|
|
[]>;
|
|
|
|
class StoreRetvalInst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs), (ins regclass:$val, i32imm:$a),
|
|
!strconcat("st.param", opstr, "\t[func_retval0+$a], $val;"),
|
|
[]>;
|
|
|
|
class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a),
|
|
!strconcat("st.param.v2", opstr,
|
|
"\t[func_retval0+$a], {{$val, $val2}};"),
|
|
[]>;
|
|
|
|
class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> :
|
|
NVPTXInst<(outs),
|
|
(ins regclass:$val, regclass:$val2, regclass:$val3,
|
|
regclass:$val4, i32imm:$a),
|
|
!strconcat("st.param.v4", opstr,
|
|
"\t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"),
|
|
[]>;
|
|
}
|
|
|
|
let isCall=1 in {
|
|
multiclass CALL<string OpcStr, SDNode OpNode> {
|
|
def PrintCallNoRetInst : NVPTXInst<(outs), (ins),
|
|
!strconcat(OpcStr, " "), [(OpNode (i32 0))]>;
|
|
def PrintCallRetInst1 : NVPTXInst<(outs), (ins),
|
|
!strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>;
|
|
def PrintCallRetInst2 : NVPTXInst<(outs), (ins),
|
|
!strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>;
|
|
def PrintCallRetInst3 : NVPTXInst<(outs), (ins),
|
|
!strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>;
|
|
def PrintCallRetInst4 : NVPTXInst<(outs), (ins),
|
|
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "),
|
|
[(OpNode (i32 4))]>;
|
|
def PrintCallRetInst5 : NVPTXInst<(outs), (ins),
|
|
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "),
|
|
[(OpNode (i32 5))]>;
|
|
def PrintCallRetInst6 : NVPTXInst<(outs), (ins),
|
|
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
|
|
"retval5), "),
|
|
[(OpNode (i32 6))]>;
|
|
def PrintCallRetInst7 : NVPTXInst<(outs), (ins),
|
|
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
|
|
"retval5, retval6), "),
|
|
[(OpNode (i32 7))]>;
|
|
def PrintCallRetInst8 : NVPTXInst<(outs), (ins),
|
|
!strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
|
|
"retval5, retval6, retval7), "),
|
|
[(OpNode (i32 8))]>;
|
|
}
|
|
}
|
|
|
|
defm Call : CALL<"call", PrintCall>;
|
|
defm CallUni : CALL<"call.uni", PrintCallUni>;
|
|
|
|
// Convergent call instructions. These are identical to regular calls, except
|
|
// they have the isConvergent bit set.
|
|
let isConvergent=1 in {
|
|
defm ConvergentCall : CALL<"call", PrintConvergentCall>;
|
|
defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>;
|
|
}
|
|
|
|
def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">;
|
|
def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">;
|
|
def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">;
|
|
def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">;
|
|
def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">;
|
|
def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">;
|
|
def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">;
|
|
def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">;
|
|
def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">;
|
|
def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">;
|
|
def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">;
|
|
def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">;
|
|
def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">;
|
|
def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">;
|
|
def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">;
|
|
def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">;
|
|
|
|
def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">;
|
|
def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">;
|
|
|
|
def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">;
|
|
def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">;
|
|
def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">;
|
|
def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">;
|
|
def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">;
|
|
def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">;
|
|
|
|
def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">;
|
|
def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">;
|
|
def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">;
|
|
|
|
def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">;
|
|
def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">;
|
|
def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">;
|
|
def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">;
|
|
def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">;
|
|
|
|
def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">;
|
|
def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">;
|
|
def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">;
|
|
def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">;
|
|
def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">;
|
|
def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">;
|
|
def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">;
|
|
def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">;
|
|
def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">;
|
|
def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">;
|
|
def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">;
|
|
|
|
def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">;
|
|
def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">;
|
|
def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">;
|
|
def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">;
|
|
def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">;
|
|
|
|
def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>;
|
|
def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>;
|
|
def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>;
|
|
def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>;
|
|
|
|
class CallArgInst<NVPTXRegClass regclass> :
|
|
NVPTXInst<(outs), (ins regclass:$a), "$a, ",
|
|
[(CallArg (i32 0), regclass:$a)]>;
|
|
|
|
class LastCallArgInst<NVPTXRegClass regclass> :
|
|
NVPTXInst<(outs), (ins regclass:$a), "$a",
|
|
[(LastCallArg (i32 0), regclass:$a)]>;
|
|
|
|
def CallArgI64 : CallArgInst<Int64Regs>;
|
|
def CallArgI32 : CallArgInst<Int32Regs>;
|
|
def CallArgI16 : CallArgInst<Int16Regs>;
|
|
def CallArgF64 : CallArgInst<Float64Regs>;
|
|
def CallArgF32 : CallArgInst<Float32Regs>;
|
|
|
|
def LastCallArgI64 : LastCallArgInst<Int64Regs>;
|
|
def LastCallArgI32 : LastCallArgInst<Int32Regs>;
|
|
def LastCallArgI16 : LastCallArgInst<Int16Regs>;
|
|
def LastCallArgF64 : LastCallArgInst<Float64Regs>;
|
|
def LastCallArgF32 : LastCallArgInst<Float32Regs>;
|
|
|
|
def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ",
|
|
[(CallArg (i32 0), (i32 imm:$a))]>;
|
|
def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a",
|
|
[(LastCallArg (i32 0), (i32 imm:$a))]>;
|
|
|
|
def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ",
|
|
[(CallArg (i32 1), (i32 imm:$a))]>;
|
|
def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a",
|
|
[(LastCallArg (i32 1), (i32 imm:$a))]>;
|
|
|
|
def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ",
|
|
[(CallVoid (Wrapper tglobaladdr:$addr))]>;
|
|
def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ",
|
|
[(CallVoid Int32Regs:$addr)]>;
|
|
def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ",
|
|
[(CallVoid Int64Regs:$addr)]>;
|
|
def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;",
|
|
[(Prototype (i32 imm:$val))]>;
|
|
|
|
def DeclareRetMemInst :
|
|
NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num),
|
|
".param .align $align .b8 retval$num[$size];",
|
|
[(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>;
|
|
def DeclareRetScalarInst :
|
|
NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
|
|
".param .b$size retval$num;",
|
|
[(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>;
|
|
def DeclareRetRegInst :
|
|
NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
|
|
".reg .b$size retval$num;",
|
|
[(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>;
|
|
|
|
def DeclareParamInst :
|
|
NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size),
|
|
".param .align $align .b8 param$a[$size];",
|
|
[(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>;
|
|
def DeclareScalarParamInst :
|
|
NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
|
|
".param .b$size param$a;",
|
|
[(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>;
|
|
def DeclareScalarRegInst :
|
|
NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
|
|
".reg .b$size param$a;",
|
|
[(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>;
|
|
|
|
class MoveParamInst<NVPTXRegClass regclass, string asmstr> :
|
|
NVPTXInst<(outs regclass:$dst), (ins regclass:$src),
|
|
!strconcat("mov", asmstr, "\t$dst, $src;"),
|
|
[(set regclass:$dst, (MoveParam regclass:$src))]>;
|
|
|
|
def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">;
|
|
def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">;
|
|
def MoveParamI16 :
|
|
NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
|
|
"cvt.u16.u32\t$dst, $src;",
|
|
[(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>;
|
|
def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">;
|
|
def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">;
|
|
|
|
class PseudoUseParamInst<NVPTXRegClass regclass> :
|
|
NVPTXInst<(outs), (ins regclass:$src),
|
|
"// Pseudo use of $src",
|
|
[(PseudoUseParam regclass:$src)]>;
|
|
|
|
def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>;
|
|
def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>;
|
|
def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>;
|
|
def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>;
|
|
def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>;
|
|
|
|
|
|
//
|
|
// Load / Store Handling
|
|
//
|
|
multiclass LD<NVPTXRegClass regclass> {
|
|
def _avar : NVPTXInst<
|
|
(outs regclass:$dst),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, imem:$addr),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t$dst, [$addr];", []>;
|
|
def _areg : NVPTXInst<
|
|
(outs regclass:$dst),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int32Regs:$addr),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t$dst, [$addr];", []>;
|
|
def _areg_64 : NVPTXInst<
|
|
(outs regclass:$dst),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int64Regs:$addr),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t$dst, [$addr];", []>;
|
|
def _ari : NVPTXInst<
|
|
(outs regclass:$dst),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t$dst, [$addr+$offset];", []>;
|
|
def _ari_64 : NVPTXInst<
|
|
(outs regclass:$dst),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
|
|
LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t$dst, [$addr+$offset];", []>;
|
|
def _asi : NVPTXInst<
|
|
(outs regclass:$dst),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
|
|
LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t$dst, [$addr+$offset];", []>;
|
|
}
|
|
|
|
let mayLoad=1, hasSideEffects=0 in {
|
|
defm LD_i8 : LD<Int16Regs>;
|
|
defm LD_i16 : LD<Int16Regs>;
|
|
defm LD_i32 : LD<Int32Regs>;
|
|
defm LD_i64 : LD<Int64Regs>;
|
|
defm LD_f32 : LD<Float32Regs>;
|
|
defm LD_f64 : LD<Float64Regs>;
|
|
}
|
|
|
|
multiclass ST<NVPTXRegClass regclass> {
|
|
def _avar : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
|
|
LdStCode:$Sign, i32imm:$toWidth, imem:$addr),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
|
|
" \t[$addr], $src;", []>;
|
|
def _areg : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp,
|
|
LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
|
|
" \t[$addr], $src;", []>;
|
|
def _areg_64 : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
|
|
LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
|
|
" \t[$addr], $src;", []>;
|
|
def _ari : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
|
|
LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
|
|
" \t[$addr+$offset], $src;", []>;
|
|
def _ari_64 : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
|
|
LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
|
|
" \t[$addr+$offset], $src;", []>;
|
|
def _asi : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
|
|
LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
|
|
" \t[$addr+$offset], $src;", []>;
|
|
}
|
|
|
|
let mayStore=1, hasSideEffects=0 in {
|
|
defm ST_i8 : ST<Int16Regs>;
|
|
defm ST_i16 : ST<Int16Regs>;
|
|
defm ST_i32 : ST<Int32Regs>;
|
|
defm ST_i64 : ST<Int64Regs>;
|
|
defm ST_f32 : ST<Float32Regs>;
|
|
defm ST_f64 : ST<Float64Regs>;
|
|
}
|
|
|
|
// The following is used only in and after vector elementizations. Vector
|
|
// elementization happens at the machine instruction level, so the following
|
|
// instructions never appear in the DAG.
|
|
multiclass LD_VEC<NVPTXRegClass regclass> {
|
|
def _v2_avar : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, imem:$addr),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2}}, [$addr];", []>;
|
|
def _v2_areg : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int32Regs:$addr),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2}}, [$addr];", []>;
|
|
def _v2_areg_64 : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int64Regs:$addr),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2}}, [$addr];", []>;
|
|
def _v2_ari : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
|
|
def _v2_ari_64 : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
|
|
def _v2_asi : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, imem:$addr, i32imm:$offset),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
|
|
def _v4_avar : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, imem:$addr),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
|
|
def _v4_areg : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int32Regs:$addr),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
|
|
def _v4_areg_64 : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int64Regs:$addr),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
|
|
def _v4_ari : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
|
|
def _v4_ari_64 : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
|
|
def _v4_asi : NVPTXInst<
|
|
(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
|
|
(ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, imem:$addr, i32imm:$offset),
|
|
"ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
|
|
}
|
|
let mayLoad=1, hasSideEffects=0 in {
|
|
defm LDV_i8 : LD_VEC<Int16Regs>;
|
|
defm LDV_i16 : LD_VEC<Int16Regs>;
|
|
defm LDV_i32 : LD_VEC<Int32Regs>;
|
|
defm LDV_i64 : LD_VEC<Int64Regs>;
|
|
defm LDV_f32 : LD_VEC<Float32Regs>;
|
|
defm LDV_f64 : LD_VEC<Float64Regs>;
|
|
}
|
|
|
|
multiclass ST_VEC<NVPTXRegClass regclass> {
|
|
def _v2_avar : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
|
|
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr], {{$src1, $src2}};", []>;
|
|
def _v2_areg : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
|
|
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr], {{$src1, $src2}};", []>;
|
|
def _v2_areg_64 : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
|
|
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr], {{$src1, $src2}};", []>;
|
|
def _v2_ari : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
|
|
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr,
|
|
i32imm:$offset),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr+$offset], {{$src1, $src2}};", []>;
|
|
def _v2_ari_64 : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
|
|
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr,
|
|
i32imm:$offset),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr+$offset], {{$src1, $src2}};", []>;
|
|
def _v2_asi : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
|
|
LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr,
|
|
i32imm:$offset),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr+$offset], {{$src1, $src2}};", []>;
|
|
def _v4_avar : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
|
|
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, imem:$addr),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
|
|
def _v4_areg : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
|
|
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int32Regs:$addr),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
|
|
def _v4_areg_64 : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
|
|
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int64Regs:$addr),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
|
|
def _v4_ari : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
|
|
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
|
|
def _v4_ari_64 : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
|
|
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
|
|
"\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
|
|
def _v4_asi : NVPTXInst<
|
|
(outs),
|
|
(ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
|
|
LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
|
|
i32imm:$fromWidth, imem:$addr, i32imm:$offset),
|
|
"st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}"
|
|
"$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
|
|
}
|
|
|
|
let mayStore=1, hasSideEffects=0 in {
|
|
defm STV_i8 : ST_VEC<Int16Regs>;
|
|
defm STV_i16 : ST_VEC<Int16Regs>;
|
|
defm STV_i32 : ST_VEC<Int32Regs>;
|
|
defm STV_i64 : ST_VEC<Int64Regs>;
|
|
defm STV_f32 : ST_VEC<Float32Regs>;
|
|
defm STV_f64 : ST_VEC<Float64Regs>;
|
|
}
|
|
|
|
|
|
//---- Conversion ----
|
|
|
|
class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn,
|
|
NVPTXRegClass regclassOut> :
|
|
NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a),
|
|
!strconcat("mov.b", !strconcat(SzStr, " \t $d, $a;")),
|
|
[(set regclassOut:$d, (bitconvert regclassIn:$a))]>;
|
|
|
|
def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>;
|
|
def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>;
|
|
def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>;
|
|
def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>;
|
|
|
|
// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where
|
|
// we cannot specify floating-point literals in isel patterns. Therefore, we
|
|
// use an integer selp to select either 1 or 0 and then cvt to floating-point.
|
|
|
|
// sint -> f32
|
|
def : Pat<(f32 (sint_to_fp Int1Regs:$a)),
|
|
(CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
|
|
def : Pat<(f32 (sint_to_fp Int16Regs:$a)),
|
|
(CVT_f32_s16 Int16Regs:$a, CvtRN)>;
|
|
def : Pat<(f32 (sint_to_fp Int32Regs:$a)),
|
|
(CVT_f32_s32 Int32Regs:$a, CvtRN)>;
|
|
def : Pat<(f32 (sint_to_fp Int64Regs:$a)),
|
|
(CVT_f32_s64 Int64Regs:$a, CvtRN)>;
|
|
|
|
// uint -> f32
|
|
def : Pat<(f32 (uint_to_fp Int1Regs:$a)),
|
|
(CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
|
|
def : Pat<(f32 (uint_to_fp Int16Regs:$a)),
|
|
(CVT_f32_u16 Int16Regs:$a, CvtRN)>;
|
|
def : Pat<(f32 (uint_to_fp Int32Regs:$a)),
|
|
(CVT_f32_u32 Int32Regs:$a, CvtRN)>;
|
|
def : Pat<(f32 (uint_to_fp Int64Regs:$a)),
|
|
(CVT_f32_u64 Int64Regs:$a, CvtRN)>;
|
|
|
|
// sint -> f64
|
|
def : Pat<(f64 (sint_to_fp Int1Regs:$a)),
|
|
(CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
|
|
def : Pat<(f64 (sint_to_fp Int16Regs:$a)),
|
|
(CVT_f64_s16 Int16Regs:$a, CvtRN)>;
|
|
def : Pat<(f64 (sint_to_fp Int32Regs:$a)),
|
|
(CVT_f64_s32 Int32Regs:$a, CvtRN)>;
|
|
def : Pat<(f64 (sint_to_fp Int64Regs:$a)),
|
|
(CVT_f64_s64 Int64Regs:$a, CvtRN)>;
|
|
|
|
// uint -> f64
|
|
def : Pat<(f64 (uint_to_fp Int1Regs:$a)),
|
|
(CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
|
|
def : Pat<(f64 (uint_to_fp Int16Regs:$a)),
|
|
(CVT_f64_u16 Int16Regs:$a, CvtRN)>;
|
|
def : Pat<(f64 (uint_to_fp Int32Regs:$a)),
|
|
(CVT_f64_u32 Int32Regs:$a, CvtRN)>;
|
|
def : Pat<(f64 (uint_to_fp Int64Regs:$a)),
|
|
(CVT_f64_u64 Int64Regs:$a, CvtRN)>;
|
|
|
|
|
|
// f32 -> sint
|
|
def : Pat<(i1 (fp_to_sint Float32Regs:$a)),
|
|
(SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
|
|
def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
|
|
(CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
|
|
(CVT_s16_f32 Float32Regs:$a, CvtRZI)>;
|
|
def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
|
|
(CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
|
|
(CVT_s32_f32 Float32Regs:$a, CvtRZI)>;
|
|
def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
|
|
(CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
|
|
(CVT_s64_f32 Float32Regs:$a, CvtRZI)>;
|
|
|
|
// f32 -> uint
|
|
def : Pat<(i1 (fp_to_uint Float32Regs:$a)),
|
|
(SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
|
|
def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
|
|
(CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
|
|
(CVT_u16_f32 Float32Regs:$a, CvtRZI)>;
|
|
def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
|
|
(CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
|
|
(CVT_u32_f32 Float32Regs:$a, CvtRZI)>;
|
|
def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
|
|
(CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
|
|
(CVT_u64_f32 Float32Regs:$a, CvtRZI)>;
|
|
|
|
// f64 -> sint
|
|
def : Pat<(i1 (fp_to_sint Float64Regs:$a)),
|
|
(SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
|
|
def : Pat<(i16 (fp_to_sint Float64Regs:$a)),
|
|
(CVT_s16_f64 Float64Regs:$a, CvtRZI)>;
|
|
def : Pat<(i32 (fp_to_sint Float64Regs:$a)),
|
|
(CVT_s32_f64 Float64Regs:$a, CvtRZI)>;
|
|
def : Pat<(i64 (fp_to_sint Float64Regs:$a)),
|
|
(CVT_s64_f64 Float64Regs:$a, CvtRZI)>;
|
|
|
|
// f64 -> uint
|
|
def : Pat<(i1 (fp_to_uint Float64Regs:$a)),
|
|
(SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
|
|
def : Pat<(i16 (fp_to_uint Float64Regs:$a)),
|
|
(CVT_u16_f64 Float64Regs:$a, CvtRZI)>;
|
|
def : Pat<(i32 (fp_to_uint Float64Regs:$a)),
|
|
(CVT_u32_f64 Float64Regs:$a, CvtRZI)>;
|
|
def : Pat<(i64 (fp_to_uint Float64Regs:$a)),
|
|
(CVT_u64_f64 Float64Regs:$a, CvtRZI)>;
|
|
|
|
// sext i1
|
|
def : Pat<(i16 (sext Int1Regs:$a)),
|
|
(SELP_s16ii -1, 0, Int1Regs:$a)>;
|
|
def : Pat<(i32 (sext Int1Regs:$a)),
|
|
(SELP_s32ii -1, 0, Int1Regs:$a)>;
|
|
def : Pat<(i64 (sext Int1Regs:$a)),
|
|
(SELP_s64ii -1, 0, Int1Regs:$a)>;
|
|
|
|
// zext i1
|
|
def : Pat<(i16 (zext Int1Regs:$a)),
|
|
(SELP_u16ii 1, 0, Int1Regs:$a)>;
|
|
def : Pat<(i32 (zext Int1Regs:$a)),
|
|
(SELP_u32ii 1, 0, Int1Regs:$a)>;
|
|
def : Pat<(i64 (zext Int1Regs:$a)),
|
|
(SELP_u64ii 1, 0, Int1Regs:$a)>;
|
|
|
|
// anyext i1
|
|
def : Pat<(i16 (anyext Int1Regs:$a)),
|
|
(SELP_u16ii -1, 0, Int1Regs:$a)>;
|
|
def : Pat<(i32 (anyext Int1Regs:$a)),
|
|
(SELP_u32ii -1, 0, Int1Regs:$a)>;
|
|
def : Pat<(i64 (anyext Int1Regs:$a)),
|
|
(SELP_u64ii -1, 0, Int1Regs:$a)>;
|
|
|
|
// sext i16
|
|
def : Pat<(i32 (sext Int16Regs:$a)),
|
|
(CVT_s32_s16 Int16Regs:$a, CvtNONE)>;
|
|
def : Pat<(i64 (sext Int16Regs:$a)),
|
|
(CVT_s64_s16 Int16Regs:$a, CvtNONE)>;
|
|
|
|
// zext i16
|
|
def : Pat<(i32 (zext Int16Regs:$a)),
|
|
(CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
|
|
def : Pat<(i64 (zext Int16Regs:$a)),
|
|
(CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
|
|
|
|
// anyext i16
|
|
def : Pat<(i32 (anyext Int16Regs:$a)),
|
|
(CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
|
|
def : Pat<(i64 (anyext Int16Regs:$a)),
|
|
(CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
|
|
|
|
// sext i32
|
|
def : Pat<(i64 (sext Int32Regs:$a)),
|
|
(CVT_s64_s32 Int32Regs:$a, CvtNONE)>;
|
|
|
|
// zext i32
|
|
def : Pat<(i64 (zext Int32Regs:$a)),
|
|
(CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
|
|
|
|
// anyext i32
|
|
def : Pat<(i64 (anyext Int32Regs:$a)),
|
|
(CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
|
|
|
|
|
|
// truncate i64
|
|
def : Pat<(i32 (trunc Int64Regs:$a)),
|
|
(CVT_u32_u64 Int64Regs:$a, CvtNONE)>;
|
|
def : Pat<(i16 (trunc Int64Regs:$a)),
|
|
(CVT_u16_u64 Int64Regs:$a, CvtNONE)>;
|
|
def : Pat<(i1 (trunc Int64Regs:$a)),
|
|
(SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>;
|
|
|
|
// truncate i32
|
|
def : Pat<(i16 (trunc Int32Regs:$a)),
|
|
(CVT_u16_u32 Int32Regs:$a, CvtNONE)>;
|
|
def : Pat<(i1 (trunc Int32Regs:$a)),
|
|
(SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>;
|
|
|
|
// truncate i16
|
|
def : Pat<(i1 (trunc Int16Regs:$a)),
|
|
(SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>;
|
|
|
|
// sext_inreg
|
|
def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>;
|
|
def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>;
|
|
def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>;
|
|
def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>;
|
|
def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>;
|
|
def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>;
|
|
|
|
|
|
// Select instructions with 32-bit predicates
|
|
def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b),
|
|
(SELP_b16rr Int16Regs:$a, Int16Regs:$b,
|
|
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
|
|
def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b),
|
|
(SELP_b32rr Int32Regs:$a, Int32Regs:$b,
|
|
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
|
|
def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b),
|
|
(SELP_b64rr Int64Regs:$a, Int64Regs:$b,
|
|
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
|
|
def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b),
|
|
(SELP_f32rr Float32Regs:$a, Float32Regs:$b,
|
|
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
|
|
def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b),
|
|
(SELP_f64rr Float64Regs:$a, Float64Regs:$b,
|
|
(SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
|
|
|
|
|
|
let hasSideEffects = 0 in {
|
|
// pack a set of smaller int registers to a larger int register
|
|
def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d),
|
|
(ins Int16Regs:$s1, Int16Regs:$s2,
|
|
Int16Regs:$s3, Int16Regs:$s4),
|
|
"mov.b64\t$d, {{$s1, $s2, $s3, $s4}};", []>;
|
|
def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d),
|
|
(ins Int16Regs:$s1, Int16Regs:$s2),
|
|
"mov.b32\t$d, {{$s1, $s2}};", []>;
|
|
def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d),
|
|
(ins Int32Regs:$s1, Int32Regs:$s2),
|
|
"mov.b64\t$d, {{$s1, $s2}};", []>;
|
|
def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d),
|
|
(ins Float32Regs:$s1, Float32Regs:$s2),
|
|
"mov.b64\t$d, {{$s1, $s2}};", []>;
|
|
|
|
// unpack a larger int register to a set of smaller int registers
|
|
def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2,
|
|
Int16Regs:$d3, Int16Regs:$d4),
|
|
(ins Int64Regs:$s),
|
|
"mov.b64\t{{$d1, $d2, $d3, $d4}}, $s;", []>;
|
|
def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2),
|
|
(ins Int32Regs:$s),
|
|
"mov.b32\t{{$d1, $d2}}, $s;", []>;
|
|
def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2),
|
|
(ins Int64Regs:$s),
|
|
"mov.b64\t{{$d1, $d2}}, $s;", []>;
|
|
def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2),
|
|
(ins Float64Regs:$s),
|
|
"mov.b64\t{{$d1, $d2}}, $s;", []>;
|
|
}
|
|
|
|
// Count leading zeros
|
|
let hasSideEffects = 0 in {
|
|
def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
|
|
"clz.b32\t$d, $a;", []>;
|
|
def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
|
|
"clz.b64\t$d, $a;", []>;
|
|
}
|
|
|
|
// 32-bit has a direct PTX instruction
|
|
def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>;
|
|
|
|
// For 64-bit, the result in PTX is actually 32-bit so we zero-extend
|
|
// to 64-bit to match the LLVM semantics
|
|
def : Pat<(ctlz Int64Regs:$a), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>;
|
|
|
|
// For 16-bit, we zero-extend to 32-bit, then trunc the result back
|
|
// to 16-bits (ctlz of a 16-bit value is guaranteed to require less
|
|
// than 16 bits to store). We also need to subtract 16 because the
|
|
// high-order 16 zeros were counted.
|
|
def : Pat<(ctlz Int16Regs:$a),
|
|
(SUBi16ri (CVT_u16_u32 (CLZr32
|
|
(CVT_u32_u16 Int16Regs:$a, CvtNONE)),
|
|
CvtNONE), 16)>;
|
|
|
|
// Population count
|
|
let hasSideEffects = 0 in {
|
|
def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
|
|
"popc.b32\t$d, $a;", []>;
|
|
def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
|
|
"popc.b64\t$d, $a;", []>;
|
|
}
|
|
|
|
// 32-bit has a direct PTX instruction
|
|
def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>;
|
|
|
|
// For 64-bit, the result in PTX is actually 32-bit so we zero-extend
|
|
// to 64-bit to match the LLVM semantics
|
|
def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>;
|
|
|
|
// For 16-bit, we zero-extend to 32-bit, then trunc the result back
|
|
// to 16-bits (ctpop of a 16-bit value is guaranteed to require less
|
|
// than 16 bits to store)
|
|
def : Pat<(ctpop Int16Regs:$a),
|
|
(CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>;
|
|
|
|
// fpround f64 -> f32
|
|
def : Pat<(f32 (fpround Float64Regs:$a)),
|
|
(CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(f32 (fpround Float64Regs:$a)),
|
|
(CVT_f32_f64 Float64Regs:$a, CvtRN)>;
|
|
|
|
// fpextend f32 -> f64
|
|
def : Pat<(f64 (fpextend Float32Regs:$a)),
|
|
(CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(f64 (fpextend Float32Regs:$a)),
|
|
(CVT_f64_f32 Float32Regs:$a, CvtNONE)>;
|
|
|
|
def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone,
|
|
[SDNPHasChain, SDNPOptInGlue]>;
|
|
|
|
// fceil, ffloor, fround, ftrunc.
|
|
|
|
def : Pat<(fceil Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(fceil Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>;
|
|
def : Pat<(fceil Float64Regs:$a),
|
|
(CVT_f64_f64 Float64Regs:$a, CvtRPI)>;
|
|
|
|
def : Pat<(ffloor Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(ffloor Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>;
|
|
def : Pat<(ffloor Float64Regs:$a),
|
|
(CVT_f64_f64 Float64Regs:$a, CvtRMI)>;
|
|
|
|
def : Pat<(fround Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(f32 (fround Float32Regs:$a)),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
|
|
def : Pat<(f64 (fround Float64Regs:$a)),
|
|
(CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
|
|
|
|
def : Pat<(ftrunc Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(ftrunc Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>;
|
|
def : Pat<(ftrunc Float64Regs:$a),
|
|
(CVT_f64_f64 Float64Regs:$a, CvtRZI)>;
|
|
|
|
// nearbyint and rint are implemented as rounding to nearest even. This isn't
|
|
// strictly correct, because it causes us to ignore the rounding mode. But it
|
|
// matches what CUDA's "libm" does.
|
|
|
|
def : Pat<(fnearbyint Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(fnearbyint Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
|
|
def : Pat<(fnearbyint Float64Regs:$a),
|
|
(CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
|
|
|
|
def : Pat<(frint Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
|
|
def : Pat<(frint Float32Regs:$a),
|
|
(CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
|
|
def : Pat<(frint Float64Regs:$a),
|
|
(CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
|
|
|
|
|
|
//-----------------------------------
|
|
// Control-flow
|
|
//-----------------------------------
|
|
|
|
let isTerminator=1 in {
|
|
let isReturn=1, isBarrier=1 in
|
|
def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>;
|
|
|
|
let isBranch=1 in
|
|
def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
|
|
"@$a bra \t$target;",
|
|
[(brcond Int1Regs:$a, bb:$target)]>;
|
|
let isBranch=1 in
|
|
def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
|
|
"@!$a bra \t$target;", []>;
|
|
|
|
let isBranch=1, isBarrier=1 in
|
|
def GOTO : NVPTXInst<(outs), (ins brtarget:$target),
|
|
"bra.uni \t$target;", [(br bb:$target)]>;
|
|
}
|
|
|
|
def : Pat<(brcond Int32Regs:$a, bb:$target),
|
|
(CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>;
|
|
|
|
// SelectionDAGBuilder::visitSWitchCase() will invert the condition of a
|
|
// conditional branch if the target block is the next block so that the code
|
|
// can fall through to the target block. The invertion is done by 'xor
|
|
// condition, 1', which will be translated to (setne condition, -1). Since ptx
|
|
// supports '@!pred bra target', we should use it.
|
|
def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target),
|
|
(CBranchOther Int1Regs:$a, bb:$target)>;
|
|
|
|
// Call
|
|
def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
|
|
def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
|
|
|
|
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
|
|
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
|
|
SDNPSideEffect]>;
|
|
|
|
def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
|
|
def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
|
|
def calltarget : Operand<i32>;
|
|
let isCall=1 in {
|
|
def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>;
|
|
}
|
|
|
|
def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>;
|
|
def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>;
|
|
|
|
// Pseudo instructions.
|
|
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: NVPTXInst<outs, ins, asmstr, pattern>;
|
|
|
|
def Callseq_Start :
|
|
NVPTXInst<(outs), (ins i32imm:$amt),
|
|
"\\{ // callseq $amt\n"
|
|
"\t.reg .b32 temp_param_reg;",
|
|
[(callseq_start timm:$amt)]>;
|
|
def Callseq_End :
|
|
NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
|
|
"\\} // callseq $amt1",
|
|
[(callseq_end timm:$amt1, timm:$amt2)]>;
|
|
|
|
// trap instruction
|
|
def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>;
|
|
|
|
// Call prototype wrapper
|
|
def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
|
|
def CallPrototype :
|
|
SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
|
|
def ProtoIdent : Operand<i32> {
|
|
let PrintMethod = "printProtoIdent";
|
|
}
|
|
def CALL_PROTOTYPE :
|
|
NVPTXInst<(outs), (ins ProtoIdent:$ident),
|
|
"$ident", [(CallPrototype (i32 texternalsym:$ident))]>;
|
|
|
|
|
|
include "NVPTXIntrinsics.td"
|
|
|
|
|
|
//-----------------------------------
|
|
// Notes
|
|
//-----------------------------------
|
|
// BSWAP is currently expanded. The following is a more efficient
|
|
// - for < sm_20, use vector scalar mov, as tesla support native 16-bit register
|
|
// - for sm_20, use pmpt (use vector scalar mov to get the pack and
|
|
// unpack). sm_20 supports native 32-bit register, but not native 16-bit
|
|
// register.
|