mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-01 07:30:31 +00:00
10ad98bbbb
follow in one sec. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165951 91177308-0d34-0410-b5e6-96231b3b80d8
567 lines
19 KiB
C++
567 lines
19 KiB
C++
//===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Perform peephole optimizations on the machine code:
|
|
//
|
|
// - Optimize Extensions
|
|
//
|
|
// Optimization of sign / zero extension instructions. It may be extended to
|
|
// handle other instructions with similar properties.
|
|
//
|
|
// On some targets, some instructions, e.g. X86 sign / zero extension, may
|
|
// leave the source value in the lower part of the result. This optimization
|
|
// will replace some uses of the pre-extension value with uses of the
|
|
// sub-register of the results.
|
|
//
|
|
// - Optimize Comparisons
|
|
//
|
|
// Optimization of comparison instructions. For instance, in this code:
|
|
//
|
|
// sub r1, 1
|
|
// cmp r1, 0
|
|
// bz L1
|
|
//
|
|
// If the "sub" instruction all ready sets (or could be modified to set) the
|
|
// same flag that the "cmp" instruction sets and that "bz" uses, then we can
|
|
// eliminate the "cmp" instruction.
|
|
//
|
|
// Another instance, in this code:
|
|
//
|
|
// sub r1, r3 | sub r1, imm
|
|
// cmp r3, r1 or cmp r1, r3 | cmp r1, imm
|
|
// bge L1
|
|
//
|
|
// If the branch instruction can use flag from "sub", then we can replace
|
|
// "sub" with "subs" and eliminate the "cmp" instruction.
|
|
//
|
|
// - Optimize Bitcast pairs:
|
|
//
|
|
// v1 = bitcast v0
|
|
// v2 = bitcast v1
|
|
// = v2
|
|
// =>
|
|
// v1 = bitcast v0
|
|
// = v0
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "peephole-opt"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
// Optimize Extensions
|
|
static cl::opt<bool>
|
|
Aggressive("aggressive-ext-opt", cl::Hidden,
|
|
cl::desc("Aggressive extension optimization"));
|
|
|
|
static cl::opt<bool>
|
|
DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
|
|
cl::desc("Disable the peephole optimizer"));
|
|
|
|
STATISTIC(NumReuse, "Number of extension results reused");
|
|
STATISTIC(NumBitcasts, "Number of bitcasts eliminated");
|
|
STATISTIC(NumCmps, "Number of compares eliminated");
|
|
STATISTIC(NumImmFold, "Number of move immediate folded");
|
|
STATISTIC(NumLoadFold, "Number of loads folded");
|
|
STATISTIC(NumSelects, "Number of selects optimized");
|
|
|
|
namespace {
|
|
class PeepholeOptimizer : public MachineFunctionPass {
|
|
const TargetMachine *TM;
|
|
const TargetInstrInfo *TII;
|
|
MachineRegisterInfo *MRI;
|
|
MachineDominatorTree *DT; // Machine dominator tree
|
|
|
|
public:
|
|
static char ID; // Pass identification
|
|
PeepholeOptimizer() : MachineFunctionPass(ID) {
|
|
initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
if (Aggressive) {
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
}
|
|
}
|
|
|
|
private:
|
|
bool optimizeBitcastInstr(MachineInstr *MI, MachineBasicBlock *MBB);
|
|
bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
|
|
bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
|
|
SmallPtrSet<MachineInstr*, 8> &LocalMIs);
|
|
bool optimizeSelect(MachineInstr *MI);
|
|
bool isMoveImmediate(MachineInstr *MI,
|
|
SmallSet<unsigned, 4> &ImmDefRegs,
|
|
DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
|
|
bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
|
|
SmallSet<unsigned, 4> &ImmDefRegs,
|
|
DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
|
|
bool isLoadFoldable(MachineInstr *MI, unsigned &FoldAsLoadDefReg);
|
|
};
|
|
}
|
|
|
|
char PeepholeOptimizer::ID = 0;
|
|
char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
|
|
INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
|
|
"Peephole Optimizations", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
|
|
"Peephole Optimizations", false, false)
|
|
|
|
/// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
|
|
/// a single register and writes a single register and it does not modify the
|
|
/// source, and if the source value is preserved as a sub-register of the
|
|
/// result, then replace all reachable uses of the source with the subreg of the
|
|
/// result.
|
|
///
|
|
/// Do not generate an EXTRACT that is used only in a debug use, as this changes
|
|
/// the code. Since this code does not currently share EXTRACTs, just ignore all
|
|
/// debug uses.
|
|
bool PeepholeOptimizer::
|
|
optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
|
|
SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
|
|
unsigned SrcReg, DstReg, SubIdx;
|
|
if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
|
|
return false;
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
|
|
TargetRegisterInfo::isPhysicalRegister(SrcReg))
|
|
return false;
|
|
|
|
if (MRI->hasOneNonDBGUse(SrcReg))
|
|
// No other uses.
|
|
return false;
|
|
|
|
// Ensure DstReg can get a register class that actually supports
|
|
// sub-registers. Don't change the class until we commit.
|
|
const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
|
|
DstRC = TM->getRegisterInfo()->getSubClassWithSubReg(DstRC, SubIdx);
|
|
if (!DstRC)
|
|
return false;
|
|
|
|
// The ext instr may be operating on a sub-register of SrcReg as well.
|
|
// PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
|
|
// register.
|
|
// If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
|
|
// SrcReg:SubIdx should be replaced.
|
|
bool UseSrcSubIdx = TM->getRegisterInfo()->
|
|
getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != 0;
|
|
|
|
// The source has other uses. See if we can replace the other uses with use of
|
|
// the result of the extension.
|
|
SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
|
|
for (MachineRegisterInfo::use_nodbg_iterator
|
|
UI = MRI->use_nodbg_begin(DstReg), UE = MRI->use_nodbg_end();
|
|
UI != UE; ++UI)
|
|
ReachedBBs.insert(UI->getParent());
|
|
|
|
// Uses that are in the same BB of uses of the result of the instruction.
|
|
SmallVector<MachineOperand*, 8> Uses;
|
|
|
|
// Uses that the result of the instruction can reach.
|
|
SmallVector<MachineOperand*, 8> ExtendedUses;
|
|
|
|
bool ExtendLife = true;
|
|
for (MachineRegisterInfo::use_nodbg_iterator
|
|
UI = MRI->use_nodbg_begin(SrcReg), UE = MRI->use_nodbg_end();
|
|
UI != UE; ++UI) {
|
|
MachineOperand &UseMO = UI.getOperand();
|
|
MachineInstr *UseMI = &*UI;
|
|
if (UseMI == MI)
|
|
continue;
|
|
|
|
if (UseMI->isPHI()) {
|
|
ExtendLife = false;
|
|
continue;
|
|
}
|
|
|
|
// Only accept uses of SrcReg:SubIdx.
|
|
if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
|
|
continue;
|
|
|
|
// It's an error to translate this:
|
|
//
|
|
// %reg1025 = <sext> %reg1024
|
|
// ...
|
|
// %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
|
|
//
|
|
// into this:
|
|
//
|
|
// %reg1025 = <sext> %reg1024
|
|
// ...
|
|
// %reg1027 = COPY %reg1025:4
|
|
// %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
|
|
//
|
|
// The problem here is that SUBREG_TO_REG is there to assert that an
|
|
// implicit zext occurs. It doesn't insert a zext instruction. If we allow
|
|
// the COPY here, it will give us the value after the <sext>, not the
|
|
// original value of %reg1024 before <sext>.
|
|
if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
|
|
continue;
|
|
|
|
MachineBasicBlock *UseMBB = UseMI->getParent();
|
|
if (UseMBB == MBB) {
|
|
// Local uses that come after the extension.
|
|
if (!LocalMIs.count(UseMI))
|
|
Uses.push_back(&UseMO);
|
|
} else if (ReachedBBs.count(UseMBB)) {
|
|
// Non-local uses where the result of the extension is used. Always
|
|
// replace these unless it's a PHI.
|
|
Uses.push_back(&UseMO);
|
|
} else if (Aggressive && DT->dominates(MBB, UseMBB)) {
|
|
// We may want to extend the live range of the extension result in order
|
|
// to replace these uses.
|
|
ExtendedUses.push_back(&UseMO);
|
|
} else {
|
|
// Both will be live out of the def MBB anyway. Don't extend live range of
|
|
// the extension result.
|
|
ExtendLife = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ExtendLife && !ExtendedUses.empty())
|
|
// Extend the liveness of the extension result.
|
|
std::copy(ExtendedUses.begin(), ExtendedUses.end(),
|
|
std::back_inserter(Uses));
|
|
|
|
// Now replace all uses.
|
|
bool Changed = false;
|
|
if (!Uses.empty()) {
|
|
SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
|
|
|
|
// Look for PHI uses of the extended result, we don't want to extend the
|
|
// liveness of a PHI input. It breaks all kinds of assumptions down
|
|
// stream. A PHI use is expected to be the kill of its source values.
|
|
for (MachineRegisterInfo::use_nodbg_iterator
|
|
UI = MRI->use_nodbg_begin(DstReg), UE = MRI->use_nodbg_end();
|
|
UI != UE; ++UI)
|
|
if (UI->isPHI())
|
|
PHIBBs.insert(UI->getParent());
|
|
|
|
const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
|
|
for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
|
|
MachineOperand *UseMO = Uses[i];
|
|
MachineInstr *UseMI = UseMO->getParent();
|
|
MachineBasicBlock *UseMBB = UseMI->getParent();
|
|
if (PHIBBs.count(UseMBB))
|
|
continue;
|
|
|
|
// About to add uses of DstReg, clear DstReg's kill flags.
|
|
if (!Changed) {
|
|
MRI->clearKillFlags(DstReg);
|
|
MRI->constrainRegClass(DstReg, DstRC);
|
|
}
|
|
|
|
unsigned NewVR = MRI->createVirtualRegister(RC);
|
|
MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), NewVR)
|
|
.addReg(DstReg, 0, SubIdx);
|
|
// SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
|
|
if (UseSrcSubIdx) {
|
|
Copy->getOperand(0).setSubReg(SubIdx);
|
|
Copy->getOperand(0).setIsUndef();
|
|
}
|
|
UseMO->setReg(NewVR);
|
|
++NumReuse;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// optimizeBitcastInstr - If the instruction is a bitcast instruction A that
|
|
/// cannot be optimized away during isel (e.g. ARM::VMOVSR, which bitcast
|
|
/// a value cross register classes), and the source is defined by another
|
|
/// bitcast instruction B. And if the register class of source of B matches
|
|
/// the register class of instruction A, then it is legal to replace all uses
|
|
/// of the def of A with source of B. e.g.
|
|
/// %vreg0<def> = VMOVSR %vreg1
|
|
/// %vreg3<def> = VMOVRS %vreg0
|
|
/// Replace all uses of vreg3 with vreg1.
|
|
|
|
bool PeepholeOptimizer::optimizeBitcastInstr(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
unsigned NumDefs = MI->getDesc().getNumDefs();
|
|
unsigned NumSrcs = MI->getDesc().getNumOperands() - NumDefs;
|
|
if (NumDefs != 1)
|
|
return false;
|
|
|
|
unsigned Def = 0;
|
|
unsigned Src = 0;
|
|
for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (MO.isDef())
|
|
Def = Reg;
|
|
else if (Src)
|
|
// Multiple sources?
|
|
return false;
|
|
else
|
|
Src = Reg;
|
|
}
|
|
|
|
assert(Def && Src && "Malformed bitcast instruction!");
|
|
|
|
MachineInstr *DefMI = MRI->getVRegDef(Src);
|
|
if (!DefMI || !DefMI->isBitcast())
|
|
return false;
|
|
|
|
unsigned SrcSrc = 0;
|
|
NumDefs = DefMI->getDesc().getNumDefs();
|
|
NumSrcs = DefMI->getDesc().getNumOperands() - NumDefs;
|
|
if (NumDefs != 1)
|
|
return false;
|
|
for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
|
|
const MachineOperand &MO = DefMI->getOperand(i);
|
|
if (!MO.isReg() || MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (!MO.isDef()) {
|
|
if (SrcSrc)
|
|
// Multiple sources?
|
|
return false;
|
|
else
|
|
SrcSrc = Reg;
|
|
}
|
|
}
|
|
|
|
if (MRI->getRegClass(SrcSrc) != MRI->getRegClass(Def))
|
|
return false;
|
|
|
|
MRI->replaceRegWith(Def, SrcSrc);
|
|
MRI->clearKillFlags(SrcSrc);
|
|
MI->eraseFromParent();
|
|
++NumBitcasts;
|
|
return true;
|
|
}
|
|
|
|
/// optimizeCmpInstr - If the instruction is a compare and the previous
|
|
/// instruction it's comparing against all ready sets (or could be modified to
|
|
/// set) the same flag as the compare, then we can remove the comparison and use
|
|
/// the flag from the previous instruction.
|
|
bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
// If this instruction is a comparison against zero and isn't comparing a
|
|
// physical register, we can try to optimize it.
|
|
unsigned SrcReg, SrcReg2;
|
|
int CmpMask, CmpValue;
|
|
if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
|
|
TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
|
|
(SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
|
|
return false;
|
|
|
|
// Attempt to optimize the comparison instruction.
|
|
if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
|
|
++NumCmps;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Optimize a select instruction.
|
|
bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
|
|
unsigned TrueOp = 0;
|
|
unsigned FalseOp = 0;
|
|
bool Optimizable = false;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
|
|
return false;
|
|
if (!Optimizable)
|
|
return false;
|
|
if (!TII->optimizeSelect(MI))
|
|
return false;
|
|
MI->eraseFromParent();
|
|
++NumSelects;
|
|
return true;
|
|
}
|
|
|
|
/// isLoadFoldable - Check whether MI is a candidate for folding into a later
|
|
/// instruction. We only fold loads to virtual registers and the virtual
|
|
/// register defined has a single use.
|
|
bool PeepholeOptimizer::isLoadFoldable(MachineInstr *MI,
|
|
unsigned &FoldAsLoadDefReg) {
|
|
if (!MI->canFoldAsLoad() || !MI->mayLoad())
|
|
return false;
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
if (MCID.getNumDefs() != 1)
|
|
return false;
|
|
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
// To reduce compilation time, we check MRI->hasOneUse when inserting
|
|
// loads. It should be checked when processing uses of the load, since
|
|
// uses can be removed during peephole.
|
|
if (!MI->getOperand(0).getSubReg() &&
|
|
TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
MRI->hasOneUse(Reg)) {
|
|
FoldAsLoadDefReg = Reg;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
|
|
SmallSet<unsigned, 4> &ImmDefRegs,
|
|
DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
if (!MI->isMoveImmediate())
|
|
return false;
|
|
if (MCID.getNumDefs() != 1)
|
|
return false;
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
ImmDefMIs.insert(std::make_pair(Reg, MI));
|
|
ImmDefRegs.insert(Reg);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// foldImmediate - Try folding register operands that are defined by move
|
|
/// immediate instructions, i.e. a trivial constant folding optimization, if
|
|
/// and only if the def and use are in the same BB.
|
|
bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
|
|
SmallSet<unsigned, 4> &ImmDefRegs,
|
|
DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
|
|
for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
if (ImmDefRegs.count(Reg) == 0)
|
|
continue;
|
|
DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
|
|
assert(II != ImmDefMIs.end());
|
|
if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
|
|
++NumImmFold;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
|
|
if (DisablePeephole)
|
|
return false;
|
|
|
|
TM = &MF.getTarget();
|
|
TII = TM->getInstrInfo();
|
|
MRI = &MF.getRegInfo();
|
|
DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : 0;
|
|
|
|
bool Changed = false;
|
|
|
|
SmallPtrSet<MachineInstr*, 8> LocalMIs;
|
|
SmallSet<unsigned, 4> ImmDefRegs;
|
|
DenseMap<unsigned, MachineInstr*> ImmDefMIs;
|
|
unsigned FoldAsLoadDefReg;
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
|
|
MachineBasicBlock *MBB = &*I;
|
|
|
|
bool SeenMoveImm = false;
|
|
LocalMIs.clear();
|
|
ImmDefRegs.clear();
|
|
ImmDefMIs.clear();
|
|
FoldAsLoadDefReg = 0;
|
|
|
|
for (MachineBasicBlock::iterator
|
|
MII = I->begin(), MIE = I->end(); MII != MIE; ) {
|
|
MachineInstr *MI = &*MII;
|
|
// We may be erasing MI below, increment MII now.
|
|
++MII;
|
|
LocalMIs.insert(MI);
|
|
|
|
// If there exists an instruction which belongs to the following
|
|
// categories, we will discard the load candidate.
|
|
if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
|
|
MI->isKill() || MI->isInlineAsm() || MI->isDebugValue() ||
|
|
MI->hasUnmodeledSideEffects()) {
|
|
FoldAsLoadDefReg = 0;
|
|
continue;
|
|
}
|
|
if (MI->mayStore() || MI->isCall())
|
|
FoldAsLoadDefReg = 0;
|
|
|
|
if ((MI->isBitcast() && optimizeBitcastInstr(MI, MBB)) ||
|
|
(MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
|
|
(MI->isSelect() && optimizeSelect(MI))) {
|
|
// MI is deleted.
|
|
LocalMIs.erase(MI);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
|
|
SeenMoveImm = true;
|
|
} else {
|
|
Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
|
|
// optimizeExtInstr might have created new instructions after MI
|
|
// and before the already incremented MII. Adjust MII so that the
|
|
// next iteration sees the new instructions.
|
|
MII = MI;
|
|
++MII;
|
|
if (SeenMoveImm)
|
|
Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
|
|
}
|
|
|
|
// Check whether MI is a load candidate for folding into a later
|
|
// instruction. If MI is not a candidate, check whether we can fold an
|
|
// earlier load into MI.
|
|
if (!isLoadFoldable(MI, FoldAsLoadDefReg) && FoldAsLoadDefReg) {
|
|
// We need to fold load after optimizeCmpInstr, since optimizeCmpInstr
|
|
// can enable folding by converting SUB to CMP.
|
|
MachineInstr *DefMI = 0;
|
|
MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
|
|
FoldAsLoadDefReg, DefMI);
|
|
if (FoldMI) {
|
|
// Update LocalMIs since we replaced MI with FoldMI and deleted DefMI.
|
|
LocalMIs.erase(MI);
|
|
LocalMIs.erase(DefMI);
|
|
LocalMIs.insert(FoldMI);
|
|
MI->eraseFromParent();
|
|
DefMI->eraseFromParent();
|
|
++NumLoadFold;
|
|
|
|
// MI is replaced with FoldMI.
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|