llvm/lib/IR/AutoUpgrade.cpp
Duncan P. N. Exon Smith e75a8c3855 AutoUpgrade: Remove obsolete dbg.declare/value upgrade
This upgrade of `@llvm.dbg.declare` and `@llvm.dbg.value` isn't useful,
since it's for an old debug info version.  The calls will get stripped
anyway by `UpgradeDebugInfo()`.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234181 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-06 17:17:47 +00:00

933 lines
38 KiB
C++

//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the auto-upgrade helper functions.
// This is where deprecated IR intrinsics and other IR features are updated to
// current specifications.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include <cstring>
using namespace llvm;
// Upgrade the declarations of the SSE4.1 functions whose arguments have
// changed their type from v4f32 to v2i64.
static bool UpgradeSSE41Function(Function* F, Intrinsic::ID IID,
Function *&NewFn) {
// Check whether this is an old version of the function, which received
// v4f32 arguments.
Type *Arg0Type = F->getFunctionType()->getParamType(0);
if (Arg0Type != VectorType::get(Type::getFloatTy(F->getContext()), 4))
return false;
// Yes, it's old, replace it with new version.
F->setName(F->getName() + ".old");
NewFn = Intrinsic::getDeclaration(F->getParent(), IID);
return true;
}
// Upgrade the declarations of intrinsic functions whose 8-bit immediate mask
// arguments have changed their type from i32 to i8.
static bool UpgradeX86IntrinsicsWith8BitMask(Function *F, Intrinsic::ID IID,
Function *&NewFn) {
// Check that the last argument is an i32.
Type *LastArgType = F->getFunctionType()->getParamType(
F->getFunctionType()->getNumParams() - 1);
if (!LastArgType->isIntegerTy(32))
return false;
// Move this function aside and map down.
F->setName(F->getName() + ".old");
NewFn = Intrinsic::getDeclaration(F->getParent(), IID);
return true;
}
// Upgrade the declarations of AVX-512 cmp intrinsic functions whose 8-bit
// immediates have changed their type from i32 to i8.
static bool UpgradeAVX512CmpIntrinsic(Function *F, Intrinsic::ID IID,
Function *&NewFn) {
// Check that the last argument is an i32.
Type *LastArgType = F->getFunctionType()->getParamType(2);
if (!LastArgType->isIntegerTy(32))
return false;
// Move this function aside and map down.
F->setName(F->getName() + ".old");
NewFn = Intrinsic::getDeclaration(F->getParent(), IID);
return true;
}
static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
assert(F && "Illegal to upgrade a non-existent Function.");
// Quickly eliminate it, if it's not a candidate.
StringRef Name = F->getName();
if (Name.size() <= 8 || !Name.startswith("llvm."))
return false;
Name = Name.substr(5); // Strip off "llvm."
switch (Name[0]) {
default: break;
case 'a': {
if (Name.startswith("arm.neon.vclz")) {
Type* args[2] = {
F->arg_begin()->getType(),
Type::getInt1Ty(F->getContext())
};
// Can't use Intrinsic::getDeclaration here as it adds a ".i1" to
// the end of the name. Change name from llvm.arm.neon.vclz.* to
// llvm.ctlz.*
FunctionType* fType = FunctionType::get(F->getReturnType(), args, false);
NewFn = Function::Create(fType, F->getLinkage(),
"llvm.ctlz." + Name.substr(14), F->getParent());
return true;
}
if (Name.startswith("arm.neon.vcnt")) {
NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctpop,
F->arg_begin()->getType());
return true;
}
break;
}
case 'c': {
if (Name.startswith("ctlz.") && F->arg_size() == 1) {
F->setName(Name + ".old");
NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
F->arg_begin()->getType());
return true;
}
if (Name.startswith("cttz.") && F->arg_size() == 1) {
F->setName(Name + ".old");
NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::cttz,
F->arg_begin()->getType());
return true;
}
break;
}
case 'o':
// We only need to change the name to match the mangling including the
// address space.
if (F->arg_size() == 2 && Name.startswith("objectsize.")) {
Type *Tys[2] = { F->getReturnType(), F->arg_begin()->getType() };
if (F->getName() != Intrinsic::getName(Intrinsic::objectsize, Tys)) {
F->setName(Name + ".old");
NewFn = Intrinsic::getDeclaration(F->getParent(),
Intrinsic::objectsize, Tys);
return true;
}
}
break;
case 'x': {
if (Name.startswith("x86.sse2.pcmpeq.") ||
Name.startswith("x86.sse2.pcmpgt.") ||
Name.startswith("x86.avx2.pcmpeq.") ||
Name.startswith("x86.avx2.pcmpgt.") ||
Name.startswith("x86.avx.vpermil.") ||
Name == "x86.avx.vinsertf128.pd.256" ||
Name == "x86.avx.vinsertf128.ps.256" ||
Name == "x86.avx.vinsertf128.si.256" ||
Name == "x86.avx2.vinserti128" ||
Name == "x86.avx.vextractf128.pd.256" ||
Name == "x86.avx.vextractf128.ps.256" ||
Name == "x86.avx.vextractf128.si.256" ||
Name == "x86.avx2.vextracti128" ||
Name == "x86.avx.movnt.dq.256" ||
Name == "x86.avx.movnt.pd.256" ||
Name == "x86.avx.movnt.ps.256" ||
Name == "x86.sse42.crc32.64.8" ||
Name == "x86.avx.vbroadcast.ss" ||
Name == "x86.avx.vbroadcast.ss.256" ||
Name == "x86.avx.vbroadcast.sd.256" ||
Name == "x86.sse2.psll.dq" ||
Name == "x86.sse2.psrl.dq" ||
Name == "x86.avx2.psll.dq" ||
Name == "x86.avx2.psrl.dq" ||
Name == "x86.sse2.psll.dq.bs" ||
Name == "x86.sse2.psrl.dq.bs" ||
Name == "x86.avx2.psll.dq.bs" ||
Name == "x86.avx2.psrl.dq.bs" ||
Name == "x86.sse41.pblendw" ||
Name == "x86.sse41.blendpd" ||
Name == "x86.sse41.blendps" ||
Name == "x86.avx.blend.pd.256" ||
Name == "x86.avx.blend.ps.256" ||
Name == "x86.avx2.pblendw" ||
Name == "x86.avx2.pblendd.128" ||
Name == "x86.avx2.pblendd.256" ||
Name == "x86.avx2.vbroadcasti128" ||
(Name.startswith("x86.xop.vpcom") && F->arg_size() == 2)) {
NewFn = nullptr;
return true;
}
// SSE4.1 ptest functions may have an old signature.
if (Name.startswith("x86.sse41.ptest")) {
if (Name == "x86.sse41.ptestc")
return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestc, NewFn);
if (Name == "x86.sse41.ptestz")
return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestz, NewFn);
if (Name == "x86.sse41.ptestnzc")
return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestnzc, NewFn);
}
// Several blend and other instructions with masks used the wrong number of
// bits.
if (Name == "x86.sse41.insertps")
return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_insertps,
NewFn);
if (Name == "x86.sse41.dppd")
return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_dppd,
NewFn);
if (Name == "x86.sse41.dpps")
return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_dpps,
NewFn);
if (Name == "x86.sse41.mpsadbw")
return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_mpsadbw,
NewFn);
if (Name == "x86.avx.dp.ps.256")
return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx_dp_ps_256,
NewFn);
if (Name == "x86.avx2.mpsadbw")
return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx2_mpsadbw,
NewFn);
if (Name == "x86.avx512.mask.cmp.ps.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_ps_512,
NewFn);
if (Name == "x86.avx512.mask.cmp.pd.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_pd_512,
NewFn);
if (Name == "x86.avx512.mask.cmp.b.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_b_512,
NewFn);
if (Name == "x86.avx512.mask.cmp.w.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_w_512,
NewFn);
if (Name == "x86.avx512.mask.cmp.d.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_d_512,
NewFn);
if (Name == "x86.avx512.mask.cmp.q.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_q_512,
NewFn);
if (Name == "x86.avx512.mask.ucmp.b.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_b_512,
NewFn);
if (Name == "x86.avx512.mask.ucmp.w.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_w_512,
NewFn);
if (Name == "x86.avx512.mask.ucmp.d.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_d_512,
NewFn);
if (Name == "x86.avx512.mask.ucmp.q.512")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_q_512,
NewFn);
if (Name == "x86.avx512.mask.cmp.b.256")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_b_256,
NewFn);
if (Name == "x86.avx512.mask.cmp.w.256")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_w_256,
NewFn);
if (Name == "x86.avx512.mask.cmp.d.256")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_d_256,
NewFn);
if (Name == "x86.avx512.mask.cmp.q.256")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_q_256,
NewFn);
if (Name == "x86.avx512.mask.ucmp.b.256")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_b_256,
NewFn);
if (Name == "x86.avx512.mask.ucmp.w.256")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_w_256,
NewFn);
if (Name == "x86.avx512.mask.ucmp.d.256")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_d_256,
NewFn);
if (Name == "x86.avx512.mask.ucmp.q.256")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_q_256,
NewFn);
if (Name == "x86.avx512.mask.cmp.b.128")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_b_128,
NewFn);
if (Name == "x86.avx512.mask.cmp.w.128")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_w_128,
NewFn);
if (Name == "x86.avx512.mask.cmp.d.128")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_d_128,
NewFn);
if (Name == "x86.avx512.mask.cmp.q.128")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_cmp_q_128,
NewFn);
if (Name == "x86.avx512.mask.ucmp.b.128")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_b_128,
NewFn);
if (Name == "x86.avx512.mask.ucmp.w.128")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_w_128,
NewFn);
if (Name == "x86.avx512.mask.ucmp.d.128")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_d_128,
NewFn);
if (Name == "x86.avx512.mask.ucmp.q.128")
return UpgradeAVX512CmpIntrinsic(F, Intrinsic::x86_avx512_mask_ucmp_q_128,
NewFn);
// frcz.ss/sd may need to have an argument dropped
if (Name.startswith("x86.xop.vfrcz.ss") && F->arg_size() == 2) {
F->setName(Name + ".old");
NewFn = Intrinsic::getDeclaration(F->getParent(),
Intrinsic::x86_xop_vfrcz_ss);
return true;
}
if (Name.startswith("x86.xop.vfrcz.sd") && F->arg_size() == 2) {
F->setName(Name + ".old");
NewFn = Intrinsic::getDeclaration(F->getParent(),
Intrinsic::x86_xop_vfrcz_sd);
return true;
}
// Fix the FMA4 intrinsics to remove the 4
if (Name.startswith("x86.fma4.")) {
F->setName("llvm.x86.fma" + Name.substr(8));
NewFn = F;
return true;
}
break;
}
}
// This may not belong here. This function is effectively being overloaded
// to both detect an intrinsic which needs upgrading, and to provide the
// upgraded form of the intrinsic. We should perhaps have two separate
// functions for this.
return false;
}
bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) {
NewFn = nullptr;
bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn);
// Upgrade intrinsic attributes. This does not change the function.
if (NewFn)
F = NewFn;
if (unsigned id = F->getIntrinsicID())
F->setAttributes(Intrinsic::getAttributes(F->getContext(),
(Intrinsic::ID)id));
return Upgraded;
}
bool llvm::UpgradeGlobalVariable(GlobalVariable *GV) {
// Nothing to do yet.
return false;
}
// Handles upgrading SSE2 and AVX2 PSLLDQ intrinsics by converting them
// to byte shuffles.
static Value *UpgradeX86PSLLDQIntrinsics(IRBuilder<> &Builder, LLVMContext &C,
Value *Op, unsigned NumLanes,
unsigned Shift) {
// Each lane is 16 bytes.
unsigned NumElts = NumLanes * 16;
// Bitcast from a 64-bit element type to a byte element type.
Op = Builder.CreateBitCast(Op,
VectorType::get(Type::getInt8Ty(C), NumElts),
"cast");
// We'll be shuffling in zeroes.
Value *Res = ConstantVector::getSplat(NumElts, Builder.getInt8(0));
// If shift is less than 16, emit a shuffle to move the bytes. Otherwise,
// we'll just return the zero vector.
if (Shift < 16) {
SmallVector<Constant*, 32> Idxs;
// 256-bit version is split into two 16-byte lanes.
for (unsigned l = 0; l != NumElts; l += 16)
for (unsigned i = 0; i != 16; ++i) {
unsigned Idx = NumElts + i - Shift;
if (Idx < NumElts)
Idx -= NumElts - 16; // end of lane, switch operand.
Idxs.push_back(Builder.getInt32(Idx + l));
}
Res = Builder.CreateShuffleVector(Res, Op, ConstantVector::get(Idxs));
}
// Bitcast back to a 64-bit element type.
return Builder.CreateBitCast(Res,
VectorType::get(Type::getInt64Ty(C), 2*NumLanes),
"cast");
}
// Handles upgrading SSE2 and AVX2 PSRLDQ intrinsics by converting them
// to byte shuffles.
static Value *UpgradeX86PSRLDQIntrinsics(IRBuilder<> &Builder, LLVMContext &C,
Value *Op, unsigned NumLanes,
unsigned Shift) {
// Each lane is 16 bytes.
unsigned NumElts = NumLanes * 16;
// Bitcast from a 64-bit element type to a byte element type.
Op = Builder.CreateBitCast(Op,
VectorType::get(Type::getInt8Ty(C), NumElts),
"cast");
// We'll be shuffling in zeroes.
Value *Res = ConstantVector::getSplat(NumElts, Builder.getInt8(0));
// If shift is less than 16, emit a shuffle to move the bytes. Otherwise,
// we'll just return the zero vector.
if (Shift < 16) {
SmallVector<Constant*, 32> Idxs;
// 256-bit version is split into two 16-byte lanes.
for (unsigned l = 0; l != NumElts; l += 16)
for (unsigned i = 0; i != 16; ++i) {
unsigned Idx = i + Shift;
if (Idx >= 16)
Idx += NumElts - 16; // end of lane, switch operand.
Idxs.push_back(Builder.getInt32(Idx + l));
}
Res = Builder.CreateShuffleVector(Op, Res, ConstantVector::get(Idxs));
}
// Bitcast back to a 64-bit element type.
return Builder.CreateBitCast(Res,
VectorType::get(Type::getInt64Ty(C), 2*NumLanes),
"cast");
}
// UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the
// upgraded intrinsic. All argument and return casting must be provided in
// order to seamlessly integrate with existing context.
void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
Function *F = CI->getCalledFunction();
LLVMContext &C = CI->getContext();
IRBuilder<> Builder(C);
Builder.SetInsertPoint(CI->getParent(), CI);
assert(F && "Intrinsic call is not direct?");
if (!NewFn) {
// Get the Function's name.
StringRef Name = F->getName();
Value *Rep;
// Upgrade packed integer vector compares intrinsics to compare instructions
if (Name.startswith("llvm.x86.sse2.pcmpeq.") ||
Name.startswith("llvm.x86.avx2.pcmpeq.")) {
Rep = Builder.CreateICmpEQ(CI->getArgOperand(0), CI->getArgOperand(1),
"pcmpeq");
// need to sign extend since icmp returns vector of i1
Rep = Builder.CreateSExt(Rep, CI->getType(), "");
} else if (Name.startswith("llvm.x86.sse2.pcmpgt.") ||
Name.startswith("llvm.x86.avx2.pcmpgt.")) {
Rep = Builder.CreateICmpSGT(CI->getArgOperand(0), CI->getArgOperand(1),
"pcmpgt");
// need to sign extend since icmp returns vector of i1
Rep = Builder.CreateSExt(Rep, CI->getType(), "");
} else if (Name == "llvm.x86.avx.movnt.dq.256" ||
Name == "llvm.x86.avx.movnt.ps.256" ||
Name == "llvm.x86.avx.movnt.pd.256") {
IRBuilder<> Builder(C);
Builder.SetInsertPoint(CI->getParent(), CI);
Module *M = F->getParent();
SmallVector<Metadata *, 1> Elts;
Elts.push_back(
ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(C), 1)));
MDNode *Node = MDNode::get(C, Elts);
Value *Arg0 = CI->getArgOperand(0);
Value *Arg1 = CI->getArgOperand(1);
// Convert the type of the pointer to a pointer to the stored type.
Value *BC = Builder.CreateBitCast(Arg0,
PointerType::getUnqual(Arg1->getType()),
"cast");
StoreInst *SI = Builder.CreateStore(Arg1, BC);
SI->setMetadata(M->getMDKindID("nontemporal"), Node);
SI->setAlignment(16);
// Remove intrinsic.
CI->eraseFromParent();
return;
} else if (Name.startswith("llvm.x86.xop.vpcom")) {
Intrinsic::ID intID;
if (Name.endswith("ub"))
intID = Intrinsic::x86_xop_vpcomub;
else if (Name.endswith("uw"))
intID = Intrinsic::x86_xop_vpcomuw;
else if (Name.endswith("ud"))
intID = Intrinsic::x86_xop_vpcomud;
else if (Name.endswith("uq"))
intID = Intrinsic::x86_xop_vpcomuq;
else if (Name.endswith("b"))
intID = Intrinsic::x86_xop_vpcomb;
else if (Name.endswith("w"))
intID = Intrinsic::x86_xop_vpcomw;
else if (Name.endswith("d"))
intID = Intrinsic::x86_xop_vpcomd;
else if (Name.endswith("q"))
intID = Intrinsic::x86_xop_vpcomq;
else
llvm_unreachable("Unknown suffix");
Name = Name.substr(18); // strip off "llvm.x86.xop.vpcom"
unsigned Imm;
if (Name.startswith("lt"))
Imm = 0;
else if (Name.startswith("le"))
Imm = 1;
else if (Name.startswith("gt"))
Imm = 2;
else if (Name.startswith("ge"))
Imm = 3;
else if (Name.startswith("eq"))
Imm = 4;
else if (Name.startswith("ne"))
Imm = 5;
else if (Name.startswith("false"))
Imm = 6;
else if (Name.startswith("true"))
Imm = 7;
else
llvm_unreachable("Unknown condition");
Function *VPCOM = Intrinsic::getDeclaration(F->getParent(), intID);
Rep = Builder.CreateCall3(VPCOM, CI->getArgOperand(0),
CI->getArgOperand(1), Builder.getInt8(Imm));
} else if (Name == "llvm.x86.sse42.crc32.64.8") {
Function *CRC32 = Intrinsic::getDeclaration(F->getParent(),
Intrinsic::x86_sse42_crc32_32_8);
Value *Trunc0 = Builder.CreateTrunc(CI->getArgOperand(0), Type::getInt32Ty(C));
Rep = Builder.CreateCall2(CRC32, Trunc0, CI->getArgOperand(1));
Rep = Builder.CreateZExt(Rep, CI->getType(), "");
} else if (Name.startswith("llvm.x86.avx.vbroadcast")) {
// Replace broadcasts with a series of insertelements.
Type *VecTy = CI->getType();
Type *EltTy = VecTy->getVectorElementType();
unsigned EltNum = VecTy->getVectorNumElements();
Value *Cast = Builder.CreateBitCast(CI->getArgOperand(0),
EltTy->getPointerTo());
Value *Load = Builder.CreateLoad(Cast);
Type *I32Ty = Type::getInt32Ty(C);
Rep = UndefValue::get(VecTy);
for (unsigned I = 0; I < EltNum; ++I)
Rep = Builder.CreateInsertElement(Rep, Load,
ConstantInt::get(I32Ty, I));
} else if (Name == "llvm.x86.avx2.vbroadcasti128") {
// Replace vbroadcasts with a vector shuffle.
Value *Op = Builder.CreatePointerCast(
CI->getArgOperand(0),
PointerType::getUnqual(VectorType::get(Type::getInt64Ty(C), 2)));
Value *Load = Builder.CreateLoad(Op);
const int Idxs[4] = { 0, 1, 0, 1 };
Rep = Builder.CreateShuffleVector(Load, UndefValue::get(Load->getType()),
Idxs);
} else if (Name == "llvm.x86.sse2.psll.dq") {
// 128-bit shift left specified in bits.
unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), 1,
Shift / 8); // Shift is in bits.
} else if (Name == "llvm.x86.sse2.psrl.dq") {
// 128-bit shift right specified in bits.
unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), 1,
Shift / 8); // Shift is in bits.
} else if (Name == "llvm.x86.avx2.psll.dq") {
// 256-bit shift left specified in bits.
unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), 2,
Shift / 8); // Shift is in bits.
} else if (Name == "llvm.x86.avx2.psrl.dq") {
// 256-bit shift right specified in bits.
unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), 2,
Shift / 8); // Shift is in bits.
} else if (Name == "llvm.x86.sse2.psll.dq.bs") {
// 128-bit shift left specified in bytes.
unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), 1,
Shift);
} else if (Name == "llvm.x86.sse2.psrl.dq.bs") {
// 128-bit shift right specified in bytes.
unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), 1,
Shift);
} else if (Name == "llvm.x86.avx2.psll.dq.bs") {
// 256-bit shift left specified in bytes.
unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), 2,
Shift);
} else if (Name == "llvm.x86.avx2.psrl.dq.bs") {
// 256-bit shift right specified in bytes.
unsigned Shift = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), 2,
Shift);
} else if (Name == "llvm.x86.sse41.pblendw" ||
Name == "llvm.x86.sse41.blendpd" ||
Name == "llvm.x86.sse41.blendps" ||
Name == "llvm.x86.avx.blend.pd.256" ||
Name == "llvm.x86.avx.blend.ps.256" ||
Name == "llvm.x86.avx2.pblendw" ||
Name == "llvm.x86.avx2.pblendd.128" ||
Name == "llvm.x86.avx2.pblendd.256") {
Value *Op0 = CI->getArgOperand(0);
Value *Op1 = CI->getArgOperand(1);
unsigned Imm = cast <ConstantInt>(CI->getArgOperand(2))->getZExtValue();
VectorType *VecTy = cast<VectorType>(CI->getType());
unsigned NumElts = VecTy->getNumElements();
SmallVector<Constant*, 16> Idxs;
for (unsigned i = 0; i != NumElts; ++i) {
unsigned Idx = ((Imm >> (i%8)) & 1) ? i + NumElts : i;
Idxs.push_back(Builder.getInt32(Idx));
}
Rep = Builder.CreateShuffleVector(Op0, Op1, ConstantVector::get(Idxs));
} else if (Name == "llvm.x86.avx.vinsertf128.pd.256" ||
Name == "llvm.x86.avx.vinsertf128.ps.256" ||
Name == "llvm.x86.avx.vinsertf128.si.256" ||
Name == "llvm.x86.avx2.vinserti128") {
Value *Op0 = CI->getArgOperand(0);
Value *Op1 = CI->getArgOperand(1);
unsigned Imm = cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue();
VectorType *VecTy = cast<VectorType>(CI->getType());
unsigned NumElts = VecTy->getNumElements();
// Mask off the high bits of the immediate value; hardware ignores those.
Imm = Imm & 1;
// Extend the second operand into a vector that is twice as big.
Value *UndefV = UndefValue::get(Op1->getType());
SmallVector<Constant*, 8> Idxs;
for (unsigned i = 0; i != NumElts; ++i) {
Idxs.push_back(Builder.getInt32(i));
}
Rep = Builder.CreateShuffleVector(Op1, UndefV, ConstantVector::get(Idxs));
// Insert the second operand into the first operand.
// Note that there is no guarantee that instruction lowering will actually
// produce a vinsertf128 instruction for the created shuffles. In
// particular, the 0 immediate case involves no lane changes, so it can
// be handled as a blend.
// Example of shuffle mask for 32-bit elements:
// Imm = 1 <i32 0, i32 1, i32 2, i32 3, i32 8, i32 9, i32 10, i32 11>
// Imm = 0 <i32 8, i32 9, i32 10, i32 11, i32 4, i32 5, i32 6, i32 7 >
SmallVector<Constant*, 8> Idxs2;
// The low half of the result is either the low half of the 1st operand
// or the low half of the 2nd operand (the inserted vector).
for (unsigned i = 0; i != NumElts / 2; ++i) {
unsigned Idx = Imm ? i : (i + NumElts);
Idxs2.push_back(Builder.getInt32(Idx));
}
// The high half of the result is either the low half of the 2nd operand
// (the inserted vector) or the high half of the 1st operand.
for (unsigned i = NumElts / 2; i != NumElts; ++i) {
unsigned Idx = Imm ? (i + NumElts / 2) : i;
Idxs2.push_back(Builder.getInt32(Idx));
}
Rep = Builder.CreateShuffleVector(Op0, Rep, ConstantVector::get(Idxs2));
} else if (Name == "llvm.x86.avx.vextractf128.pd.256" ||
Name == "llvm.x86.avx.vextractf128.ps.256" ||
Name == "llvm.x86.avx.vextractf128.si.256" ||
Name == "llvm.x86.avx2.vextracti128") {
Value *Op0 = CI->getArgOperand(0);
unsigned Imm = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
VectorType *VecTy = cast<VectorType>(CI->getType());
unsigned NumElts = VecTy->getNumElements();
// Mask off the high bits of the immediate value; hardware ignores those.
Imm = Imm & 1;
// Get indexes for either the high half or low half of the input vector.
SmallVector<Constant*, 4> Idxs(NumElts);
for (unsigned i = 0; i != NumElts; ++i) {
unsigned Idx = Imm ? (i + NumElts) : i;
Idxs[i] = Builder.getInt32(Idx);
}
Value *UndefV = UndefValue::get(Op0->getType());
Rep = Builder.CreateShuffleVector(Op0, UndefV, ConstantVector::get(Idxs));
} else {
bool PD128 = false, PD256 = false, PS128 = false, PS256 = false;
if (Name == "llvm.x86.avx.vpermil.pd.256")
PD256 = true;
else if (Name == "llvm.x86.avx.vpermil.pd")
PD128 = true;
else if (Name == "llvm.x86.avx.vpermil.ps.256")
PS256 = true;
else if (Name == "llvm.x86.avx.vpermil.ps")
PS128 = true;
if (PD256 || PD128 || PS256 || PS128) {
Value *Op0 = CI->getArgOperand(0);
unsigned Imm = cast<ConstantInt>(CI->getArgOperand(1))->getZExtValue();
SmallVector<Constant*, 8> Idxs;
if (PD128)
for (unsigned i = 0; i != 2; ++i)
Idxs.push_back(Builder.getInt32((Imm >> i) & 0x1));
else if (PD256)
for (unsigned l = 0; l != 4; l+=2)
for (unsigned i = 0; i != 2; ++i)
Idxs.push_back(Builder.getInt32(((Imm >> (l+i)) & 0x1) + l));
else if (PS128)
for (unsigned i = 0; i != 4; ++i)
Idxs.push_back(Builder.getInt32((Imm >> (2 * i)) & 0x3));
else if (PS256)
for (unsigned l = 0; l != 8; l+=4)
for (unsigned i = 0; i != 4; ++i)
Idxs.push_back(Builder.getInt32(((Imm >> (2 * i)) & 0x3) + l));
else
llvm_unreachable("Unexpected function");
Rep = Builder.CreateShuffleVector(Op0, Op0, ConstantVector::get(Idxs));
} else {
llvm_unreachable("Unknown function for CallInst upgrade.");
}
}
CI->replaceAllUsesWith(Rep);
CI->eraseFromParent();
return;
}
std::string Name = CI->getName();
if (!Name.empty())
CI->setName(Name + ".old");
switch (NewFn->getIntrinsicID()) {
default:
llvm_unreachable("Unknown function for CallInst upgrade.");
case Intrinsic::ctlz:
case Intrinsic::cttz:
assert(CI->getNumArgOperands() == 1 &&
"Mismatch between function args and call args");
CI->replaceAllUsesWith(Builder.CreateCall2(NewFn, CI->getArgOperand(0),
Builder.getFalse(), Name));
CI->eraseFromParent();
return;
case Intrinsic::objectsize:
CI->replaceAllUsesWith(Builder.CreateCall2(NewFn,
CI->getArgOperand(0),
CI->getArgOperand(1),
Name));
CI->eraseFromParent();
return;
case Intrinsic::ctpop: {
CI->replaceAllUsesWith(Builder.CreateCall(NewFn, CI->getArgOperand(0)));
CI->eraseFromParent();
return;
}
case Intrinsic::x86_xop_vfrcz_ss:
case Intrinsic::x86_xop_vfrcz_sd:
CI->replaceAllUsesWith(Builder.CreateCall(NewFn, CI->getArgOperand(1),
Name));
CI->eraseFromParent();
return;
case Intrinsic::x86_sse41_ptestc:
case Intrinsic::x86_sse41_ptestz:
case Intrinsic::x86_sse41_ptestnzc: {
// The arguments for these intrinsics used to be v4f32, and changed
// to v2i64. This is purely a nop, since those are bitwise intrinsics.
// So, the only thing required is a bitcast for both arguments.
// First, check the arguments have the old type.
Value *Arg0 = CI->getArgOperand(0);
if (Arg0->getType() != VectorType::get(Type::getFloatTy(C), 4))
return;
// Old intrinsic, add bitcasts
Value *Arg1 = CI->getArgOperand(1);
Value *BC0 =
Builder.CreateBitCast(Arg0,
VectorType::get(Type::getInt64Ty(C), 2),
"cast");
Value *BC1 =
Builder.CreateBitCast(Arg1,
VectorType::get(Type::getInt64Ty(C), 2),
"cast");
CallInst* NewCall = Builder.CreateCall2(NewFn, BC0, BC1, Name);
CI->replaceAllUsesWith(NewCall);
CI->eraseFromParent();
return;
}
case Intrinsic::x86_sse41_insertps:
case Intrinsic::x86_sse41_dppd:
case Intrinsic::x86_sse41_dpps:
case Intrinsic::x86_sse41_mpsadbw:
case Intrinsic::x86_avx_dp_ps_256:
case Intrinsic::x86_avx2_mpsadbw: {
// Need to truncate the last argument from i32 to i8 -- this argument models
// an inherently 8-bit immediate operand to these x86 instructions.
SmallVector<Value *, 4> Args(CI->arg_operands().begin(),
CI->arg_operands().end());
// Replace the last argument with a trunc.
Args.back() = Builder.CreateTrunc(Args.back(), Type::getInt8Ty(C), "trunc");
CallInst *NewCall = Builder.CreateCall(NewFn, Args);
CI->replaceAllUsesWith(NewCall);
CI->eraseFromParent();
return;
}
case Intrinsic::x86_avx512_mask_cmp_ps_512:
case Intrinsic::x86_avx512_mask_cmp_pd_512: {
// Need to truncate the last argument from i32 to i8 -- this argument models
// an inherently 8-bit immediate operand to these x86 instructions.
SmallVector<Value *, 5> Args(CI->arg_operands().begin(),
CI->arg_operands().end());
// Replace the last argument with a trunc.
Args[2] = Builder.CreateTrunc(Args[2], Type::getInt8Ty(C), "trunc");
CallInst *NewCall = Builder.CreateCall(NewFn, Args);
CI->replaceAllUsesWith(NewCall);
CI->eraseFromParent();
return;
}
}
}
// This tests each Function to determine if it needs upgrading. When we find
// one we are interested in, we then upgrade all calls to reflect the new
// function.
void llvm::UpgradeCallsToIntrinsic(Function* F) {
assert(F && "Illegal attempt to upgrade a non-existent intrinsic.");
// Upgrade the function and check if it is a totaly new function.
Function *NewFn;
if (UpgradeIntrinsicFunction(F, NewFn)) {
if (NewFn != F) {
// Replace all uses to the old function with the new one if necessary.
for (Value::user_iterator UI = F->user_begin(), UE = F->user_end();
UI != UE; ) {
if (CallInst *CI = dyn_cast<CallInst>(*UI++))
UpgradeIntrinsicCall(CI, NewFn);
}
// Remove old function, no longer used, from the module.
F->eraseFromParent();
}
}
}
void llvm::UpgradeInstWithTBAATag(Instruction *I) {
MDNode *MD = I->getMetadata(LLVMContext::MD_tbaa);
assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
// Check if the tag uses struct-path aware TBAA format.
if (isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3)
return;
if (MD->getNumOperands() == 3) {
Metadata *Elts[] = {MD->getOperand(0), MD->getOperand(1)};
MDNode *ScalarType = MDNode::get(I->getContext(), Elts);
// Create a MDNode <ScalarType, ScalarType, offset 0, const>
Metadata *Elts2[] = {ScalarType, ScalarType,
ConstantAsMetadata::get(Constant::getNullValue(
Type::getInt64Ty(I->getContext()))),
MD->getOperand(2)};
I->setMetadata(LLVMContext::MD_tbaa, MDNode::get(I->getContext(), Elts2));
} else {
// Create a MDNode <MD, MD, offset 0>
Metadata *Elts[] = {MD, MD, ConstantAsMetadata::get(Constant::getNullValue(
Type::getInt64Ty(I->getContext())))};
I->setMetadata(LLVMContext::MD_tbaa, MDNode::get(I->getContext(), Elts));
}
}
Instruction *llvm::UpgradeBitCastInst(unsigned Opc, Value *V, Type *DestTy,
Instruction *&Temp) {
if (Opc != Instruction::BitCast)
return nullptr;
Temp = nullptr;
Type *SrcTy = V->getType();
if (SrcTy->isPtrOrPtrVectorTy() && DestTy->isPtrOrPtrVectorTy() &&
SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace()) {
LLVMContext &Context = V->getContext();
// We have no information about target data layout, so we assume that
// the maximum pointer size is 64bit.
Type *MidTy = Type::getInt64Ty(Context);
Temp = CastInst::Create(Instruction::PtrToInt, V, MidTy);
return CastInst::Create(Instruction::IntToPtr, Temp, DestTy);
}
return nullptr;
}
Value *llvm::UpgradeBitCastExpr(unsigned Opc, Constant *C, Type *DestTy) {
if (Opc != Instruction::BitCast)
return nullptr;
Type *SrcTy = C->getType();
if (SrcTy->isPtrOrPtrVectorTy() && DestTy->isPtrOrPtrVectorTy() &&
SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace()) {
LLVMContext &Context = C->getContext();
// We have no information about target data layout, so we assume that
// the maximum pointer size is 64bit.
Type *MidTy = Type::getInt64Ty(Context);
return ConstantExpr::getIntToPtr(ConstantExpr::getPtrToInt(C, MidTy),
DestTy);
}
return nullptr;
}
/// Check the debug info version number, if it is out-dated, drop the debug
/// info. Return true if module is modified.
bool llvm::UpgradeDebugInfo(Module &M) {
unsigned Version = getDebugMetadataVersionFromModule(M);
if (Version == DEBUG_METADATA_VERSION)
return false;
bool RetCode = StripDebugInfo(M);
if (RetCode) {
DiagnosticInfoDebugMetadataVersion DiagVersion(M, Version);
M.getContext().diagnose(DiagVersion);
}
return RetCode;
}
void llvm::UpgradeMDStringConstant(std::string &String) {
const std::string OldPrefix = "llvm.vectorizer.";
if (String == "llvm.vectorizer.unroll") {
String = "llvm.loop.interleave.count";
} else if (String.find(OldPrefix) == 0) {
String.replace(0, OldPrefix.size(), "llvm.loop.vectorize.");
}
}