llvm/lib/Target/X86/X86FastISel.cpp
2008-09-05 21:13:04 +00:00

671 lines
20 KiB
C++

//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86-specific support for the FastISel class. Much
// of the target-specific code is generated by tablegen in the file
// X86GenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86ISelLowering.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
class X86FastISel : public FastISel {
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
const X86Subtarget *Subtarget;
public:
explicit X86FastISel(MachineFunction &mf,
DenseMap<const Value *, unsigned> &vm,
DenseMap<const BasicBlock *, MachineBasicBlock *> &bm)
: FastISel(mf, vm, bm) {
Subtarget = &TM.getSubtarget<X86Subtarget>();
}
virtual bool TargetSelectInstruction(Instruction *I);
#include "X86GenFastISel.inc"
private:
bool X86FastEmitLoad(MVT VT, unsigned Op0, Value *V, unsigned &RR);
bool X86FastEmitStore(MVT VT, unsigned Op0, unsigned Op1, Value *V);
bool X86SelectConstAddr(Value *V, unsigned &Op0);
bool X86SelectLoad(Instruction *I);
bool X86SelectStore(Instruction *I);
bool X86SelectCmp(Instruction *I);
bool X86SelectZExt(Instruction *I);
bool X86SelectBranch(Instruction *I);
bool X86SelectShift(Instruction *I);
bool X86SelectSelect(Instruction *I);
unsigned TargetMaterializeConstant(Constant *C, MachineConstantPool* MCP);
};
/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
/// The address is either pre-computed, i.e. Op0, or a GlobalAddress, i.e. V.
/// Return true and the result register by reference if it is possible.
bool X86FastISel::X86FastEmitLoad(MVT VT, unsigned Op0, Value *V,
unsigned &ResultReg) {
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
switch (VT.getSimpleVT()) {
default: return false;
case MVT::i8:
Opc = X86::MOV8rm;
RC = X86::GR8RegisterClass;
break;
case MVT::i16:
Opc = X86::MOV16rm;
RC = X86::GR16RegisterClass;
break;
case MVT::i32:
Opc = X86::MOV32rm;
RC = X86::GR32RegisterClass;
break;
case MVT::i64:
// Must be in x86-64 mode.
Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass;
break;
case MVT::f32:
if (Subtarget->hasSSE1()) {
Opc = X86::MOVSSrm;
RC = X86::FR32RegisterClass;
} else {
Opc = X86::LD_Fp32m;
RC = X86::RFP32RegisterClass;
}
break;
case MVT::f64:
if (Subtarget->hasSSE2()) {
Opc = X86::MOVSDrm;
RC = X86::FR64RegisterClass;
} else {
Opc = X86::LD_Fp64m;
RC = X86::RFP64RegisterClass;
}
break;
case MVT::f80:
Opc = X86::LD_Fp80m;
RC = X86::RFP80RegisterClass;
break;
}
ResultReg = createResultReg(RC);
X86AddressMode AM;
if (Op0)
// Address is in register.
AM.Base.Reg = Op0;
else
AM.GV = cast<GlobalValue>(V);
addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
return true;
}
/// X86FastEmitStore - Emit a machine instruction to store a value Op0 of
/// type VT. The address is either pre-computed, i.e. Op1, or a GlobalAddress,
/// i.e. V. Return true if it is possible.
bool
X86FastISel::X86FastEmitStore(MVT VT, unsigned Op0, unsigned Op1, Value *V) {
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
switch (VT.getSimpleVT()) {
default: return false;
case MVT::i8:
Opc = X86::MOV8mr;
RC = X86::GR8RegisterClass;
break;
case MVT::i16:
Opc = X86::MOV16mr;
RC = X86::GR16RegisterClass;
break;
case MVT::i32:
Opc = X86::MOV32mr;
RC = X86::GR32RegisterClass;
break;
case MVT::i64:
// Must be in x86-64 mode.
Opc = X86::MOV64mr;
RC = X86::GR64RegisterClass;
break;
case MVT::f32:
if (Subtarget->hasSSE1()) {
Opc = X86::MOVSSmr;
RC = X86::FR32RegisterClass;
} else {
Opc = X86::ST_Fp32m;
RC = X86::RFP32RegisterClass;
}
break;
case MVT::f64:
if (Subtarget->hasSSE2()) {
Opc = X86::MOVSDmr;
RC = X86::FR64RegisterClass;
} else {
Opc = X86::ST_Fp64m;
RC = X86::RFP64RegisterClass;
}
break;
case MVT::f80:
Opc = X86::ST_FP80m;
RC = X86::RFP80RegisterClass;
break;
}
X86AddressMode AM;
if (Op1)
// Address is in register.
AM.Base.Reg = Op1;
else
AM.GV = cast<GlobalValue>(V);
addFullAddress(BuildMI(MBB, TII.get(Opc)), AM).addReg(Op0);
return true;
}
/// X86SelectConstAddr - Select and emit code to materialize constant address.
///
bool X86FastISel::X86SelectConstAddr(Value *V,
unsigned &Op0) {
// FIXME: Only GlobalAddress for now.
GlobalValue *GV = dyn_cast<GlobalValue>(V);
if (!GV)
return false;
if (Subtarget->GVRequiresExtraLoad(GV, TM, false)) {
// Issue load from stub if necessary.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
if (TLI.getPointerTy() == MVT::i32) {
Opc = X86::MOV32rm;
RC = X86::GR32RegisterClass;
} else {
Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass;
}
Op0 = createResultReg(RC);
X86AddressMode AM;
AM.GV = GV;
addFullAddress(BuildMI(MBB, TII.get(Opc), Op0), AM);
// Prevent loading GV stub multiple times in same MBB.
LocalValueMap[V] = Op0;
}
return true;
}
/// X86SelectStore - Select and emit code to implement store instructions.
bool X86FastISel::X86SelectStore(Instruction* I) {
MVT VT = MVT::getMVT(I->getOperand(0)->getType());
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
if (VT == MVT::iPTR)
// Use pointer type.
VT = TLI.getPointerTy();
// We only handle legal types. For example, on x86-32 the instruction
// selector contains all of the 64-bit instructions from x86-64,
// under the assumption that i64 won't be used if the target doesn't
// support it.
if (!TLI.isTypeLegal(VT))
return false;
unsigned Op0 = getRegForValue(I->getOperand(0));
if (Op0 == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
Value *V = I->getOperand(1);
unsigned Op1 = getRegForValue(V);
if (Op1 == 0) {
// Handle constant load address.
if (!isa<Constant>(V) || !X86SelectConstAddr(V, Op1))
// Unhandled operand. Halt "fast" selection and bail.
return false;
}
return X86FastEmitStore(VT, Op0, Op1, V);
}
/// X86SelectLoad - Select and emit code to implement load instructions.
///
bool X86FastISel::X86SelectLoad(Instruction *I) {
MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
if (VT == MVT::iPTR)
// Use pointer type.
VT = TLI.getPointerTy();
// We only handle legal types. For example, on x86-32 the instruction
// selector contains all of the 64-bit instructions from x86-64,
// under the assumption that i64 won't be used if the target doesn't
// support it.
if (!TLI.isTypeLegal(VT))
return false;
Value *V = I->getOperand(0);
unsigned Op0 = getRegForValue(V);
if (Op0 == 0) {
// Handle constant load address.
// FIXME: If load type is something we can't handle, this can result in
// a dead stub load instruction.
if (!isa<Constant>(V) || !X86SelectConstAddr(V, Op0))
// Unhandled operand. Halt "fast" selection and bail.
return false;
}
unsigned ResultReg = 0;
if (X86FastEmitLoad(VT, Op0, V, ResultReg)) {
UpdateValueMap(I, ResultReg);
return true;
}
return false;
}
bool X86FastISel::X86SelectCmp(Instruction *I) {
CmpInst *CI = cast<CmpInst>(I);
MVT VT = TLI.getValueType(I->getOperand(0)->getType());
if (!TLI.isTypeLegal(VT))
return false;
unsigned Op0Reg = getRegForValue(CI->getOperand(0));
if (Op0Reg == 0) return false;
unsigned Op1Reg = getRegForValue(CI->getOperand(1));
if (Op1Reg == 0) return false;
unsigned Opc;
switch (VT.getSimpleVT()) {
case MVT::i8: Opc = X86::CMP8rr; break;
case MVT::i16: Opc = X86::CMP16rr; break;
case MVT::i32: Opc = X86::CMP32rr; break;
case MVT::i64: Opc = X86::CMP64rr; break;
case MVT::f32: Opc = X86::UCOMISSrr; break;
case MVT::f64: Opc = X86::UCOMISDrr; break;
default: return false;
}
unsigned ResultReg = createResultReg(&X86::GR8RegClass);
switch (CI->getPredicate()) {
case CmpInst::FCMP_OEQ: {
unsigned EReg = createResultReg(&X86::GR8RegClass);
unsigned NPReg = createResultReg(&X86::GR8RegClass);
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETEr), EReg);
BuildMI(MBB, TII.get(X86::SETNPr), NPReg);
BuildMI(MBB, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
break;
}
case CmpInst::FCMP_UNE: {
unsigned NEReg = createResultReg(&X86::GR8RegClass);
unsigned PReg = createResultReg(&X86::GR8RegClass);
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETNEr), NEReg);
BuildMI(MBB, TII.get(X86::SETPr), PReg);
BuildMI(MBB, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
break;
}
case CmpInst::FCMP_OGT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
break;
case CmpInst::FCMP_OGE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
break;
case CmpInst::FCMP_OLT:
BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
break;
case CmpInst::FCMP_OLE:
BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
break;
case CmpInst::FCMP_ONE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETNEr), ResultReg);
break;
case CmpInst::FCMP_ORD:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETNPr), ResultReg);
break;
case CmpInst::FCMP_UNO:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETPr), ResultReg);
break;
case CmpInst::FCMP_UEQ:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETEr), ResultReg);
break;
case CmpInst::FCMP_UGT:
BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
break;
case CmpInst::FCMP_UGE:
BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
break;
case CmpInst::FCMP_ULT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
break;
case CmpInst::FCMP_ULE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
break;
case CmpInst::ICMP_EQ:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETEr), ResultReg);
break;
case CmpInst::ICMP_NE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETNEr), ResultReg);
break;
case CmpInst::ICMP_UGT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
break;
case CmpInst::ICMP_UGE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
break;
case CmpInst::ICMP_ULT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
break;
case CmpInst::ICMP_ULE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
break;
case CmpInst::ICMP_SGT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETGr), ResultReg);
break;
case CmpInst::ICMP_SGE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETGEr), ResultReg);
break;
case CmpInst::ICMP_SLT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETLr), ResultReg);
break;
case CmpInst::ICMP_SLE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETLEr), ResultReg);
break;
default:
return false;
}
UpdateValueMap(I, ResultReg);
return true;
}
bool X86FastISel::X86SelectZExt(Instruction *I) {
// Special-case hack: The only i1 values we know how to produce currently
// set the upper bits of an i8 value to zero.
if (I->getType() == Type::Int8Ty &&
I->getOperand(0)->getType() == Type::Int1Ty) {
unsigned ResultReg = getRegForValue(I->getOperand(0));
if (ResultReg == 0) return false;
UpdateValueMap(I, ResultReg);
return true;
}
return false;
}
bool X86FastISel::X86SelectBranch(Instruction *I) {
BranchInst *BI = cast<BranchInst>(I);
// Unconditional branches are selected by tablegen-generated code.
unsigned OpReg = getRegForValue(BI->getCondition());
if (OpReg == 0) return false;
MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
BuildMI(MBB, TII.get(X86::JNE)).addMBB(TrueMBB);
BuildMI(MBB, TII.get(X86::JMP)).addMBB(FalseMBB);
MBB->addSuccessor(TrueMBB);
MBB->addSuccessor(FalseMBB);
return true;
}
bool X86FastISel::X86SelectShift(Instruction *I) {
unsigned CReg = 0;
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
if (I->getType() == Type::Int8Ty) {
CReg = X86::CL;
RC = &X86::GR8RegClass;
switch (I->getOpcode()) {
case Instruction::LShr: Opc = X86::SHR8rCL; break;
case Instruction::AShr: Opc = X86::SAR8rCL; break;
case Instruction::Shl: Opc = X86::SHL8rCL; break;
default: return false;
}
} else if (I->getType() == Type::Int16Ty) {
CReg = X86::CX;
RC = &X86::GR16RegClass;
switch (I->getOpcode()) {
case Instruction::LShr: Opc = X86::SHR16rCL; break;
case Instruction::AShr: Opc = X86::SAR16rCL; break;
case Instruction::Shl: Opc = X86::SHL16rCL; break;
default: return false;
}
} else if (I->getType() == Type::Int32Ty) {
CReg = X86::ECX;
RC = &X86::GR32RegClass;
switch (I->getOpcode()) {
case Instruction::LShr: Opc = X86::SHR32rCL; break;
case Instruction::AShr: Opc = X86::SAR32rCL; break;
case Instruction::Shl: Opc = X86::SHL32rCL; break;
default: return false;
}
} else if (I->getType() == Type::Int64Ty) {
CReg = X86::RCX;
RC = &X86::GR64RegClass;
switch (I->getOpcode()) {
case Instruction::LShr: Opc = X86::SHR64rCL; break;
case Instruction::AShr: Opc = X86::SAR64rCL; break;
case Instruction::Shl: Opc = X86::SHL64rCL; break;
default: return false;
}
} else {
return false;
}
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (Op0Reg == 0) return false;
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (Op1Reg == 0) return false;
TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
unsigned ResultReg = createResultReg(RC);
BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op0Reg);
UpdateValueMap(I, ResultReg);
return true;
}
bool X86FastISel::X86SelectSelect(Instruction *I) {
const Type *Ty = I->getOperand(1)->getType();
if (isa<PointerType>(Ty))
Ty = TLI.getTargetData()->getIntPtrType();
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
if (Ty == Type::Int16Ty) {
Opc = X86::CMOVE16rr;
RC = &X86::GR16RegClass;
} else if (Ty == Type::Int32Ty) {
Opc = X86::CMOVE32rr;
RC = &X86::GR32RegClass;
} else if (Ty == Type::Int64Ty) {
Opc = X86::CMOVE64rr;
RC = &X86::GR64RegClass;
} else {
return false;
}
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (Op0Reg == 0) return false;
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (Op1Reg == 0) return false;
unsigned Op2Reg = getRegForValue(I->getOperand(2));
if (Op2Reg == 0) return false;
BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
unsigned ResultReg = createResultReg(RC);
BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
UpdateValueMap(I, ResultReg);
return true;
}
bool
X86FastISel::TargetSelectInstruction(Instruction *I) {
switch (I->getOpcode()) {
default: break;
case Instruction::Load:
return X86SelectLoad(I);
case Instruction::Store:
return X86SelectStore(I);
case Instruction::ICmp:
case Instruction::FCmp:
return X86SelectCmp(I);
case Instruction::ZExt:
return X86SelectZExt(I);
case Instruction::Br:
return X86SelectBranch(I);
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl:
return X86SelectShift(I);
case Instruction::Select:
return X86SelectSelect(I);
}
return false;
}
unsigned X86FastISel::TargetMaterializeConstant(Constant *C,
MachineConstantPool* MCP) {
unsigned CPLoad = getRegForValue(C);
if (CPLoad != 0)
return CPLoad;
// Can't handle PIC-mode yet.
if (TM.getRelocationModel() == Reloc::PIC_)
return 0;
MVT VT = MVT::getMVT(C->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
if (VT == MVT::iPTR)
// Use pointer type.
VT = TLI.getPointerTy();
// We only handle legal types. For example, on x86-32 the instruction
// selector contains all of the 64-bit instructions from x86-64,
// under the assumption that i64 won't be used if the target doesn't
// support it.
if (!TLI.isTypeLegal(VT))
return false;
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
switch (VT.getSimpleVT()) {
default: return false;
case MVT::i8:
Opc = X86::MOV8rm;
RC = X86::GR8RegisterClass;
break;
case MVT::i16:
Opc = X86::MOV16rm;
RC = X86::GR16RegisterClass;
break;
case MVT::i32:
Opc = X86::MOV32rm;
RC = X86::GR32RegisterClass;
break;
case MVT::i64:
// Must be in x86-64 mode.
Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass;
break;
case MVT::f32:
if (Subtarget->hasSSE1()) {
Opc = X86::MOVSSrm;
RC = X86::FR32RegisterClass;
} else {
Opc = X86::LD_Fp32m;
RC = X86::RFP32RegisterClass;
}
break;
case MVT::f64:
if (Subtarget->hasSSE2()) {
Opc = X86::MOVSDrm;
RC = X86::FR64RegisterClass;
} else {
Opc = X86::LD_Fp64m;
RC = X86::RFP64RegisterClass;
}
break;
case MVT::f80:
Opc = X86::LD_Fp80m;
RC = X86::RFP80RegisterClass;
break;
}
unsigned ResultReg = createResultReg(RC);
if (isa<GlobalValue>(C)) {
// FIXME: If store value type is something we can't handle, this can result
// in a dead stub load instruction.
if (X86SelectConstAddr(C, ResultReg))
return ResultReg;
return 0;
}
unsigned MCPOffset = MCP->getConstantPoolIndex(C, 0);
addConstantPoolReference(BuildMI(MBB, TII.get(Opc), ResultReg), MCPOffset);
UpdateValueMap(C, ResultReg);
return ResultReg;
}
namespace llvm {
llvm::FastISel *X86::createFastISel(MachineFunction &mf,
DenseMap<const Value *, unsigned> &vm,
DenseMap<const BasicBlock *, MachineBasicBlock *> &bm) {
return new X86FastISel(mf, vm, bm);
}
}