mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-27 21:50:40 +00:00
e749325463
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring the behavior closer to that model by making upcasts explicit. Downcasts remain implicit and work as before. Following dyn_cast as a mental model checking whether a Value *V isa CallSite now looks like this: if (auto CS = CallSite(V)) // think dyn_cast instead of: if (CallSite CS = V) This is an extra token but I think it is slightly clearer. Making the ctor explicit has the advantage of not accidentally creating nullptr CallSites, e.g. when you pass a Value * to a function taking a CallSite argument. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234601 91177308-0d34-0410-b5e6-96231b3b80d8
859 lines
28 KiB
C++
859 lines
28 KiB
C++
//===-- Value.cpp - Implement the Value class -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Value, ValueHandle, and User classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Value.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Value Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static inline Type *checkType(Type *Ty) {
|
|
assert(Ty && "Value defined with a null type: Error!");
|
|
return Ty;
|
|
}
|
|
|
|
Value::Value(Type *ty, unsigned scid)
|
|
: VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
|
|
SubclassOptionalData(0), SubclassData(0), NumOperands(0) {
|
|
// FIXME: Why isn't this in the subclass gunk??
|
|
// Note, we cannot call isa<CallInst> before the CallInst has been
|
|
// constructed.
|
|
if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
|
|
assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
|
|
"invalid CallInst type!");
|
|
else if (SubclassID != BasicBlockVal &&
|
|
(SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
|
|
assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
|
|
"Cannot create non-first-class values except for constants!");
|
|
}
|
|
|
|
Value::~Value() {
|
|
// Notify all ValueHandles (if present) that this value is going away.
|
|
if (HasValueHandle)
|
|
ValueHandleBase::ValueIsDeleted(this);
|
|
if (isUsedByMetadata())
|
|
ValueAsMetadata::handleDeletion(this);
|
|
|
|
#ifndef NDEBUG // Only in -g mode...
|
|
// Check to make sure that there are no uses of this value that are still
|
|
// around when the value is destroyed. If there are, then we have a dangling
|
|
// reference and something is wrong. This code is here to print out where
|
|
// the value is still being referenced.
|
|
//
|
|
if (!use_empty()) {
|
|
dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
|
|
for (auto *U : users())
|
|
dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
|
|
}
|
|
#endif
|
|
assert(use_empty() && "Uses remain when a value is destroyed!");
|
|
|
|
// If this value is named, destroy the name. This should not be in a symtab
|
|
// at this point.
|
|
destroyValueName();
|
|
}
|
|
|
|
void Value::destroyValueName() {
|
|
ValueName *Name = getValueName();
|
|
if (Name)
|
|
Name->Destroy();
|
|
setValueName(nullptr);
|
|
}
|
|
|
|
bool Value::hasNUses(unsigned N) const {
|
|
const_use_iterator UI = use_begin(), E = use_end();
|
|
|
|
for (; N; --N, ++UI)
|
|
if (UI == E) return false; // Too few.
|
|
return UI == E;
|
|
}
|
|
|
|
bool Value::hasNUsesOrMore(unsigned N) const {
|
|
const_use_iterator UI = use_begin(), E = use_end();
|
|
|
|
for (; N; --N, ++UI)
|
|
if (UI == E) return false; // Too few.
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
|
|
// This can be computed either by scanning the instructions in BB, or by
|
|
// scanning the use list of this Value. Both lists can be very long, but
|
|
// usually one is quite short.
|
|
//
|
|
// Scan both lists simultaneously until one is exhausted. This limits the
|
|
// search to the shorter list.
|
|
BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
|
|
const_user_iterator UI = user_begin(), UE = user_end();
|
|
for (; BI != BE && UI != UE; ++BI, ++UI) {
|
|
// Scan basic block: Check if this Value is used by the instruction at BI.
|
|
if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
|
|
return true;
|
|
// Scan use list: Check if the use at UI is in BB.
|
|
const Instruction *User = dyn_cast<Instruction>(*UI);
|
|
if (User && User->getParent() == BB)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned Value::getNumUses() const {
|
|
return (unsigned)std::distance(use_begin(), use_end());
|
|
}
|
|
|
|
static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
|
|
ST = nullptr;
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (BasicBlock *P = I->getParent())
|
|
if (Function *PP = P->getParent())
|
|
ST = &PP->getValueSymbolTable();
|
|
} else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
|
|
if (Function *P = BB->getParent())
|
|
ST = &P->getValueSymbolTable();
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
if (Module *P = GV->getParent())
|
|
ST = &P->getValueSymbolTable();
|
|
} else if (Argument *A = dyn_cast<Argument>(V)) {
|
|
if (Function *P = A->getParent())
|
|
ST = &P->getValueSymbolTable();
|
|
} else {
|
|
assert(isa<Constant>(V) && "Unknown value type!");
|
|
return true; // no name is setable for this.
|
|
}
|
|
return false;
|
|
}
|
|
|
|
StringRef Value::getName() const {
|
|
// Make sure the empty string is still a C string. For historical reasons,
|
|
// some clients want to call .data() on the result and expect it to be null
|
|
// terminated.
|
|
if (!getValueName())
|
|
return StringRef("", 0);
|
|
return getValueName()->getKey();
|
|
}
|
|
|
|
void Value::setName(const Twine &NewName) {
|
|
// Fast path for common IRBuilder case of setName("") when there is no name.
|
|
if (NewName.isTriviallyEmpty() && !hasName())
|
|
return;
|
|
|
|
SmallString<256> NameData;
|
|
StringRef NameRef = NewName.toStringRef(NameData);
|
|
assert(NameRef.find_first_of(0) == StringRef::npos &&
|
|
"Null bytes are not allowed in names");
|
|
|
|
// Name isn't changing?
|
|
if (getName() == NameRef)
|
|
return;
|
|
|
|
assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
|
|
|
|
// Get the symbol table to update for this object.
|
|
ValueSymbolTable *ST;
|
|
if (getSymTab(this, ST))
|
|
return; // Cannot set a name on this value (e.g. constant).
|
|
|
|
if (Function *F = dyn_cast<Function>(this))
|
|
getContext().pImpl->IntrinsicIDCache.erase(F);
|
|
|
|
if (!ST) { // No symbol table to update? Just do the change.
|
|
if (NameRef.empty()) {
|
|
// Free the name for this value.
|
|
destroyValueName();
|
|
return;
|
|
}
|
|
|
|
// NOTE: Could optimize for the case the name is shrinking to not deallocate
|
|
// then reallocated.
|
|
destroyValueName();
|
|
|
|
// Create the new name.
|
|
setValueName(ValueName::Create(NameRef));
|
|
getValueName()->setValue(this);
|
|
return;
|
|
}
|
|
|
|
// NOTE: Could optimize for the case the name is shrinking to not deallocate
|
|
// then reallocated.
|
|
if (hasName()) {
|
|
// Remove old name.
|
|
ST->removeValueName(getValueName());
|
|
destroyValueName();
|
|
|
|
if (NameRef.empty())
|
|
return;
|
|
}
|
|
|
|
// Name is changing to something new.
|
|
setValueName(ST->createValueName(NameRef, this));
|
|
}
|
|
|
|
void Value::takeName(Value *V) {
|
|
ValueSymbolTable *ST = nullptr;
|
|
// If this value has a name, drop it.
|
|
if (hasName()) {
|
|
// Get the symtab this is in.
|
|
if (getSymTab(this, ST)) {
|
|
// We can't set a name on this value, but we need to clear V's name if
|
|
// it has one.
|
|
if (V->hasName()) V->setName("");
|
|
return; // Cannot set a name on this value (e.g. constant).
|
|
}
|
|
|
|
// Remove old name.
|
|
if (ST)
|
|
ST->removeValueName(getValueName());
|
|
destroyValueName();
|
|
}
|
|
|
|
// Now we know that this has no name.
|
|
|
|
// If V has no name either, we're done.
|
|
if (!V->hasName()) return;
|
|
|
|
// Get this's symtab if we didn't before.
|
|
if (!ST) {
|
|
if (getSymTab(this, ST)) {
|
|
// Clear V's name.
|
|
V->setName("");
|
|
return; // Cannot set a name on this value (e.g. constant).
|
|
}
|
|
}
|
|
|
|
// Get V's ST, this should always succed, because V has a name.
|
|
ValueSymbolTable *VST;
|
|
bool Failure = getSymTab(V, VST);
|
|
assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
|
|
|
|
// If these values are both in the same symtab, we can do this very fast.
|
|
// This works even if both values have no symtab yet.
|
|
if (ST == VST) {
|
|
// Take the name!
|
|
setValueName(V->getValueName());
|
|
V->setValueName(nullptr);
|
|
getValueName()->setValue(this);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, things are slightly more complex. Remove V's name from VST and
|
|
// then reinsert it into ST.
|
|
|
|
if (VST)
|
|
VST->removeValueName(V->getValueName());
|
|
setValueName(V->getValueName());
|
|
V->setValueName(nullptr);
|
|
getValueName()->setValue(this);
|
|
|
|
if (ST)
|
|
ST->reinsertValue(this);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
|
|
Constant *C) {
|
|
if (!Cache.insert(Expr).second)
|
|
return false;
|
|
|
|
for (auto &O : Expr->operands()) {
|
|
if (O == C)
|
|
return true;
|
|
auto *CE = dyn_cast<ConstantExpr>(O);
|
|
if (!CE)
|
|
continue;
|
|
if (contains(Cache, CE, C))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool contains(Value *Expr, Value *V) {
|
|
if (Expr == V)
|
|
return true;
|
|
|
|
auto *C = dyn_cast<Constant>(V);
|
|
if (!C)
|
|
return false;
|
|
|
|
auto *CE = dyn_cast<ConstantExpr>(Expr);
|
|
if (!CE)
|
|
return false;
|
|
|
|
SmallPtrSet<ConstantExpr *, 4> Cache;
|
|
return contains(Cache, CE, C);
|
|
}
|
|
#endif
|
|
|
|
void Value::replaceAllUsesWith(Value *New) {
|
|
assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
|
|
assert(!contains(New, this) &&
|
|
"this->replaceAllUsesWith(expr(this)) is NOT valid!");
|
|
assert(New->getType() == getType() &&
|
|
"replaceAllUses of value with new value of different type!");
|
|
|
|
// Notify all ValueHandles (if present) that this value is going away.
|
|
if (HasValueHandle)
|
|
ValueHandleBase::ValueIsRAUWd(this, New);
|
|
if (isUsedByMetadata())
|
|
ValueAsMetadata::handleRAUW(this, New);
|
|
|
|
while (!use_empty()) {
|
|
Use &U = *UseList;
|
|
// Must handle Constants specially, we cannot call replaceUsesOfWith on a
|
|
// constant because they are uniqued.
|
|
if (auto *C = dyn_cast<Constant>(U.getUser())) {
|
|
if (!isa<GlobalValue>(C)) {
|
|
C->replaceUsesOfWithOnConstant(this, New, &U);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
U.set(New);
|
|
}
|
|
|
|
if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
|
|
BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
|
|
}
|
|
|
|
// Like replaceAllUsesWith except it does not handle constants or basic blocks.
|
|
// This routine leaves uses within BB.
|
|
void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
|
|
assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
|
|
assert(!contains(New, this) &&
|
|
"this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
|
|
assert(New->getType() == getType() &&
|
|
"replaceUses of value with new value of different type!");
|
|
assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
|
|
|
|
use_iterator UI = use_begin(), E = use_end();
|
|
for (; UI != E;) {
|
|
Use &U = *UI;
|
|
++UI;
|
|
auto *Usr = dyn_cast<Instruction>(U.getUser());
|
|
if (Usr && Usr->getParent() == BB)
|
|
continue;
|
|
U.set(New);
|
|
}
|
|
return;
|
|
}
|
|
|
|
namespace {
|
|
// Various metrics for how much to strip off of pointers.
|
|
enum PointerStripKind {
|
|
PSK_ZeroIndices,
|
|
PSK_ZeroIndicesAndAliases,
|
|
PSK_InBoundsConstantIndices,
|
|
PSK_InBounds
|
|
};
|
|
|
|
template <PointerStripKind StripKind>
|
|
static Value *stripPointerCastsAndOffsets(Value *V) {
|
|
if (!V->getType()->isPointerTy())
|
|
return V;
|
|
|
|
// Even though we don't look through PHI nodes, we could be called on an
|
|
// instruction in an unreachable block, which may be on a cycle.
|
|
SmallPtrSet<Value *, 4> Visited;
|
|
|
|
Visited.insert(V);
|
|
do {
|
|
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
|
|
switch (StripKind) {
|
|
case PSK_ZeroIndicesAndAliases:
|
|
case PSK_ZeroIndices:
|
|
if (!GEP->hasAllZeroIndices())
|
|
return V;
|
|
break;
|
|
case PSK_InBoundsConstantIndices:
|
|
if (!GEP->hasAllConstantIndices())
|
|
return V;
|
|
// fallthrough
|
|
case PSK_InBounds:
|
|
if (!GEP->isInBounds())
|
|
return V;
|
|
break;
|
|
}
|
|
V = GEP->getPointerOperand();
|
|
} else if (Operator::getOpcode(V) == Instruction::BitCast ||
|
|
Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
|
|
V = cast<Operator>(V)->getOperand(0);
|
|
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
|
|
if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
|
|
return V;
|
|
V = GA->getAliasee();
|
|
} else {
|
|
return V;
|
|
}
|
|
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
|
|
} while (Visited.insert(V).second);
|
|
|
|
return V;
|
|
}
|
|
} // namespace
|
|
|
|
Value *Value::stripPointerCasts() {
|
|
return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
|
|
}
|
|
|
|
Value *Value::stripPointerCastsNoFollowAliases() {
|
|
return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
|
|
}
|
|
|
|
Value *Value::stripInBoundsConstantOffsets() {
|
|
return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
|
|
}
|
|
|
|
Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
|
|
APInt &Offset) {
|
|
if (!getType()->isPointerTy())
|
|
return this;
|
|
|
|
assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
|
|
getType())->getAddressSpace()) &&
|
|
"The offset must have exactly as many bits as our pointer.");
|
|
|
|
// Even though we don't look through PHI nodes, we could be called on an
|
|
// instruction in an unreachable block, which may be on a cycle.
|
|
SmallPtrSet<Value *, 4> Visited;
|
|
Visited.insert(this);
|
|
Value *V = this;
|
|
do {
|
|
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
|
|
if (!GEP->isInBounds())
|
|
return V;
|
|
APInt GEPOffset(Offset);
|
|
if (!GEP->accumulateConstantOffset(DL, GEPOffset))
|
|
return V;
|
|
Offset = GEPOffset;
|
|
V = GEP->getPointerOperand();
|
|
} else if (Operator::getOpcode(V) == Instruction::BitCast ||
|
|
Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
|
|
V = cast<Operator>(V)->getOperand(0);
|
|
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
|
|
V = GA->getAliasee();
|
|
} else {
|
|
return V;
|
|
}
|
|
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
|
|
} while (Visited.insert(V).second);
|
|
|
|
return V;
|
|
}
|
|
|
|
Value *Value::stripInBoundsOffsets() {
|
|
return stripPointerCastsAndOffsets<PSK_InBounds>(this);
|
|
}
|
|
|
|
/// \brief Check if Value is always a dereferenceable pointer.
|
|
///
|
|
/// Test if V is always a pointer to allocated and suitably aligned memory for
|
|
/// a simple load or store.
|
|
static bool isDereferenceablePointer(const Value *V, const DataLayout &DL,
|
|
SmallPtrSetImpl<const Value *> &Visited) {
|
|
// Note that it is not safe to speculate into a malloc'd region because
|
|
// malloc may return null.
|
|
|
|
// These are obviously ok.
|
|
if (isa<AllocaInst>(V)) return true;
|
|
|
|
// It's not always safe to follow a bitcast, for example:
|
|
// bitcast i8* (alloca i8) to i32*
|
|
// would result in a 4-byte load from a 1-byte alloca. However,
|
|
// if we're casting from a pointer from a type of larger size
|
|
// to a type of smaller size (or the same size), and the alignment
|
|
// is at least as large as for the resulting pointer type, then
|
|
// we can look through the bitcast.
|
|
if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
|
|
Type *STy = BC->getSrcTy()->getPointerElementType(),
|
|
*DTy = BC->getDestTy()->getPointerElementType();
|
|
if (STy->isSized() && DTy->isSized() &&
|
|
(DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
|
|
(DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
|
|
return isDereferenceablePointer(BC->getOperand(0), DL, Visited);
|
|
}
|
|
|
|
// Global variables which can't collapse to null are ok.
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return !GV->hasExternalWeakLinkage();
|
|
|
|
// byval arguments are okay. Arguments specifically marked as
|
|
// dereferenceable are okay too.
|
|
if (const Argument *A = dyn_cast<Argument>(V)) {
|
|
if (A->hasByValAttr())
|
|
return true;
|
|
else if (uint64_t Bytes = A->getDereferenceableBytes()) {
|
|
Type *Ty = V->getType()->getPointerElementType();
|
|
if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return values from call sites specifically marked as dereferenceable are
|
|
// also okay.
|
|
if (auto CS = ImmutableCallSite(V)) {
|
|
if (uint64_t Bytes = CS.getDereferenceableBytes(0)) {
|
|
Type *Ty = V->getType()->getPointerElementType();
|
|
if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// For GEPs, determine if the indexing lands within the allocated object.
|
|
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
|
|
// Conservatively require that the base pointer be fully dereferenceable.
|
|
if (!Visited.insert(GEP->getOperand(0)).second)
|
|
return false;
|
|
if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
|
|
return false;
|
|
// Check the indices.
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
for (User::const_op_iterator I = GEP->op_begin()+1,
|
|
E = GEP->op_end(); I != E; ++I) {
|
|
Value *Index = *I;
|
|
Type *Ty = *GTI++;
|
|
// Struct indices can't be out of bounds.
|
|
if (isa<StructType>(Ty))
|
|
continue;
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(Index);
|
|
if (!CI)
|
|
return false;
|
|
// Zero is always ok.
|
|
if (CI->isZero())
|
|
continue;
|
|
// Check to see that it's within the bounds of an array.
|
|
ArrayType *ATy = dyn_cast<ArrayType>(Ty);
|
|
if (!ATy)
|
|
return false;
|
|
if (CI->getValue().getActiveBits() > 64)
|
|
return false;
|
|
if (CI->getZExtValue() >= ATy->getNumElements())
|
|
return false;
|
|
}
|
|
// Indices check out; this is dereferenceable.
|
|
return true;
|
|
}
|
|
|
|
// For gc.relocate, look through relocations
|
|
if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
|
|
if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
|
|
GCRelocateOperands RelocateInst(I);
|
|
return isDereferenceablePointer(RelocateInst.derivedPtr(), DL, Visited);
|
|
}
|
|
|
|
if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
|
|
return isDereferenceablePointer(ASC->getOperand(0), DL, Visited);
|
|
|
|
// If we don't know, assume the worst.
|
|
return false;
|
|
}
|
|
|
|
bool Value::isDereferenceablePointer(const DataLayout &DL) const {
|
|
// When dereferenceability information is provided by a dereferenceable
|
|
// attribute, we know exactly how many bytes are dereferenceable. If we can
|
|
// determine the exact offset to the attributed variable, we can use that
|
|
// information here.
|
|
Type *Ty = getType()->getPointerElementType();
|
|
if (Ty->isSized()) {
|
|
APInt Offset(DL.getTypeStoreSizeInBits(getType()), 0);
|
|
const Value *BV = stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
|
|
|
|
APInt DerefBytes(Offset.getBitWidth(), 0);
|
|
if (const Argument *A = dyn_cast<Argument>(BV))
|
|
DerefBytes = A->getDereferenceableBytes();
|
|
else if (auto CS = ImmutableCallSite(BV))
|
|
DerefBytes = CS.getDereferenceableBytes(0);
|
|
|
|
if (DerefBytes.getBoolValue() && Offset.isNonNegative()) {
|
|
if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
SmallPtrSet<const Value *, 32> Visited;
|
|
return ::isDereferenceablePointer(this, DL, Visited);
|
|
}
|
|
|
|
Value *Value::DoPHITranslation(const BasicBlock *CurBB,
|
|
const BasicBlock *PredBB) {
|
|
PHINode *PN = dyn_cast<PHINode>(this);
|
|
if (PN && PN->getParent() == CurBB)
|
|
return PN->getIncomingValueForBlock(PredBB);
|
|
return this;
|
|
}
|
|
|
|
LLVMContext &Value::getContext() const { return VTy->getContext(); }
|
|
|
|
void Value::reverseUseList() {
|
|
if (!UseList || !UseList->Next)
|
|
// No need to reverse 0 or 1 uses.
|
|
return;
|
|
|
|
Use *Head = UseList;
|
|
Use *Current = UseList->Next;
|
|
Head->Next = nullptr;
|
|
while (Current) {
|
|
Use *Next = Current->Next;
|
|
Current->Next = Head;
|
|
Head->setPrev(&Current->Next);
|
|
Head = Current;
|
|
Current = Next;
|
|
}
|
|
UseList = Head;
|
|
Head->setPrev(&UseList);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueHandleBase Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
|
|
assert(List && "Handle list is null?");
|
|
|
|
// Splice ourselves into the list.
|
|
Next = *List;
|
|
*List = this;
|
|
setPrevPtr(List);
|
|
if (Next) {
|
|
Next->setPrevPtr(&Next);
|
|
assert(V == Next->V && "Added to wrong list?");
|
|
}
|
|
}
|
|
|
|
void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
|
|
assert(List && "Must insert after existing node");
|
|
|
|
Next = List->Next;
|
|
setPrevPtr(&List->Next);
|
|
List->Next = this;
|
|
if (Next)
|
|
Next->setPrevPtr(&Next);
|
|
}
|
|
|
|
void ValueHandleBase::AddToUseList() {
|
|
assert(V && "Null pointer doesn't have a use list!");
|
|
|
|
LLVMContextImpl *pImpl = V->getContext().pImpl;
|
|
|
|
if (V->HasValueHandle) {
|
|
// If this value already has a ValueHandle, then it must be in the
|
|
// ValueHandles map already.
|
|
ValueHandleBase *&Entry = pImpl->ValueHandles[V];
|
|
assert(Entry && "Value doesn't have any handles?");
|
|
AddToExistingUseList(&Entry);
|
|
return;
|
|
}
|
|
|
|
// Ok, it doesn't have any handles yet, so we must insert it into the
|
|
// DenseMap. However, doing this insertion could cause the DenseMap to
|
|
// reallocate itself, which would invalidate all of the PrevP pointers that
|
|
// point into the old table. Handle this by checking for reallocation and
|
|
// updating the stale pointers only if needed.
|
|
DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
|
|
const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
|
|
|
|
ValueHandleBase *&Entry = Handles[V];
|
|
assert(!Entry && "Value really did already have handles?");
|
|
AddToExistingUseList(&Entry);
|
|
V->HasValueHandle = true;
|
|
|
|
// If reallocation didn't happen or if this was the first insertion, don't
|
|
// walk the table.
|
|
if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
|
|
Handles.size() == 1) {
|
|
return;
|
|
}
|
|
|
|
// Okay, reallocation did happen. Fix the Prev Pointers.
|
|
for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
|
|
E = Handles.end(); I != E; ++I) {
|
|
assert(I->second && I->first == I->second->V &&
|
|
"List invariant broken!");
|
|
I->second->setPrevPtr(&I->second);
|
|
}
|
|
}
|
|
|
|
void ValueHandleBase::RemoveFromUseList() {
|
|
assert(V && V->HasValueHandle &&
|
|
"Pointer doesn't have a use list!");
|
|
|
|
// Unlink this from its use list.
|
|
ValueHandleBase **PrevPtr = getPrevPtr();
|
|
assert(*PrevPtr == this && "List invariant broken");
|
|
|
|
*PrevPtr = Next;
|
|
if (Next) {
|
|
assert(Next->getPrevPtr() == &Next && "List invariant broken");
|
|
Next->setPrevPtr(PrevPtr);
|
|
return;
|
|
}
|
|
|
|
// If the Next pointer was null, then it is possible that this was the last
|
|
// ValueHandle watching VP. If so, delete its entry from the ValueHandles
|
|
// map.
|
|
LLVMContextImpl *pImpl = V->getContext().pImpl;
|
|
DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
|
|
if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
|
|
Handles.erase(V);
|
|
V->HasValueHandle = false;
|
|
}
|
|
}
|
|
|
|
|
|
void ValueHandleBase::ValueIsDeleted(Value *V) {
|
|
assert(V->HasValueHandle && "Should only be called if ValueHandles present");
|
|
|
|
// Get the linked list base, which is guaranteed to exist since the
|
|
// HasValueHandle flag is set.
|
|
LLVMContextImpl *pImpl = V->getContext().pImpl;
|
|
ValueHandleBase *Entry = pImpl->ValueHandles[V];
|
|
assert(Entry && "Value bit set but no entries exist");
|
|
|
|
// We use a local ValueHandleBase as an iterator so that ValueHandles can add
|
|
// and remove themselves from the list without breaking our iteration. This
|
|
// is not really an AssertingVH; we just have to give ValueHandleBase a kind.
|
|
// Note that we deliberately do not the support the case when dropping a value
|
|
// handle results in a new value handle being permanently added to the list
|
|
// (as might occur in theory for CallbackVH's): the new value handle will not
|
|
// be processed and the checking code will mete out righteous punishment if
|
|
// the handle is still present once we have finished processing all the other
|
|
// value handles (it is fine to momentarily add then remove a value handle).
|
|
for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
|
|
Iterator.RemoveFromUseList();
|
|
Iterator.AddToExistingUseListAfter(Entry);
|
|
assert(Entry->Next == &Iterator && "Loop invariant broken.");
|
|
|
|
switch (Entry->getKind()) {
|
|
case Assert:
|
|
break;
|
|
case Tracking:
|
|
// Mark that this value has been deleted by setting it to an invalid Value
|
|
// pointer.
|
|
Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
|
|
break;
|
|
case Weak:
|
|
// Weak just goes to null, which will unlink it from the list.
|
|
Entry->operator=(nullptr);
|
|
break;
|
|
case Callback:
|
|
// Forward to the subclass's implementation.
|
|
static_cast<CallbackVH*>(Entry)->deleted();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// All callbacks, weak references, and assertingVHs should be dropped by now.
|
|
if (V->HasValueHandle) {
|
|
#ifndef NDEBUG // Only in +Asserts mode...
|
|
dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
|
|
<< "\n";
|
|
if (pImpl->ValueHandles[V]->getKind() == Assert)
|
|
llvm_unreachable("An asserting value handle still pointed to this"
|
|
" value!");
|
|
|
|
#endif
|
|
llvm_unreachable("All references to V were not removed?");
|
|
}
|
|
}
|
|
|
|
|
|
void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
|
|
assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
|
|
assert(Old != New && "Changing value into itself!");
|
|
assert(Old->getType() == New->getType() &&
|
|
"replaceAllUses of value with new value of different type!");
|
|
|
|
// Get the linked list base, which is guaranteed to exist since the
|
|
// HasValueHandle flag is set.
|
|
LLVMContextImpl *pImpl = Old->getContext().pImpl;
|
|
ValueHandleBase *Entry = pImpl->ValueHandles[Old];
|
|
|
|
assert(Entry && "Value bit set but no entries exist");
|
|
|
|
// We use a local ValueHandleBase as an iterator so that
|
|
// ValueHandles can add and remove themselves from the list without
|
|
// breaking our iteration. This is not really an AssertingVH; we
|
|
// just have to give ValueHandleBase some kind.
|
|
for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
|
|
Iterator.RemoveFromUseList();
|
|
Iterator.AddToExistingUseListAfter(Entry);
|
|
assert(Entry->Next == &Iterator && "Loop invariant broken.");
|
|
|
|
switch (Entry->getKind()) {
|
|
case Assert:
|
|
// Asserting handle does not follow RAUW implicitly.
|
|
break;
|
|
case Tracking:
|
|
// Tracking goes to new value like a WeakVH. Note that this may make it
|
|
// something incompatible with its templated type. We don't want to have a
|
|
// virtual (or inline) interface to handle this though, so instead we make
|
|
// the TrackingVH accessors guarantee that a client never sees this value.
|
|
|
|
// FALLTHROUGH
|
|
case Weak:
|
|
// Weak goes to the new value, which will unlink it from Old's list.
|
|
Entry->operator=(New);
|
|
break;
|
|
case Callback:
|
|
// Forward to the subclass's implementation.
|
|
static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// If any new tracking or weak value handles were added while processing the
|
|
// list, then complain about it now.
|
|
if (Old->HasValueHandle)
|
|
for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
|
|
switch (Entry->getKind()) {
|
|
case Tracking:
|
|
case Weak:
|
|
dbgs() << "After RAUW from " << *Old->getType() << " %"
|
|
<< Old->getName() << " to " << *New->getType() << " %"
|
|
<< New->getName() << "\n";
|
|
llvm_unreachable("A tracking or weak value handle still pointed to the"
|
|
" old value!\n");
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Pin the vtable to this file.
|
|
void CallbackVH::anchor() {}
|