mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-14 15:39:00 +00:00
df8fbfc774
This is a very minimal move support - it leaves the moved-from object in a zombie state that is only valid for destruction and move assignment. This seems fine to me, and leaving it in the default constructed state would require adding more state to the object and potentially allocating memory (!!!) and so seems like a Bad Idea. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245192 91177308-0d34-0410-b5e6-96231b3b80d8
448 lines
15 KiB
C++
448 lines
15 KiB
C++
//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a hash set that can be used to remove duplication of
|
|
// nodes in a graph.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cassert>
|
|
#include <cstring>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetNodeIDRef Implementation
|
|
|
|
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
|
|
/// used to lookup the node in the FoldingSetImpl.
|
|
unsigned FoldingSetNodeIDRef::ComputeHash() const {
|
|
return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
|
|
}
|
|
|
|
bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
|
|
if (Size != RHS.Size) return false;
|
|
return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
|
|
}
|
|
|
|
/// Used to compare the "ordering" of two nodes as defined by the
|
|
/// profiled bits and their ordering defined by memcmp().
|
|
bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
|
|
if (Size != RHS.Size)
|
|
return Size < RHS.Size;
|
|
return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetNodeID Implementation
|
|
|
|
/// Add* - Add various data types to Bit data.
|
|
///
|
|
void FoldingSetNodeID::AddPointer(const void *Ptr) {
|
|
// Note: this adds pointers to the hash using sizes and endianness that
|
|
// depend on the host. It doesn't matter, however, because hashing on
|
|
// pointer values is inherently unstable. Nothing should depend on the
|
|
// ordering of nodes in the folding set.
|
|
Bits.append(reinterpret_cast<unsigned *>(&Ptr),
|
|
reinterpret_cast<unsigned *>(&Ptr+1));
|
|
}
|
|
void FoldingSetNodeID::AddInteger(signed I) {
|
|
Bits.push_back(I);
|
|
}
|
|
void FoldingSetNodeID::AddInteger(unsigned I) {
|
|
Bits.push_back(I);
|
|
}
|
|
void FoldingSetNodeID::AddInteger(long I) {
|
|
AddInteger((unsigned long)I);
|
|
}
|
|
void FoldingSetNodeID::AddInteger(unsigned long I) {
|
|
if (sizeof(long) == sizeof(int))
|
|
AddInteger(unsigned(I));
|
|
else if (sizeof(long) == sizeof(long long)) {
|
|
AddInteger((unsigned long long)I);
|
|
} else {
|
|
llvm_unreachable("unexpected sizeof(long)");
|
|
}
|
|
}
|
|
void FoldingSetNodeID::AddInteger(long long I) {
|
|
AddInteger((unsigned long long)I);
|
|
}
|
|
void FoldingSetNodeID::AddInteger(unsigned long long I) {
|
|
AddInteger(unsigned(I));
|
|
if ((uint64_t)(unsigned)I != I)
|
|
Bits.push_back(unsigned(I >> 32));
|
|
}
|
|
|
|
void FoldingSetNodeID::AddString(StringRef String) {
|
|
unsigned Size = String.size();
|
|
Bits.push_back(Size);
|
|
if (!Size) return;
|
|
|
|
unsigned Units = Size / 4;
|
|
unsigned Pos = 0;
|
|
const unsigned *Base = (const unsigned*) String.data();
|
|
|
|
// If the string is aligned do a bulk transfer.
|
|
if (!((intptr_t)Base & 3)) {
|
|
Bits.append(Base, Base + Units);
|
|
Pos = (Units + 1) * 4;
|
|
} else {
|
|
// Otherwise do it the hard way.
|
|
// To be compatible with above bulk transfer, we need to take endianness
|
|
// into account.
|
|
static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
|
|
"Unexpected host endianness");
|
|
if (sys::IsBigEndianHost) {
|
|
for (Pos += 4; Pos <= Size; Pos += 4) {
|
|
unsigned V = ((unsigned char)String[Pos - 4] << 24) |
|
|
((unsigned char)String[Pos - 3] << 16) |
|
|
((unsigned char)String[Pos - 2] << 8) |
|
|
(unsigned char)String[Pos - 1];
|
|
Bits.push_back(V);
|
|
}
|
|
} else { // Little-endian host
|
|
for (Pos += 4; Pos <= Size; Pos += 4) {
|
|
unsigned V = ((unsigned char)String[Pos - 1] << 24) |
|
|
((unsigned char)String[Pos - 2] << 16) |
|
|
((unsigned char)String[Pos - 3] << 8) |
|
|
(unsigned char)String[Pos - 4];
|
|
Bits.push_back(V);
|
|
}
|
|
}
|
|
}
|
|
|
|
// With the leftover bits.
|
|
unsigned V = 0;
|
|
// Pos will have overshot size by 4 - #bytes left over.
|
|
// No need to take endianness into account here - this is always executed.
|
|
switch (Pos - Size) {
|
|
case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
|
|
case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
|
|
case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
|
|
default: return; // Nothing left.
|
|
}
|
|
|
|
Bits.push_back(V);
|
|
}
|
|
|
|
// AddNodeID - Adds the Bit data of another ID to *this.
|
|
void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
|
|
Bits.append(ID.Bits.begin(), ID.Bits.end());
|
|
}
|
|
|
|
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
|
|
/// lookup the node in the FoldingSetImpl.
|
|
unsigned FoldingSetNodeID::ComputeHash() const {
|
|
return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
|
|
}
|
|
|
|
/// operator== - Used to compare two nodes to each other.
|
|
///
|
|
bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
|
|
return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
|
|
}
|
|
|
|
/// operator== - Used to compare two nodes to each other.
|
|
///
|
|
bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
|
|
return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
|
|
}
|
|
|
|
/// Used to compare the "ordering" of two nodes as defined by the
|
|
/// profiled bits and their ordering defined by memcmp().
|
|
bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
|
|
return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
|
|
}
|
|
|
|
bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
|
|
return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
|
|
}
|
|
|
|
/// Intern - Copy this node's data to a memory region allocated from the
|
|
/// given allocator and return a FoldingSetNodeIDRef describing the
|
|
/// interned data.
|
|
FoldingSetNodeIDRef
|
|
FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
|
|
unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
|
|
std::uninitialized_copy(Bits.begin(), Bits.end(), New);
|
|
return FoldingSetNodeIDRef(New, Bits.size());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Helper functions for FoldingSetImpl.
|
|
|
|
/// GetNextPtr - In order to save space, each bucket is a
|
|
/// singly-linked-list. In order to make deletion more efficient, we make
|
|
/// the list circular, so we can delete a node without computing its hash.
|
|
/// The problem with this is that the start of the hash buckets are not
|
|
/// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
|
|
/// use GetBucketPtr when this happens.
|
|
static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) {
|
|
// The low bit is set if this is the pointer back to the bucket.
|
|
if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
|
|
return nullptr;
|
|
|
|
return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
|
|
}
|
|
|
|
|
|
/// testing.
|
|
static void **GetBucketPtr(void *NextInBucketPtr) {
|
|
intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
|
|
assert((Ptr & 1) && "Not a bucket pointer");
|
|
return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
|
|
}
|
|
|
|
/// GetBucketFor - Hash the specified node ID and return the hash bucket for
|
|
/// the specified ID.
|
|
static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
|
|
// NumBuckets is always a power of 2.
|
|
unsigned BucketNum = Hash & (NumBuckets-1);
|
|
return Buckets + BucketNum;
|
|
}
|
|
|
|
/// AllocateBuckets - Allocated initialized bucket memory.
|
|
static void **AllocateBuckets(unsigned NumBuckets) {
|
|
void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*)));
|
|
// Set the very last bucket to be a non-null "pointer".
|
|
Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
|
|
return Buckets;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetImpl Implementation
|
|
|
|
void FoldingSetImpl::anchor() {}
|
|
|
|
FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) {
|
|
assert(5 < Log2InitSize && Log2InitSize < 32 &&
|
|
"Initial hash table size out of range");
|
|
NumBuckets = 1 << Log2InitSize;
|
|
Buckets = AllocateBuckets(NumBuckets);
|
|
NumNodes = 0;
|
|
}
|
|
|
|
FoldingSetImpl::FoldingSetImpl(FoldingSetImpl &&Arg)
|
|
: Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) {
|
|
Arg.Buckets = nullptr;
|
|
Arg.NumBuckets = 0;
|
|
Arg.NumNodes = 0;
|
|
}
|
|
|
|
FoldingSetImpl &FoldingSetImpl::operator=(FoldingSetImpl &&RHS) {
|
|
free(Buckets); // This may be null if the set is in a moved-from state.
|
|
Buckets = RHS.Buckets;
|
|
NumBuckets = RHS.NumBuckets;
|
|
NumNodes = RHS.NumNodes;
|
|
RHS.Buckets = nullptr;
|
|
RHS.NumBuckets = 0;
|
|
RHS.NumNodes = 0;
|
|
return *this;
|
|
}
|
|
|
|
FoldingSetImpl::~FoldingSetImpl() {
|
|
free(Buckets);
|
|
}
|
|
|
|
void FoldingSetImpl::clear() {
|
|
// Set all but the last bucket to null pointers.
|
|
memset(Buckets, 0, NumBuckets*sizeof(void*));
|
|
|
|
// Set the very last bucket to be a non-null "pointer".
|
|
Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
|
|
|
|
// Reset the node count to zero.
|
|
NumNodes = 0;
|
|
}
|
|
|
|
/// GrowHashTable - Double the size of the hash table and rehash everything.
|
|
///
|
|
void FoldingSetImpl::GrowHashTable() {
|
|
void **OldBuckets = Buckets;
|
|
unsigned OldNumBuckets = NumBuckets;
|
|
NumBuckets <<= 1;
|
|
|
|
// Clear out new buckets.
|
|
Buckets = AllocateBuckets(NumBuckets);
|
|
NumNodes = 0;
|
|
|
|
// Walk the old buckets, rehashing nodes into their new place.
|
|
FoldingSetNodeID TempID;
|
|
for (unsigned i = 0; i != OldNumBuckets; ++i) {
|
|
void *Probe = OldBuckets[i];
|
|
if (!Probe) continue;
|
|
while (Node *NodeInBucket = GetNextPtr(Probe)) {
|
|
// Figure out the next link, remove NodeInBucket from the old link.
|
|
Probe = NodeInBucket->getNextInBucket();
|
|
NodeInBucket->SetNextInBucket(nullptr);
|
|
|
|
// Insert the node into the new bucket, after recomputing the hash.
|
|
InsertNode(NodeInBucket,
|
|
GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
|
|
Buckets, NumBuckets));
|
|
TempID.clear();
|
|
}
|
|
}
|
|
|
|
free(OldBuckets);
|
|
}
|
|
|
|
/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
|
|
/// return it. If not, return the insertion token that will make insertion
|
|
/// faster.
|
|
FoldingSetImpl::Node
|
|
*FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
|
|
void *&InsertPos) {
|
|
unsigned IDHash = ID.ComputeHash();
|
|
void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
|
|
void *Probe = *Bucket;
|
|
|
|
InsertPos = nullptr;
|
|
|
|
FoldingSetNodeID TempID;
|
|
while (Node *NodeInBucket = GetNextPtr(Probe)) {
|
|
if (NodeEquals(NodeInBucket, ID, IDHash, TempID))
|
|
return NodeInBucket;
|
|
TempID.clear();
|
|
|
|
Probe = NodeInBucket->getNextInBucket();
|
|
}
|
|
|
|
// Didn't find the node, return null with the bucket as the InsertPos.
|
|
InsertPos = Bucket;
|
|
return nullptr;
|
|
}
|
|
|
|
/// InsertNode - Insert the specified node into the folding set, knowing that it
|
|
/// is not already in the map. InsertPos must be obtained from
|
|
/// FindNodeOrInsertPos.
|
|
void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
|
|
assert(!N->getNextInBucket());
|
|
// Do we need to grow the hashtable?
|
|
if (NumNodes+1 > NumBuckets*2) {
|
|
GrowHashTable();
|
|
FoldingSetNodeID TempID;
|
|
InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
|
|
}
|
|
|
|
++NumNodes;
|
|
|
|
/// The insert position is actually a bucket pointer.
|
|
void **Bucket = static_cast<void**>(InsertPos);
|
|
|
|
void *Next = *Bucket;
|
|
|
|
// If this is the first insertion into this bucket, its next pointer will be
|
|
// null. Pretend as if it pointed to itself, setting the low bit to indicate
|
|
// that it is a pointer to the bucket.
|
|
if (!Next)
|
|
Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
|
|
|
|
// Set the node's next pointer, and make the bucket point to the node.
|
|
N->SetNextInBucket(Next);
|
|
*Bucket = N;
|
|
}
|
|
|
|
/// RemoveNode - Remove a node from the folding set, returning true if one was
|
|
/// removed or false if the node was not in the folding set.
|
|
bool FoldingSetImpl::RemoveNode(Node *N) {
|
|
// Because each bucket is a circular list, we don't need to compute N's hash
|
|
// to remove it.
|
|
void *Ptr = N->getNextInBucket();
|
|
if (!Ptr) return false; // Not in folding set.
|
|
|
|
--NumNodes;
|
|
N->SetNextInBucket(nullptr);
|
|
|
|
// Remember what N originally pointed to, either a bucket or another node.
|
|
void *NodeNextPtr = Ptr;
|
|
|
|
// Chase around the list until we find the node (or bucket) which points to N.
|
|
while (true) {
|
|
if (Node *NodeInBucket = GetNextPtr(Ptr)) {
|
|
// Advance pointer.
|
|
Ptr = NodeInBucket->getNextInBucket();
|
|
|
|
// We found a node that points to N, change it to point to N's next node,
|
|
// removing N from the list.
|
|
if (Ptr == N) {
|
|
NodeInBucket->SetNextInBucket(NodeNextPtr);
|
|
return true;
|
|
}
|
|
} else {
|
|
void **Bucket = GetBucketPtr(Ptr);
|
|
Ptr = *Bucket;
|
|
|
|
// If we found that the bucket points to N, update the bucket to point to
|
|
// whatever is next.
|
|
if (Ptr == N) {
|
|
*Bucket = NodeNextPtr;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// GetOrInsertNode - If there is an existing simple Node exactly
|
|
/// equal to the specified node, return it. Otherwise, insert 'N' and it
|
|
/// instead.
|
|
FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
|
|
FoldingSetNodeID ID;
|
|
GetNodeProfile(N, ID);
|
|
void *IP;
|
|
if (Node *E = FindNodeOrInsertPos(ID, IP))
|
|
return E;
|
|
InsertNode(N, IP);
|
|
return N;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetIteratorImpl Implementation
|
|
|
|
FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
|
|
// Skip to the first non-null non-self-cycle bucket.
|
|
while (*Bucket != reinterpret_cast<void*>(-1) &&
|
|
(!*Bucket || !GetNextPtr(*Bucket)))
|
|
++Bucket;
|
|
|
|
NodePtr = static_cast<FoldingSetNode*>(*Bucket);
|
|
}
|
|
|
|
void FoldingSetIteratorImpl::advance() {
|
|
// If there is another link within this bucket, go to it.
|
|
void *Probe = NodePtr->getNextInBucket();
|
|
|
|
if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
|
|
NodePtr = NextNodeInBucket;
|
|
else {
|
|
// Otherwise, this is the last link in this bucket.
|
|
void **Bucket = GetBucketPtr(Probe);
|
|
|
|
// Skip to the next non-null non-self-cycle bucket.
|
|
do {
|
|
++Bucket;
|
|
} while (*Bucket != reinterpret_cast<void*>(-1) &&
|
|
(!*Bucket || !GetNextPtr(*Bucket)));
|
|
|
|
NodePtr = static_cast<FoldingSetNode*>(*Bucket);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FoldingSetBucketIteratorImpl Implementation
|
|
|
|
FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
|
|
Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;
|
|
}
|