llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
Cameron Zwarich 71132af89a Make LoopUnswitch preserve ScalarEvolution by just forgetting everything about
a loop when unswitching it. It only does this in the complex case, because
everything should be fine already in the simple case.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125369 91177308-0d34-0410-b5e6-96231b3b80d8
2011-02-11 06:08:28 +00:00

1046 lines
42 KiB
C++

//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops that contain branches on loop-invariant conditions
// to have multiple loops. For example, it turns the left into the right code:
//
// for (...) if (lic)
// A for (...)
// if (lic) A; B; C
// B else
// C for (...)
// A; C
//
// This can increase the size of the code exponentially (doubling it every time
// a loop is unswitched) so we only unswitch if the resultant code will be
// smaller than a threshold.
//
// This pass expects LICM to be run before it to hoist invariant conditions out
// of the loop, to make the unswitching opportunity obvious.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-unswitch"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
using namespace llvm;
STATISTIC(NumBranches, "Number of branches unswitched");
STATISTIC(NumSwitches, "Number of switches unswitched");
STATISTIC(NumSelects , "Number of selects unswitched");
STATISTIC(NumTrivial , "Number of unswitches that are trivial");
STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
// The specific value of 50 here was chosen based only on intuition and a
// few specific examples.
static cl::opt<unsigned>
Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
cl::init(50), cl::Hidden);
namespace {
class LoopUnswitch : public LoopPass {
LoopInfo *LI; // Loop information
LPPassManager *LPM;
// LoopProcessWorklist - Used to check if second loop needs processing
// after RewriteLoopBodyWithConditionConstant rewrites first loop.
std::vector<Loop*> LoopProcessWorklist;
SmallPtrSet<Value *,8> UnswitchedVals;
bool OptimizeForSize;
bool redoLoop;
Loop *currentLoop;
DominatorTree *DT;
BasicBlock *loopHeader;
BasicBlock *loopPreheader;
// LoopBlocks contains all of the basic blocks of the loop, including the
// preheader of the loop, the body of the loop, and the exit blocks of the
// loop, in that order.
std::vector<BasicBlock*> LoopBlocks;
// NewBlocks contained cloned copy of basic blocks from LoopBlocks.
std::vector<BasicBlock*> NewBlocks;
public:
static char ID; // Pass ID, replacement for typeid
explicit LoopUnswitch(bool Os = false) :
LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
currentLoop(NULL), DT(NULL), loopHeader(NULL),
loopPreheader(NULL) {
initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
bool processCurrentLoop();
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<DominatorTree>();
AU.addPreserved<ScalarEvolution>();
}
private:
virtual void releaseMemory() {
UnswitchedVals.clear();
}
/// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
/// remove it.
void RemoveLoopFromWorklist(Loop *L) {
std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
LoopProcessWorklist.end(), L);
if (I != LoopProcessWorklist.end())
LoopProcessWorklist.erase(I);
}
void initLoopData() {
loopHeader = currentLoop->getHeader();
loopPreheader = currentLoop->getLoopPreheader();
}
/// Split all of the edges from inside the loop to their exit blocks.
/// Update the appropriate Phi nodes as we do so.
void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
BasicBlock *ExitBlock);
void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
Constant *Val, bool isEqual);
void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
BasicBlock *TrueDest,
BasicBlock *FalseDest,
Instruction *InsertPt);
void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
void RemoveBlockIfDead(BasicBlock *BB,
std::vector<Instruction*> &Worklist, Loop *l);
void RemoveLoopFromHierarchy(Loop *L);
bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
BasicBlock **LoopExit = 0);
};
}
char LoopUnswitch::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
false, false)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
false, false)
Pass *llvm::createLoopUnswitchPass(bool Os) {
return new LoopUnswitch(Os);
}
/// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
/// invariant in the loop, or has an invariant piece, return the invariant.
/// Otherwise, return null.
static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
// We can never unswitch on vector conditions.
if (Cond->getType()->isVectorTy())
return 0;
// Constants should be folded, not unswitched on!
if (isa<Constant>(Cond)) return 0;
// TODO: Handle: br (VARIANT|INVARIANT).
// Hoist simple values out.
if (L->makeLoopInvariant(Cond, Changed))
return Cond;
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
if (BO->getOpcode() == Instruction::And ||
BO->getOpcode() == Instruction::Or) {
// If either the left or right side is invariant, we can unswitch on this,
// which will cause the branch to go away in one loop and the condition to
// simplify in the other one.
if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
return LHS;
if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
return RHS;
}
return 0;
}
bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
LI = &getAnalysis<LoopInfo>();
LPM = &LPM_Ref;
DT = getAnalysisIfAvailable<DominatorTree>();
currentLoop = L;
Function *F = currentLoop->getHeader()->getParent();
bool Changed = false;
do {
assert(currentLoop->isLCSSAForm(*DT));
redoLoop = false;
Changed |= processCurrentLoop();
} while(redoLoop);
if (Changed) {
// FIXME: Reconstruct dom info, because it is not preserved properly.
if (DT)
DT->runOnFunction(*F);
}
return Changed;
}
/// processCurrentLoop - Do actual work and unswitch loop if possible
/// and profitable.
bool LoopUnswitch::processCurrentLoop() {
bool Changed = false;
LLVMContext &Context = currentLoop->getHeader()->getContext();
// Loop over all of the basic blocks in the loop. If we find an interior
// block that is branching on a loop-invariant condition, we can unswitch this
// loop.
for (Loop::block_iterator I = currentLoop->block_begin(),
E = currentLoop->block_end(); I != E; ++I) {
TerminatorInst *TI = (*I)->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
// If this isn't branching on an invariant condition, we can't unswitch
// it.
if (BI->isConditional()) {
// See if this, or some part of it, is loop invariant. If so, we can
// unswitch on it if we desire.
Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
currentLoop, Changed);
if (LoopCond && UnswitchIfProfitable(LoopCond,
ConstantInt::getTrue(Context))) {
++NumBranches;
return true;
}
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
currentLoop, Changed);
if (LoopCond && SI->getNumCases() > 1) {
// Find a value to unswitch on:
// FIXME: this should chose the most expensive case!
Constant *UnswitchVal = SI->getCaseValue(1);
// Do not process same value again and again.
if (!UnswitchedVals.insert(UnswitchVal))
continue;
if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
++NumSwitches;
return true;
}
}
}
// Scan the instructions to check for unswitchable values.
for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
BBI != E; ++BBI)
if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
currentLoop, Changed);
if (LoopCond && UnswitchIfProfitable(LoopCond,
ConstantInt::getTrue(Context))) {
++NumSelects;
return true;
}
}
}
return Changed;
}
/// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
/// loop with no side effects (including infinite loops).
///
/// If true, we return true and set ExitBB to the block we
/// exit through.
///
static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
BasicBlock *&ExitBB,
std::set<BasicBlock*> &Visited) {
if (!Visited.insert(BB).second) {
// Already visited. Without more analysis, this could indicate an infinte loop.
return false;
} else if (!L->contains(BB)) {
// Otherwise, this is a loop exit, this is fine so long as this is the
// first exit.
if (ExitBB != 0) return false;
ExitBB = BB;
return true;
}
// Otherwise, this is an unvisited intra-loop node. Check all successors.
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
// Check to see if the successor is a trivial loop exit.
if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
return false;
}
// Okay, everything after this looks good, check to make sure that this block
// doesn't include any side effects.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (I->mayHaveSideEffects())
return false;
return true;
}
/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
/// leads to an exit from the specified loop, and has no side-effects in the
/// process. If so, return the block that is exited to, otherwise return null.
static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
std::set<BasicBlock*> Visited;
Visited.insert(L->getHeader()); // Branches to header make infinite loops.
BasicBlock *ExitBB = 0;
if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
return ExitBB;
return 0;
}
/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
/// trivial: that is, that the condition controls whether or not the loop does
/// anything at all. If this is a trivial condition, unswitching produces no
/// code duplications (equivalently, it produces a simpler loop and a new empty
/// loop, which gets deleted).
///
/// If this is a trivial condition, return true, otherwise return false. When
/// returning true, this sets Cond and Val to the condition that controls the
/// trivial condition: when Cond dynamically equals Val, the loop is known to
/// exit. Finally, this sets LoopExit to the BB that the loop exits to when
/// Cond == Val.
///
bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
BasicBlock **LoopExit) {
BasicBlock *Header = currentLoop->getHeader();
TerminatorInst *HeaderTerm = Header->getTerminator();
LLVMContext &Context = Header->getContext();
BasicBlock *LoopExitBB = 0;
if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
// If the header block doesn't end with a conditional branch on Cond, we
// can't handle it.
if (!BI->isConditional() || BI->getCondition() != Cond)
return false;
// Check to see if a successor of the branch is guaranteed to
// exit through a unique exit block without having any
// side-effects. If so, determine the value of Cond that causes it to do
// this.
if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(0)))) {
if (Val) *Val = ConstantInt::getTrue(Context);
} else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(1)))) {
if (Val) *Val = ConstantInt::getFalse(Context);
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
// If this isn't a switch on Cond, we can't handle it.
if (SI->getCondition() != Cond) return false;
// Check to see if a successor of the switch is guaranteed to go to the
// latch block or exit through a one exit block without having any
// side-effects. If so, determine the value of Cond that causes it to do
// this. Note that we can't trivially unswitch on the default case.
for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
SI->getSuccessor(i)))) {
// Okay, we found a trivial case, remember the value that is trivial.
if (Val) *Val = SI->getCaseValue(i);
break;
}
}
// If we didn't find a single unique LoopExit block, or if the loop exit block
// contains phi nodes, this isn't trivial.
if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
return false; // Can't handle this.
if (LoopExit) *LoopExit = LoopExitBB;
// We already know that nothing uses any scalar values defined inside of this
// loop. As such, we just have to check to see if this loop will execute any
// side-effecting instructions (e.g. stores, calls, volatile loads) in the
// part of the loop that the code *would* execute. We already checked the
// tail, check the header now.
for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
if (I->mayHaveSideEffects())
return false;
return true;
}
/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
/// LoopCond == Val to simplify the loop. If we decide that this is profitable,
/// unswitch the loop, reprocess the pieces, then return true.
bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
initLoopData();
// If LoopSimplify was unable to form a preheader, don't do any unswitching.
if (!loopPreheader)
return false;
Function *F = loopHeader->getParent();
Constant *CondVal = 0;
BasicBlock *ExitBlock = 0;
if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
// If the condition is trivial, always unswitch. There is no code growth
// for this case.
UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
return true;
}
// Check to see if it would be profitable to unswitch current loop.
// Do not do non-trivial unswitch while optimizing for size.
if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
return false;
// FIXME: This is overly conservative because it does not take into
// consideration code simplification opportunities and code that can
// be shared by the resultant unswitched loops.
CodeMetrics Metrics;
for (Loop::block_iterator I = currentLoop->block_begin(),
E = currentLoop->block_end();
I != E; ++I)
Metrics.analyzeBasicBlock(*I);
// Limit the number of instructions to avoid causing significant code
// expansion, and the number of basic blocks, to avoid loops with
// large numbers of branches which cause loop unswitching to go crazy.
// This is a very ad-hoc heuristic.
if (Metrics.NumInsts > Threshold ||
Metrics.NumBlocks * 5 > Threshold ||
Metrics.containsIndirectBr || Metrics.isRecursive) {
DEBUG(dbgs() << "NOT unswitching loop %"
<< currentLoop->getHeader()->getName() << ", cost too high: "
<< currentLoop->getBlocks().size() << "\n");
return false;
}
UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
return true;
}
/// CloneLoop - Recursively clone the specified loop and all of its children,
/// mapping the blocks with the specified map.
static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
LoopInfo *LI, LPPassManager *LPM) {
Loop *New = new Loop();
LPM->insertLoop(New, PL);
// Add all of the blocks in L to the new loop.
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
if (LI->getLoopFor(*I) == L)
New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
// Add all of the subloops to the new loop.
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
CloneLoop(*I, New, VM, LI, LPM);
return New;
}
/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
/// code immediately before InsertPt.
void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
BasicBlock *TrueDest,
BasicBlock *FalseDest,
Instruction *InsertPt) {
// Insert a conditional branch on LIC to the two preheaders. The original
// code is the true version and the new code is the false version.
Value *BranchVal = LIC;
if (!isa<ConstantInt>(Val) ||
Val->getType() != Type::getInt1Ty(LIC->getContext()))
BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
else if (Val != ConstantInt::getTrue(Val->getContext()))
// We want to enter the new loop when the condition is true.
std::swap(TrueDest, FalseDest);
// Insert the new branch.
BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
// If either edge is critical, split it. This helps preserve LoopSimplify
// form for enclosing loops.
SplitCriticalEdge(BI, 0, this);
SplitCriticalEdge(BI, 1, this);
}
/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
/// condition in it (a cond branch from its header block to its latch block,
/// where the path through the loop that doesn't execute its body has no
/// side-effects), unswitch it. This doesn't involve any code duplication, just
/// moving the conditional branch outside of the loop and updating loop info.
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
Constant *Val,
BasicBlock *ExitBlock) {
DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
<< loopHeader->getName() << " [" << L->getBlocks().size()
<< " blocks] in Function " << L->getHeader()->getParent()->getName()
<< " on cond: " << *Val << " == " << *Cond << "\n");
// First step, split the preheader, so that we know that there is a safe place
// to insert the conditional branch. We will change loopPreheader to have a
// conditional branch on Cond.
BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
// Now that we have a place to insert the conditional branch, create a place
// to branch to: this is the exit block out of the loop that we should
// short-circuit to.
// Split this block now, so that the loop maintains its exit block, and so
// that the jump from the preheader can execute the contents of the exit block
// without actually branching to it (the exit block should be dominated by the
// loop header, not the preheader).
assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
// Okay, now we have a position to branch from and a position to branch to,
// insert the new conditional branch.
EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
loopPreheader->getTerminator());
LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
loopPreheader->getTerminator()->eraseFromParent();
// We need to reprocess this loop, it could be unswitched again.
redoLoop = true;
// Now that we know that the loop is never entered when this condition is a
// particular value, rewrite the loop with this info. We know that this will
// at least eliminate the old branch.
RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
++NumTrivial;
}
/// SplitExitEdges - Split all of the edges from inside the loop to their exit
/// blocks. Update the appropriate Phi nodes as we do so.
void LoopUnswitch::SplitExitEdges(Loop *L,
const SmallVector<BasicBlock *, 8> &ExitBlocks){
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBlock = ExitBlocks[i];
SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
pred_end(ExitBlock));
SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
".us-lcssa", this);
}
}
/// UnswitchNontrivialCondition - We determined that the loop is profitable
/// to unswitch when LIC equal Val. Split it into loop versions and test the
/// condition outside of either loop. Return the loops created as Out1/Out2.
void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
Loop *L) {
Function *F = loopHeader->getParent();
DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
<< loopHeader->getName() << " [" << L->getBlocks().size()
<< " blocks] in Function " << F->getName()
<< " when '" << *Val << "' == " << *LIC << "\n");
if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
SE->forgetLoop(L);
LoopBlocks.clear();
NewBlocks.clear();
// First step, split the preheader and exit blocks, and add these blocks to
// the LoopBlocks list.
BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
LoopBlocks.push_back(NewPreheader);
// We want the loop to come after the preheader, but before the exit blocks.
LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
// Split all of the edges from inside the loop to their exit blocks. Update
// the appropriate Phi nodes as we do so.
SplitExitEdges(L, ExitBlocks);
// The exit blocks may have been changed due to edge splitting, recompute.
ExitBlocks.clear();
L->getUniqueExitBlocks(ExitBlocks);
// Add exit blocks to the loop blocks.
LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
// Next step, clone all of the basic blocks that make up the loop (including
// the loop preheader and exit blocks), keeping track of the mapping between
// the instructions and blocks.
NewBlocks.reserve(LoopBlocks.size());
ValueToValueMapTy VMap;
for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
NewBlocks.push_back(NewBB);
VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
}
// Splice the newly inserted blocks into the function right before the
// original preheader.
F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
NewBlocks[0], F->end());
// Now we create the new Loop object for the versioned loop.
Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
Loop *ParentLoop = L->getParentLoop();
if (ParentLoop) {
// Make sure to add the cloned preheader and exit blocks to the parent loop
// as well.
ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
}
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
// The new exit block should be in the same loop as the old one.
if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
"Exit block should have been split to have one successor!");
BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
// If the successor of the exit block had PHI nodes, add an entry for
// NewExit.
PHINode *PN;
for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
PN = cast<PHINode>(I);
Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
ValueToValueMapTy::iterator It = VMap.find(V);
if (It != VMap.end()) V = It->second;
PN->addIncoming(V, NewExit);
}
}
// Rewrite the code to refer to itself.
for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
E = NewBlocks[i]->end(); I != E; ++I)
RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
// Rewrite the original preheader to select between versions of the loop.
BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
"Preheader splitting did not work correctly!");
// Emit the new branch that selects between the two versions of this loop.
EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
LPM->deleteSimpleAnalysisValue(OldBR, L);
OldBR->eraseFromParent();
LoopProcessWorklist.push_back(NewLoop);
redoLoop = true;
// Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
// deletes the instruction (for example by simplifying a PHI that feeds into
// the condition that we're unswitching on), we don't rewrite the second
// iteration.
WeakVH LICHandle(LIC);
// Now we rewrite the original code to know that the condition is true and the
// new code to know that the condition is false.
RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
// It's possible that simplifying one loop could cause the other to be
// changed to another value or a constant. If its a constant, don't simplify
// it.
if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
LICHandle && !isa<Constant>(LICHandle))
RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
}
/// RemoveFromWorklist - Remove all instances of I from the worklist vector
/// specified.
static void RemoveFromWorklist(Instruction *I,
std::vector<Instruction*> &Worklist) {
std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
Worklist.end(), I);
while (WI != Worklist.end()) {
unsigned Offset = WI-Worklist.begin();
Worklist.erase(WI);
WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
}
}
/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
/// program, replacing all uses with V and update the worklist.
static void ReplaceUsesOfWith(Instruction *I, Value *V,
std::vector<Instruction*> &Worklist,
Loop *L, LPPassManager *LPM) {
DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
Worklist.push_back(Use);
// Add users to the worklist which may be simplified now.
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI)
Worklist.push_back(cast<Instruction>(*UI));
LPM->deleteSimpleAnalysisValue(I, L);
RemoveFromWorklist(I, Worklist);
I->replaceAllUsesWith(V);
I->eraseFromParent();
++NumSimplify;
}
/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
/// information, and remove any dead successors it has.
///
void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
std::vector<Instruction*> &Worklist,
Loop *L) {
if (pred_begin(BB) != pred_end(BB)) {
// This block isn't dead, since an edge to BB was just removed, see if there
// are any easy simplifications we can do now.
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
// If it has one pred, fold phi nodes in BB.
while (isa<PHINode>(BB->begin()))
ReplaceUsesOfWith(BB->begin(),
cast<PHINode>(BB->begin())->getIncomingValue(0),
Worklist, L, LPM);
// If this is the header of a loop and the only pred is the latch, we now
// have an unreachable loop.
if (Loop *L = LI->getLoopFor(BB))
if (loopHeader == BB && L->contains(Pred)) {
// Remove the branch from the latch to the header block, this makes
// the header dead, which will make the latch dead (because the header
// dominates the latch).
LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
Pred->getTerminator()->eraseFromParent();
new UnreachableInst(BB->getContext(), Pred);
// The loop is now broken, remove it from LI.
RemoveLoopFromHierarchy(L);
// Reprocess the header, which now IS dead.
RemoveBlockIfDead(BB, Worklist, L);
return;
}
// If pred ends in a uncond branch, add uncond branch to worklist so that
// the two blocks will get merged.
if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
if (BI->isUnconditional())
Worklist.push_back(BI);
}
return;
}
DEBUG(dbgs() << "Nuking dead block: " << *BB);
// Remove the instructions in the basic block from the worklist.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
RemoveFromWorklist(I, Worklist);
// Anything that uses the instructions in this basic block should have their
// uses replaced with undefs.
// If I is not void type then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!I->getType()->isVoidTy())
I->replaceAllUsesWith(UndefValue::get(I->getType()));
}
// If this is the edge to the header block for a loop, remove the loop and
// promote all subloops.
if (Loop *BBLoop = LI->getLoopFor(BB)) {
if (BBLoop->getLoopLatch() == BB)
RemoveLoopFromHierarchy(BBLoop);
}
// Remove the block from the loop info, which removes it from any loops it
// was in.
LI->removeBlock(BB);
// Remove phi node entries in successors for this block.
TerminatorInst *TI = BB->getTerminator();
SmallVector<BasicBlock*, 4> Succs;
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
Succs.push_back(TI->getSuccessor(i));
TI->getSuccessor(i)->removePredecessor(BB);
}
// Unique the successors, remove anything with multiple uses.
array_pod_sort(Succs.begin(), Succs.end());
Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
// Remove the basic block, including all of the instructions contained in it.
LPM->deleteSimpleAnalysisValue(BB, L);
BB->eraseFromParent();
// Remove successor blocks here that are not dead, so that we know we only
// have dead blocks in this list. Nondead blocks have a way of becoming dead,
// then getting removed before we revisit them, which is badness.
//
for (unsigned i = 0; i != Succs.size(); ++i)
if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
// One exception is loop headers. If this block was the preheader for a
// loop, then we DO want to visit the loop so the loop gets deleted.
// We know that if the successor is a loop header, that this loop had to
// be the preheader: the case where this was the latch block was handled
// above and headers can only have two predecessors.
if (!LI->isLoopHeader(Succs[i])) {
Succs.erase(Succs.begin()+i);
--i;
}
}
for (unsigned i = 0, e = Succs.size(); i != e; ++i)
RemoveBlockIfDead(Succs[i], Worklist, L);
}
/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
/// become unwrapped, either because the backedge was deleted, or because the
/// edge into the header was removed. If the edge into the header from the
/// latch block was removed, the loop is unwrapped but subloops are still alive,
/// so they just reparent loops. If the loops are actually dead, they will be
/// removed later.
void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
LPM->deleteLoopFromQueue(L);
RemoveLoopFromWorklist(L);
}
// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
// the value specified by Val in the specified loop, or we know it does NOT have
// that value. Rewrite any uses of LIC or of properties correlated to it.
void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
Constant *Val,
bool IsEqual) {
assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
// FIXME: Support correlated properties, like:
// for (...)
// if (li1 < li2)
// ...
// if (li1 > li2)
// ...
// FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
// selects, switches.
std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
std::vector<Instruction*> Worklist;
LLVMContext &Context = Val->getContext();
// If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
// in the loop with the appropriate one directly.
if (IsEqual || (isa<ConstantInt>(Val) &&
Val->getType()->isIntegerTy(1))) {
Value *Replacement;
if (IsEqual)
Replacement = Val;
else
Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
!cast<ConstantInt>(Val)->getZExtValue());
for (unsigned i = 0, e = Users.size(); i != e; ++i)
if (Instruction *U = cast<Instruction>(Users[i])) {
if (!L->contains(U))
continue;
U->replaceUsesOfWith(LIC, Replacement);
Worklist.push_back(U);
}
SimplifyCode(Worklist, L);
return;
}
// Otherwise, we don't know the precise value of LIC, but we do know that it
// is certainly NOT "Val". As such, simplify any uses in the loop that we
// can. This case occurs when we unswitch switch statements.
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
Instruction *U = cast<Instruction>(Users[i]);
if (!L->contains(U))
continue;
Worklist.push_back(U);
// TODO: We could do other simplifications, for example, turning
// 'icmp eq LIC, Val' -> false.
// If we know that LIC is not Val, use this info to simplify code.
SwitchInst *SI = dyn_cast<SwitchInst>(U);
if (SI == 0 || !isa<ConstantInt>(Val)) continue;
unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
if (DeadCase == 0) continue; // Default case is live for multiple values.
// Found a dead case value. Don't remove PHI nodes in the
// successor if they become single-entry, those PHI nodes may
// be in the Users list.
// FIXME: This is a hack. We need to keep the successor around
// and hooked up so as to preserve the loop structure, because
// trying to update it is complicated. So instead we preserve the
// loop structure and put the block on a dead code path.
BasicBlock *Switch = SI->getParent();
SplitEdge(Switch, SI->getSuccessor(DeadCase), this);
// Compute the successors instead of relying on the return value
// of SplitEdge, since it may have split the switch successor
// after PHI nodes.
BasicBlock *NewSISucc = SI->getSuccessor(DeadCase);
BasicBlock *OldSISucc = *succ_begin(NewSISucc);
// Create an "unreachable" destination.
BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
Switch->getParent(),
OldSISucc);
new UnreachableInst(Context, Abort);
// Force the new case destination to branch to the "unreachable"
// block while maintaining a (dead) CFG edge to the old block.
NewSISucc->getTerminator()->eraseFromParent();
BranchInst::Create(Abort, OldSISucc,
ConstantInt::getTrue(Context), NewSISucc);
// Release the PHI operands for this edge.
for (BasicBlock::iterator II = NewSISucc->begin();
PHINode *PN = dyn_cast<PHINode>(II); ++II)
PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
UndefValue::get(PN->getType()));
// Tell the domtree about the new block. We don't fully update the
// domtree here -- instead we force it to do a full recomputation
// after the pass is complete -- but we do need to inform it of
// new blocks.
if (DT)
DT->addNewBlock(Abort, NewSISucc);
}
SimplifyCode(Worklist, L);
}
/// SimplifyCode - Okay, now that we have simplified some instructions in the
/// loop, walk over it and constant prop, dce, and fold control flow where
/// possible. Note that this is effectively a very simple loop-structure-aware
/// optimizer. During processing of this loop, L could very well be deleted, so
/// it must not be used.
///
/// FIXME: When the loop optimizer is more mature, separate this out to a new
/// pass.
///
void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
while (!Worklist.empty()) {
Instruction *I = Worklist.back();
Worklist.pop_back();
// Simple DCE.
if (isInstructionTriviallyDead(I)) {
DEBUG(dbgs() << "Remove dead instruction '" << *I);
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
Worklist.push_back(Use);
LPM->deleteSimpleAnalysisValue(I, L);
RemoveFromWorklist(I, Worklist);
I->eraseFromParent();
++NumSimplify;
continue;
}
// See if instruction simplification can hack this up. This is common for
// things like "select false, X, Y" after unswitching made the condition be
// 'false'.
if (Value *V = SimplifyInstruction(I, 0, DT))
if (LI->replacementPreservesLCSSAForm(I, V)) {
ReplaceUsesOfWith(I, V, Worklist, L, LPM);
continue;
}
// Special case hacks that appear commonly in unswitched code.
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
if (BI->isUnconditional()) {
// If BI's parent is the only pred of the successor, fold the two blocks
// together.
BasicBlock *Pred = BI->getParent();
BasicBlock *Succ = BI->getSuccessor(0);
BasicBlock *SinglePred = Succ->getSinglePredecessor();
if (!SinglePred) continue; // Nothing to do.
assert(SinglePred == Pred && "CFG broken");
DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
<< Succ->getName() << "\n");
// Resolve any single entry PHI nodes in Succ.
while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
// Move all of the successor contents from Succ to Pred.
Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
Succ->end());
LPM->deleteSimpleAnalysisValue(BI, L);
BI->eraseFromParent();
RemoveFromWorklist(BI, Worklist);
// If Succ has any successors with PHI nodes, update them to have
// entries coming from Pred instead of Succ.
Succ->replaceAllUsesWith(Pred);
// Remove Succ from the loop tree.
LI->removeBlock(Succ);
LPM->deleteSimpleAnalysisValue(Succ, L);
Succ->eraseFromParent();
++NumSimplify;
continue;
}
if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
// Conditional branch. Turn it into an unconditional branch, then
// remove dead blocks.
continue; // FIXME: Enable.
DEBUG(dbgs() << "Folded branch: " << *BI);
BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
DeadSucc->removePredecessor(BI->getParent(), true);
Worklist.push_back(BranchInst::Create(LiveSucc, BI));
LPM->deleteSimpleAnalysisValue(BI, L);
BI->eraseFromParent();
RemoveFromWorklist(BI, Worklist);
++NumSimplify;
RemoveBlockIfDead(DeadSucc, Worklist, L);
}
continue;
}
}
}