llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
Juergen Ributzka b95412cc24 [Constant Hoisting] Materialize the constant before the cloned cast instruction.
In the case where the constant comes from a cloned cast instruction, the
materialization code has to go before the cloned cast instruction.

This commit fixes the method that finds the materialization insertion point
by making it aware of this case.

This fixes <rdar://problem/15532441>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206913 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-22 18:06:58 +00:00

601 lines
22 KiB
C++

//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass identifies expensive constants to hoist and coalesces them to
// better prepare it for SelectionDAG-based code generation. This works around
// the limitations of the basic-block-at-a-time approach.
//
// First it scans all instructions for integer constants and calculates its
// cost. If the constant can be folded into the instruction (the cost is
// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
// consider it expensive and leave it alone. This is the default behavior and
// the default implementation of getIntImmCost will always return TCC_Free.
//
// If the cost is more than TCC_BASIC, then the integer constant can't be folded
// into the instruction and it might be beneficial to hoist the constant.
// Similar constants are coalesced to reduce register pressure and
// materialization code.
//
// When a constant is hoisted, it is also hidden behind a bitcast to force it to
// be live-out of the basic block. Otherwise the constant would be just
// duplicated and each basic block would have its own copy in the SelectionDAG.
// The SelectionDAG recognizes such constants as opaque and doesn't perform
// certain transformations on them, which would create a new expensive constant.
//
// This optimization is only applied to integer constants in instructions and
// simple (this means not nested) constant cast expressions. For example:
// %0 = load i64* inttoptr (i64 big_constant to i64*)
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "consthoist"
STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
STATISTIC(NumConstantsRebased, "Number of constants rebased");
namespace {
struct ConstantUser;
struct RebasedConstantInfo;
typedef SmallVector<ConstantUser, 8> ConstantUseListType;
typedef SmallVector<RebasedConstantInfo, 4> RebasedConstantListType;
/// \brief Keeps track of the user of a constant and the operand index where the
/// constant is used.
struct ConstantUser {
Instruction *Inst;
unsigned OpndIdx;
ConstantUser(Instruction *Inst, unsigned Idx) : Inst(Inst), OpndIdx(Idx) { }
};
/// \brief Keeps track of a constant candidate and its uses.
struct ConstantCandidate {
ConstantUseListType Uses;
ConstantInt *ConstInt;
unsigned CumulativeCost;
ConstantCandidate(ConstantInt *ConstInt)
: ConstInt(ConstInt), CumulativeCost(0) { }
/// \brief Add the user to the use list and update the cost.
void addUser(Instruction *Inst, unsigned Idx, unsigned Cost) {
CumulativeCost += Cost;
Uses.push_back(ConstantUser(Inst, Idx));
}
};
/// \brief This represents a constant that has been rebased with respect to a
/// base constant. The difference to the base constant is recorded in Offset.
struct RebasedConstantInfo {
ConstantUseListType Uses;
Constant *Offset;
RebasedConstantInfo(ConstantUseListType &&Uses, Constant *Offset)
: Uses(Uses), Offset(Offset) { }
};
/// \brief A base constant and all its rebased constants.
struct ConstantInfo {
ConstantInt *BaseConstant;
RebasedConstantListType RebasedConstants;
};
/// \brief The constant hoisting pass.
class ConstantHoisting : public FunctionPass {
typedef DenseMap<ConstantInt *, unsigned> ConstCandMapType;
typedef std::vector<ConstantCandidate> ConstCandVecType;
const TargetTransformInfo *TTI;
DominatorTree *DT;
BasicBlock *Entry;
/// Keeps track of constant candidates found in the function.
ConstCandVecType ConstCandVec;
/// Keep track of cast instructions we already cloned.
SmallDenseMap<Instruction *, Instruction *> ClonedCastMap;
/// These are the final constants we decided to hoist.
SmallVector<ConstantInfo, 8> ConstantVec;
public:
static char ID; // Pass identification, replacement for typeid
ConstantHoisting() : FunctionPass(ID), TTI(0), DT(0), Entry(0) {
initializeConstantHoistingPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &Fn) override;
const char *getPassName() const override { return "Constant Hoisting"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfo>();
}
private:
/// \brief Initialize the pass.
void setup(Function &Fn) {
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
TTI = &getAnalysis<TargetTransformInfo>();
Entry = &Fn.getEntryBlock();
}
/// \brief Cleanup.
void cleanup() {
ConstantVec.clear();
ClonedCastMap.clear();
ConstCandVec.clear();
TTI = nullptr;
DT = nullptr;
Entry = nullptr;
}
Instruction *findMatInsertPt(Instruction *Inst, unsigned Idx = ~0U) const;
Instruction *findConstantInsertionPoint(const ConstantInfo &ConstInfo) const;
void collectConstantCandidates(ConstCandMapType &ConstCandMap,
Instruction *Inst, unsigned Idx,
ConstantInt *ConstInt);
void collectConstantCandidates(ConstCandMapType &ConstCandMap,
Instruction *Inst);
void collectConstantCandidates(Function &Fn);
void findAndMakeBaseConstant(ConstCandVecType::iterator S,
ConstCandVecType::iterator E);
void findBaseConstants();
void emitBaseConstants(Instruction *Base, Constant *Offset,
const ConstantUser &ConstUser);
bool emitBaseConstants();
void deleteDeadCastInst() const;
bool optimizeConstants(Function &Fn);
};
}
char ConstantHoisting::ID = 0;
INITIALIZE_PASS_BEGIN(ConstantHoisting, "consthoist", "Constant Hoisting",
false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_END(ConstantHoisting, "consthoist", "Constant Hoisting",
false, false)
FunctionPass *llvm::createConstantHoistingPass() {
return new ConstantHoisting();
}
/// \brief Perform the constant hoisting optimization for the given function.
bool ConstantHoisting::runOnFunction(Function &Fn) {
DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
setup(Fn);
bool MadeChange = optimizeConstants(Fn);
if (MadeChange) {
DEBUG(dbgs() << "********** Function after Constant Hoisting: "
<< Fn.getName() << '\n');
DEBUG(dbgs() << Fn);
}
DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
cleanup();
return MadeChange;
}
/// \brief Find the constant materialization insertion point.
Instruction *ConstantHoisting::findMatInsertPt(Instruction *Inst,
unsigned Idx) const {
// If the operand is a cast instruction, then we have to materialize the
// constant before the cast instruction.
if (Idx != ~0U) {
Value *Opnd = Inst->getOperand(Idx);
if (auto CastInst = dyn_cast<Instruction>(Opnd))
if (CastInst->isCast())
return CastInst;
}
// The simple and common case. This also includes constant expressions.
if (!isa<PHINode>(Inst) && !isa<LandingPadInst>(Inst))
return Inst;
// We can't insert directly before a phi node or landing pad. Insert before
// the terminator of the incoming or dominating block.
assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
if (Idx != ~0U && isa<PHINode>(Inst))
return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
BasicBlock *IDom = DT->getNode(Inst->getParent())->getIDom()->getBlock();
return IDom->getTerminator();
}
/// \brief Find an insertion point that dominates all uses.
Instruction *ConstantHoisting::
findConstantInsertionPoint(const ConstantInfo &ConstInfo) const {
assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
// Collect all basic blocks.
SmallPtrSet<BasicBlock *, 8> BBs;
for (auto const &RCI : ConstInfo.RebasedConstants)
for (auto const &U : RCI.Uses)
BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
if (BBs.count(Entry))
return &Entry->front();
while (BBs.size() >= 2) {
BasicBlock *BB, *BB1, *BB2;
BB1 = *BBs.begin();
BB2 = *std::next(BBs.begin());
BB = DT->findNearestCommonDominator(BB1, BB2);
if (BB == Entry)
return &Entry->front();
BBs.erase(BB1);
BBs.erase(BB2);
BBs.insert(BB);
}
assert((BBs.size() == 1) && "Expected only one element.");
Instruction &FirstInst = (*BBs.begin())->front();
return findMatInsertPt(&FirstInst);
}
/// \brief Record constant integer ConstInt for instruction Inst at operand
/// index Idx.
///
/// The operand at index Idx is not necessarily the constant integer itself. It
/// could also be a cast instruction or a constant expression that uses the
// constant integer.
void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
Instruction *Inst,
unsigned Idx,
ConstantInt *ConstInt) {
unsigned Cost;
// Ask the target about the cost of materializing the constant for the given
// instruction and operand index.
if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
ConstInt->getValue(), ConstInt->getType());
else
Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
ConstInt->getType());
// Ignore cheap integer constants.
if (Cost > TargetTransformInfo::TCC_Basic) {
ConstCandMapType::iterator Itr;
bool Inserted;
std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
if (Inserted) {
ConstCandVec.push_back(ConstantCandidate(ConstInt));
Itr->second = ConstCandVec.size() - 1;
}
ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
<< " with cost " << Cost << '\n';
else
dbgs() << "Collect constant " << *ConstInt << " indirectly from "
<< *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
<< Cost << '\n';
);
}
}
/// \brief Scan the instruction for expensive integer constants and record them
/// in the constant candidate vector.
void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
Instruction *Inst) {
// Skip all cast instructions. They are visited indirectly later on.
if (Inst->isCast())
return;
// Can't handle inline asm. Skip it.
if (auto Call = dyn_cast<CallInst>(Inst))
if (isa<InlineAsm>(Call->getCalledValue()))
return;
// Scan all operands.
for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
Value *Opnd = Inst->getOperand(Idx);
// Visit constant integers.
if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
continue;
}
// Visit cast instructions that have constant integers.
if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
// Only visit cast instructions, which have been skipped. All other
// instructions should have already been visited.
if (!CastInst->isCast())
continue;
if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
// Pretend the constant is directly used by the instruction and ignore
// the cast instruction.
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
continue;
}
}
// Visit constant expressions that have constant integers.
if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
// Only visit constant cast expressions.
if (!ConstExpr->isCast())
continue;
if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
// Pretend the constant is directly used by the instruction and ignore
// the constant expression.
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
continue;
}
}
} // end of for all operands
}
/// \brief Collect all integer constants in the function that cannot be folded
/// into an instruction itself.
void ConstantHoisting::collectConstantCandidates(Function &Fn) {
ConstCandMapType ConstCandMap;
for (Function::iterator BB : Fn)
for (BasicBlock::iterator Inst : *BB)
collectConstantCandidates(ConstCandMap, Inst);
}
/// \brief Find the base constant within the given range and rebase all other
/// constants with respect to the base constant.
void ConstantHoisting::findAndMakeBaseConstant(ConstCandVecType::iterator S,
ConstCandVecType::iterator E) {
auto MaxCostItr = S;
unsigned NumUses = 0;
// Use the constant that has the maximum cost as base constant.
for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
NumUses += ConstCand->Uses.size();
if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
MaxCostItr = ConstCand;
}
// Don't hoist constants that have only one use.
if (NumUses <= 1)
return;
ConstantInfo ConstInfo;
ConstInfo.BaseConstant = MaxCostItr->ConstInt;
Type *Ty = ConstInfo.BaseConstant->getType();
// Rebase the constants with respect to the base constant.
for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
APInt Diff = ConstCand->ConstInt->getValue() -
ConstInfo.BaseConstant->getValue();
Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
ConstInfo.RebasedConstants.push_back(
RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
}
ConstantVec.push_back(ConstInfo);
}
/// \brief Finds and combines constant candidates that can be easily
/// rematerialized with an add from a common base constant.
void ConstantHoisting::findBaseConstants() {
// Sort the constants by value and type. This invalidates the mapping!
std::sort(ConstCandVec.begin(), ConstCandVec.end(),
[](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
return LHS.ConstInt->getType()->getBitWidth() <
RHS.ConstInt->getType()->getBitWidth();
return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
});
// Simple linear scan through the sorted constant candidate vector for viable
// merge candidates.
auto MinValItr = ConstCandVec.begin();
for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
CC != E; ++CC) {
if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
// Check if the constant is in range of an add with immediate.
APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
if ((Diff.getBitWidth() <= 64) &&
TTI->isLegalAddImmediate(Diff.getSExtValue()))
continue;
}
// We either have now a different constant type or the constant is not in
// range of an add with immediate anymore.
findAndMakeBaseConstant(MinValItr, CC);
// Start a new base constant search.
MinValItr = CC;
}
// Finalize the last base constant search.
findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
}
/// \brief Updates the operand at Idx in instruction Inst with the result of
/// instruction Mat. If the instruction is a PHI node then special
/// handling for duplicate values form the same incomming basic block is
/// required.
/// \return The update will always succeed, but the return value indicated if
/// Mat was used for the update or not.
static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
if (auto PHI = dyn_cast<PHINode>(Inst)) {
// Check if any previous operand of the PHI node has the same incoming basic
// block. This is a very odd case that happens when the incoming basic block
// has a switch statement. In this case use the same value as the previous
// operand(s), otherwise we will fail verification due to different values.
// The values are actually the same, but the variable names are different
// and the verifier doesn't like that.
BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
for (unsigned i = 0; i < Idx; ++i) {
if (PHI->getIncomingBlock(i) == IncomingBB) {
Value *IncomingVal = PHI->getIncomingValue(i);
Inst->setOperand(Idx, IncomingVal);
return false;
}
}
}
Inst->setOperand(Idx, Mat);
return true;
}
/// \brief Emit materialization code for all rebased constants and update their
/// users.
void ConstantHoisting::emitBaseConstants(Instruction *Base, Constant *Offset,
const ConstantUser &ConstUser) {
Instruction *Mat = Base;
if (Offset) {
Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
ConstUser.OpndIdx);
Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
"const_mat", InsertionPt);
DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
<< " + " << *Offset << ") in BB "
<< Mat->getParent()->getName() << '\n' << *Mat << '\n');
Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
}
Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
// Visit constant integer.
if (isa<ConstantInt>(Opnd)) {
DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
Mat->eraseFromParent();
DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
return;
}
// Visit cast instruction.
if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
assert(CastInst->isCast() && "Expected an cast instruction!");
// Check if we already have visited this cast instruction before to avoid
// unnecessary cloning.
Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
if (!ClonedCastInst) {
ClonedCastInst = CastInst->clone();
ClonedCastInst->setOperand(0, Mat);
ClonedCastInst->insertAfter(CastInst);
// Use the same debug location as the original cast instruction.
ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
<< "To : " << *ClonedCastInst << '\n');
}
DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
return;
}
// Visit constant expression.
if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
Instruction *ConstExprInst = ConstExpr->getAsInstruction();
ConstExprInst->setOperand(0, Mat);
ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
ConstUser.OpndIdx));
// Use the same debug location as the instruction we are about to update.
ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
<< "From : " << *ConstExpr << '\n');
DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
ConstExprInst->eraseFromParent();
if (Offset)
Mat->eraseFromParent();
}
DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
return;
}
}
/// \brief Hoist and hide the base constant behind a bitcast and emit
/// materialization code for derived constants.
bool ConstantHoisting::emitBaseConstants() {
bool MadeChange = false;
for (auto const &ConstInfo : ConstantVec) {
// Hoist and hide the base constant behind a bitcast.
Instruction *IP = findConstantInsertionPoint(ConstInfo);
IntegerType *Ty = ConstInfo.BaseConstant->getType();
Instruction *Base =
new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant << ") to BB "
<< IP->getParent()->getName() << '\n' << *Base << '\n');
NumConstantsHoisted++;
// Emit materialization code for all rebased constants.
for (auto const &RCI : ConstInfo.RebasedConstants) {
NumConstantsRebased++;
for (auto const &U : RCI.Uses)
emitBaseConstants(Base, RCI.Offset, U);
}
// Use the same debug location as the last user of the constant.
assert(!Base->use_empty() && "The use list is empty!?");
assert(isa<Instruction>(Base->user_back()) &&
"All uses should be instructions.");
Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
// Correct for base constant, which we counted above too.
NumConstantsRebased--;
MadeChange = true;
}
return MadeChange;
}
/// \brief Check all cast instructions we made a copy of and remove them if they
/// have no more users.
void ConstantHoisting::deleteDeadCastInst() const {
for (auto const &I : ClonedCastMap)
if (I.first->use_empty())
I.first->eraseFromParent();
}
/// \brief Optimize expensive integer constants in the given function.
bool ConstantHoisting::optimizeConstants(Function &Fn) {
// Collect all constant candidates.
collectConstantCandidates(Fn);
// There are no constant candidates to worry about.
if (ConstCandVec.empty())
return false;
// Combine constants that can be easily materialized with an add from a common
// base constant.
findBaseConstants();
// There are no constants to emit.
if (ConstantVec.empty())
return false;
// Finally hoist the base constant and emit materialization code for dependent
// constants.
bool MadeChange = emitBaseConstants();
// Cleanup dead instructions.
deleteDeadCastInst();
return MadeChange;
}