llvm/lib/Analysis/InstructionSimplify.cpp
David Majnemer 72c6bdbf70 ConstantFold, InstSimplify: undef >>a x can be either -1 or 0, choose 0
Zero is usually a nicer constant to have than -1.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223969 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 21:58:15 +00:00

3786 lines
144 KiB
C++

//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for folding instructions into simpler forms
// that do not require creating new instructions. This does constant folding
// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
// simplified: This is usually true and assuming it simplifies the logic (if
// they have not been simplified then results are correct but maybe suboptimal).
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "instsimplify"
enum { RecursionLimit = 3 };
STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumReassoc, "Number of reassociations");
namespace {
struct Query {
const DataLayout *DL;
const TargetLibraryInfo *TLI;
const DominatorTree *DT;
AssumptionTracker *AT;
const Instruction *CxtI;
Query(const DataLayout *DL, const TargetLibraryInfo *tli,
const DominatorTree *dt, AssumptionTracker *at = nullptr,
const Instruction *cxti = nullptr)
: DL(DL), TLI(tli), DT(dt), AT(at), CxtI(cxti) {}
};
} // end anonymous namespace
static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
unsigned);
static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
unsigned);
static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
/// getFalse - For a boolean type, or a vector of boolean type, return false, or
/// a vector with every element false, as appropriate for the type.
static Constant *getFalse(Type *Ty) {
assert(Ty->getScalarType()->isIntegerTy(1) &&
"Expected i1 type or a vector of i1!");
return Constant::getNullValue(Ty);
}
/// getTrue - For a boolean type, or a vector of boolean type, return true, or
/// a vector with every element true, as appropriate for the type.
static Constant *getTrue(Type *Ty) {
assert(Ty->getScalarType()->isIntegerTy(1) &&
"Expected i1 type or a vector of i1!");
return Constant::getAllOnesValue(Ty);
}
/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
Value *RHS) {
CmpInst *Cmp = dyn_cast<CmpInst>(V);
if (!Cmp)
return false;
CmpInst::Predicate CPred = Cmp->getPredicate();
Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
if (CPred == Pred && CLHS == LHS && CRHS == RHS)
return true;
return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
CRHS == LHS;
}
/// ValueDominatesPHI - Does the given value dominate the specified phi node?
static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I)
// Arguments and constants dominate all instructions.
return true;
// If we are processing instructions (and/or basic blocks) that have not been
// fully added to a function, the parent nodes may still be null. Simply
// return the conservative answer in these cases.
if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
return false;
// If we have a DominatorTree then do a precise test.
if (DT) {
if (!DT->isReachableFromEntry(P->getParent()))
return true;
if (!DT->isReachableFromEntry(I->getParent()))
return false;
return DT->dominates(I, P);
}
// Otherwise, if the instruction is in the entry block, and is not an invoke,
// then it obviously dominates all phi nodes.
if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
!isa<InvokeInst>(I))
return true;
return false;
}
/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
/// Returns the simplified value, or null if no simplification was performed.
static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
unsigned OpcToExpand, const Query &Q,
unsigned MaxRecurse) {
Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
// Check whether the expression has the form "(A op' B) op C".
if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
if (Op0->getOpcode() == OpcodeToExpand) {
// It does! Try turning it into "(A op C) op' (B op C)".
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
// Do "A op C" and "B op C" both simplify?
if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
// They do! Return "L op' R" if it simplifies or is already available.
// If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
&& L == B && R == A)) {
++NumExpand;
return LHS;
}
// Otherwise return "L op' R" if it simplifies.
if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
++NumExpand;
return V;
}
}
}
// Check whether the expression has the form "A op (B op' C)".
if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
if (Op1->getOpcode() == OpcodeToExpand) {
// It does! Try turning it into "(A op B) op' (A op C)".
Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
// Do "A op B" and "A op C" both simplify?
if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
// They do! Return "L op' R" if it simplifies or is already available.
// If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
&& L == C && R == B)) {
++NumExpand;
return RHS;
}
// Otherwise return "L op' R" if it simplifies.
if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
++NumExpand;
return V;
}
}
}
return nullptr;
}
/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
/// operations. Returns the simpler value, or null if none was found.
static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
// Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
if (Op0 && Op0->getOpcode() == Opcode) {
Value *A = Op0->getOperand(0);
Value *B = Op0->getOperand(1);
Value *C = RHS;
// Does "B op C" simplify?
if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
// It does! Return "A op V" if it simplifies or is already available.
// If V equals B then "A op V" is just the LHS.
if (V == B) return LHS;
// Otherwise return "A op V" if it simplifies.
if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
++NumReassoc;
return W;
}
}
}
// Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
if (Op1 && Op1->getOpcode() == Opcode) {
Value *A = LHS;
Value *B = Op1->getOperand(0);
Value *C = Op1->getOperand(1);
// Does "A op B" simplify?
if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
// It does! Return "V op C" if it simplifies or is already available.
// If V equals B then "V op C" is just the RHS.
if (V == B) return RHS;
// Otherwise return "V op C" if it simplifies.
if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
++NumReassoc;
return W;
}
}
}
// The remaining transforms require commutativity as well as associativity.
if (!Instruction::isCommutative(Opcode))
return nullptr;
// Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
if (Op0 && Op0->getOpcode() == Opcode) {
Value *A = Op0->getOperand(0);
Value *B = Op0->getOperand(1);
Value *C = RHS;
// Does "C op A" simplify?
if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
// It does! Return "V op B" if it simplifies or is already available.
// If V equals A then "V op B" is just the LHS.
if (V == A) return LHS;
// Otherwise return "V op B" if it simplifies.
if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
++NumReassoc;
return W;
}
}
}
// Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
if (Op1 && Op1->getOpcode() == Opcode) {
Value *A = LHS;
Value *B = Op1->getOperand(0);
Value *C = Op1->getOperand(1);
// Does "C op A" simplify?
if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
// It does! Return "B op V" if it simplifies or is already available.
// If V equals C then "B op V" is just the RHS.
if (V == C) return RHS;
// Otherwise return "B op V" if it simplifies.
if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
++NumReassoc;
return W;
}
}
}
return nullptr;
}
/// ThreadBinOpOverSelect - In the case of a binary operation with a select
/// instruction as an operand, try to simplify the binop by seeing whether
/// evaluating it on both branches of the select results in the same value.
/// Returns the common value if so, otherwise returns null.
static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
SelectInst *SI;
if (isa<SelectInst>(LHS)) {
SI = cast<SelectInst>(LHS);
} else {
assert(isa<SelectInst>(RHS) && "No select instruction operand!");
SI = cast<SelectInst>(RHS);
}
// Evaluate the BinOp on the true and false branches of the select.
Value *TV;
Value *FV;
if (SI == LHS) {
TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
} else {
TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
}
// If they simplified to the same value, then return the common value.
// If they both failed to simplify then return null.
if (TV == FV)
return TV;
// If one branch simplified to undef, return the other one.
if (TV && isa<UndefValue>(TV))
return FV;
if (FV && isa<UndefValue>(FV))
return TV;
// If applying the operation did not change the true and false select values,
// then the result of the binop is the select itself.
if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
return SI;
// If one branch simplified and the other did not, and the simplified
// value is equal to the unsimplified one, return the simplified value.
// For example, select (cond, X, X & Z) & Z -> X & Z.
if ((FV && !TV) || (TV && !FV)) {
// Check that the simplified value has the form "X op Y" where "op" is the
// same as the original operation.
Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
if (Simplified && Simplified->getOpcode() == Opcode) {
// The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
// We already know that "op" is the same as for the simplified value. See
// if the operands match too. If so, return the simplified value.
Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
if (Simplified->getOperand(0) == UnsimplifiedLHS &&
Simplified->getOperand(1) == UnsimplifiedRHS)
return Simplified;
if (Simplified->isCommutative() &&
Simplified->getOperand(1) == UnsimplifiedLHS &&
Simplified->getOperand(0) == UnsimplifiedRHS)
return Simplified;
}
}
return nullptr;
}
/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
/// try to simplify the comparison by seeing whether both branches of the select
/// result in the same value. Returns the common value if so, otherwise returns
/// null.
static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Value *RHS, const Query &Q,
unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
// Make sure the select is on the LHS.
if (!isa<SelectInst>(LHS)) {
std::swap(LHS, RHS);
Pred = CmpInst::getSwappedPredicate(Pred);
}
assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
SelectInst *SI = cast<SelectInst>(LHS);
Value *Cond = SI->getCondition();
Value *TV = SI->getTrueValue();
Value *FV = SI->getFalseValue();
// Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
// Does "cmp TV, RHS" simplify?
Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
if (TCmp == Cond) {
// It not only simplified, it simplified to the select condition. Replace
// it with 'true'.
TCmp = getTrue(Cond->getType());
} else if (!TCmp) {
// It didn't simplify. However if "cmp TV, RHS" is equal to the select
// condition then we can replace it with 'true'. Otherwise give up.
if (!isSameCompare(Cond, Pred, TV, RHS))
return nullptr;
TCmp = getTrue(Cond->getType());
}
// Does "cmp FV, RHS" simplify?
Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
if (FCmp == Cond) {
// It not only simplified, it simplified to the select condition. Replace
// it with 'false'.
FCmp = getFalse(Cond->getType());
} else if (!FCmp) {
// It didn't simplify. However if "cmp FV, RHS" is equal to the select
// condition then we can replace it with 'false'. Otherwise give up.
if (!isSameCompare(Cond, Pred, FV, RHS))
return nullptr;
FCmp = getFalse(Cond->getType());
}
// If both sides simplified to the same value, then use it as the result of
// the original comparison.
if (TCmp == FCmp)
return TCmp;
// The remaining cases only make sense if the select condition has the same
// type as the result of the comparison, so bail out if this is not so.
if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
return nullptr;
// If the false value simplified to false, then the result of the compare
// is equal to "Cond && TCmp". This also catches the case when the false
// value simplified to false and the true value to true, returning "Cond".
if (match(FCmp, m_Zero()))
if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
return V;
// If the true value simplified to true, then the result of the compare
// is equal to "Cond || FCmp".
if (match(TCmp, m_One()))
if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
return V;
// Finally, if the false value simplified to true and the true value to
// false, then the result of the compare is equal to "!Cond".
if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
if (Value *V =
SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
Q, MaxRecurse))
return V;
return nullptr;
}
/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
/// it on the incoming phi values yields the same result for every value. If so
/// returns the common value, otherwise returns null.
static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
PHINode *PI;
if (isa<PHINode>(LHS)) {
PI = cast<PHINode>(LHS);
// Bail out if RHS and the phi may be mutually interdependent due to a loop.
if (!ValueDominatesPHI(RHS, PI, Q.DT))
return nullptr;
} else {
assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
PI = cast<PHINode>(RHS);
// Bail out if LHS and the phi may be mutually interdependent due to a loop.
if (!ValueDominatesPHI(LHS, PI, Q.DT))
return nullptr;
}
// Evaluate the BinOp on the incoming phi values.
Value *CommonValue = nullptr;
for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = PI->getIncomingValue(i);
// If the incoming value is the phi node itself, it can safely be skipped.
if (Incoming == PI) continue;
Value *V = PI == LHS ?
SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
// If the operation failed to simplify, or simplified to a different value
// to previously, then give up.
if (!V || (CommonValue && V != CommonValue))
return nullptr;
CommonValue = V;
}
return CommonValue;
}
/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
/// try to simplify the comparison by seeing whether comparing with all of the
/// incoming phi values yields the same result every time. If so returns the
/// common result, otherwise returns null.
static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
// Make sure the phi is on the LHS.
if (!isa<PHINode>(LHS)) {
std::swap(LHS, RHS);
Pred = CmpInst::getSwappedPredicate(Pred);
}
assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
PHINode *PI = cast<PHINode>(LHS);
// Bail out if RHS and the phi may be mutually interdependent due to a loop.
if (!ValueDominatesPHI(RHS, PI, Q.DT))
return nullptr;
// Evaluate the BinOp on the incoming phi values.
Value *CommonValue = nullptr;
for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = PI->getIncomingValue(i);
// If the incoming value is the phi node itself, it can safely be skipped.
if (Incoming == PI) continue;
Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
// If the operation failed to simplify, or simplified to a different value
// to previously, then give up.
if (!V || (CommonValue && V != CommonValue))
return nullptr;
CommonValue = V;
}
return CommonValue;
}
/// SimplifyAddInst - Given operands for an Add, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const Query &Q, unsigned MaxRecurse) {
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
std::swap(Op0, Op1);
}
// X + undef -> undef
if (match(Op1, m_Undef()))
return Op1;
// X + 0 -> X
if (match(Op1, m_Zero()))
return Op0;
// X + (Y - X) -> Y
// (Y - X) + X -> Y
// Eg: X + -X -> 0
Value *Y = nullptr;
if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
return Y;
// X + ~X -> -1 since ~X = -X-1
if (match(Op0, m_Not(m_Specific(Op1))) ||
match(Op1, m_Not(m_Specific(Op0))))
return Constant::getAllOnesValue(Op0->getType());
/// i1 add -> xor.
if (MaxRecurse && Op0->getType()->isIntegerTy(1))
if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
return V;
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
MaxRecurse))
return V;
// Threading Add over selects and phi nodes is pointless, so don't bother.
// Threading over the select in "A + select(cond, B, C)" means evaluating
// "A+B" and "A+C" and seeing if they are equal; but they are equal if and
// only if B and C are equal. If B and C are equal then (since we assume
// that operands have already been simplified) "select(cond, B, C)" should
// have been simplified to the common value of B and C already. Analysing
// "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
// for threading over phi nodes.
return nullptr;
}
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW,
Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
}
/// \brief Compute the base pointer and cumulative constant offsets for V.
///
/// This strips all constant offsets off of V, leaving it the base pointer, and
/// accumulates the total constant offset applied in the returned constant. It
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
/// no constant offsets applied.
///
/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
/// folding.
static Constant *stripAndComputeConstantOffsets(const DataLayout *DL,
Value *&V,
bool AllowNonInbounds = false) {
assert(V->getType()->getScalarType()->isPointerTy());
// Without DataLayout, just be conservative for now. Theoretically, more could
// be done in this case.
if (!DL)
return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
Type *IntPtrTy = DL->getIntPtrType(V->getType())->getScalarType();
APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
// Even though we don't look through PHI nodes, we could be called on an
// instruction in an unreachable block, which may be on a cycle.
SmallPtrSet<Value *, 4> Visited;
Visited.insert(V);
do {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
if ((!AllowNonInbounds && !GEP->isInBounds()) ||
!GEP->accumulateConstantOffset(*DL, Offset))
break;
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast) {
V = cast<Operator>(V)->getOperand(0);
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (GA->mayBeOverridden())
break;
V = GA->getAliasee();
} else {
break;
}
assert(V->getType()->getScalarType()->isPointerTy() &&
"Unexpected operand type!");
} while (Visited.insert(V).second);
Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
if (V->getType()->isVectorTy())
return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
OffsetIntPtr);
return OffsetIntPtr;
}
/// \brief Compute the constant difference between two pointer values.
/// If the difference is not a constant, returns zero.
static Constant *computePointerDifference(const DataLayout *DL,
Value *LHS, Value *RHS) {
Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
// If LHS and RHS are not related via constant offsets to the same base
// value, there is nothing we can do here.
if (LHS != RHS)
return nullptr;
// Otherwise, the difference of LHS - RHS can be computed as:
// LHS - RHS
// = (LHSOffset + Base) - (RHSOffset + Base)
// = LHSOffset - RHSOffset
return ConstantExpr::getSub(LHSOffset, RHSOffset);
}
/// SimplifySubInst - Given operands for a Sub, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const Query &Q, unsigned MaxRecurse) {
if (Constant *CLHS = dyn_cast<Constant>(Op0))
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
Ops, Q.DL, Q.TLI);
}
// X - undef -> undef
// undef - X -> undef
if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
return UndefValue::get(Op0->getType());
// X - 0 -> X
if (match(Op1, m_Zero()))
return Op0;
// X - X -> 0
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
// 0 - X -> 0 if the sub is NUW.
if (isNUW && match(Op0, m_Zero()))
return Op0;
// (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
// For example, (X + Y) - Y -> X; (Y + X) - Y -> X
Value *X = nullptr, *Y = nullptr, *Z = Op1;
if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
// See if "V === Y - Z" simplifies.
if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
// It does! Now see if "X + V" simplifies.
if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
// It does, we successfully reassociated!
++NumReassoc;
return W;
}
// See if "V === X - Z" simplifies.
if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
// It does! Now see if "Y + V" simplifies.
if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
// It does, we successfully reassociated!
++NumReassoc;
return W;
}
}
// X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
// For example, X - (X + 1) -> -1
X = Op0;
if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
// See if "V === X - Y" simplifies.
if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
// It does! Now see if "V - Z" simplifies.
if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
// It does, we successfully reassociated!
++NumReassoc;
return W;
}
// See if "V === X - Z" simplifies.
if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
// It does! Now see if "V - Y" simplifies.
if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
// It does, we successfully reassociated!
++NumReassoc;
return W;
}
}
// Z - (X - Y) -> (Z - X) + Y if everything simplifies.
// For example, X - (X - Y) -> Y.
Z = Op0;
if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
// See if "V === Z - X" simplifies.
if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
// It does! Now see if "V + Y" simplifies.
if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
// It does, we successfully reassociated!
++NumReassoc;
return W;
}
// trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
match(Op1, m_Trunc(m_Value(Y))))
if (X->getType() == Y->getType())
// See if "V === X - Y" simplifies.
if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
// It does! Now see if "trunc V" simplifies.
if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
// It does, return the simplified "trunc V".
return W;
// Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
if (match(Op0, m_PtrToInt(m_Value(X))) &&
match(Op1, m_PtrToInt(m_Value(Y))))
if (Constant *Result = computePointerDifference(Q.DL, X, Y))
return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
// i1 sub -> xor.
if (MaxRecurse && Op0->getType()->isIntegerTy(1))
if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
return V;
// Threading Sub over selects and phi nodes is pointless, so don't bother.
// Threading over the select in "A - select(cond, B, C)" means evaluating
// "A-B" and "A-C" and seeing if they are equal; but they are equal if and
// only if B and C are equal. If B and C are equal then (since we assume
// that operands have already been simplified) "select(cond, B, C)" should
// have been simplified to the common value of B and C already. Analysing
// "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
// for threading over phi nodes.
return nullptr;
}
Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifySubInst(Op0, Op1, isNSW, isNUW,
Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
}
/// Given operands for an FAdd, see if we can fold the result. If not, this
/// returns null.
static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
const Query &Q, unsigned MaxRecurse) {
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
std::swap(Op0, Op1);
}
// fadd X, -0 ==> X
if (match(Op1, m_NegZero()))
return Op0;
// fadd X, 0 ==> X, when we know X is not -0
if (match(Op1, m_Zero()) &&
(FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
return Op0;
// fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
// where nnan and ninf have to occur at least once somewhere in this
// expression
Value *SubOp = nullptr;
if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
SubOp = Op1;
else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
SubOp = Op0;
if (SubOp) {
Instruction *FSub = cast<Instruction>(SubOp);
if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
(FMF.noInfs() || FSub->hasNoInfs()))
return Constant::getNullValue(Op0->getType());
}
return nullptr;
}
/// Given operands for an FSub, see if we can fold the result. If not, this
/// returns null.
static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
const Query &Q, unsigned MaxRecurse) {
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
Ops, Q.DL, Q.TLI);
}
}
// fsub X, 0 ==> X
if (match(Op1, m_Zero()))
return Op0;
// fsub X, -0 ==> X, when we know X is not -0
if (match(Op1, m_NegZero()) &&
(FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
return Op0;
// fsub 0, (fsub -0.0, X) ==> X
Value *X;
if (match(Op0, m_AnyZero())) {
if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
return X;
if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
return X;
}
// fsub nnan ninf x, x ==> 0.0
if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
return Constant::getNullValue(Op0->getType());
return nullptr;
}
/// Given the operands for an FMul, see if we can fold the result
static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
FastMathFlags FMF,
const Query &Q,
unsigned MaxRecurse) {
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
std::swap(Op0, Op1);
}
// fmul X, 1.0 ==> X
if (match(Op1, m_FPOne()))
return Op0;
// fmul nnan nsz X, 0 ==> 0
if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
return Op1;
return nullptr;
}
/// SimplifyMulInst - Given operands for a Mul, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
unsigned MaxRecurse) {
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
std::swap(Op0, Op1);
}
// X * undef -> 0
if (match(Op1, m_Undef()))
return Constant::getNullValue(Op0->getType());
// X * 0 -> 0
if (match(Op1, m_Zero()))
return Op1;
// X * 1 -> X
if (match(Op1, m_One()))
return Op0;
// (X / Y) * Y -> X if the division is exact.
Value *X = nullptr;
if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
return X;
// i1 mul -> and.
if (MaxRecurse && Op0->getType()->isIntegerTy(1))
if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
return V;
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
MaxRecurse))
return V;
// Mul distributes over Add. Try some generic simplifications based on this.
if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
Q, MaxRecurse))
return V;
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
MaxRecurse))
return V;
// If the operation is with the result of a phi instruction, check whether
// operating on all incoming values of the phi always yields the same value.
if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
MaxRecurse))
return V;
return nullptr;
}
Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
FastMathFlags FMF,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
const Query &Q, unsigned MaxRecurse) {
if (Constant *C0 = dyn_cast<Constant>(Op0)) {
if (Constant *C1 = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { C0, C1 };
return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
}
}
bool isSigned = Opcode == Instruction::SDiv;
// X / undef -> undef
if (match(Op1, m_Undef()))
return Op1;
// X / 0 -> undef, we don't need to preserve faults!
if (match(Op1, m_Zero()))
return UndefValue::get(Op1->getType());
// undef / X -> 0
if (match(Op0, m_Undef()))
return Constant::getNullValue(Op0->getType());
// 0 / X -> 0, we don't need to preserve faults!
if (match(Op0, m_Zero()))
return Op0;
// X / 1 -> X
if (match(Op1, m_One()))
return Op0;
if (Op0->getType()->isIntegerTy(1))
// It can't be division by zero, hence it must be division by one.
return Op0;
// X / X -> 1
if (Op0 == Op1)
return ConstantInt::get(Op0->getType(), 1);
// (X * Y) / Y -> X if the multiplication does not overflow.
Value *X = nullptr, *Y = nullptr;
if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
// If the Mul knows it does not overflow, then we are good to go.
if ((isSigned && Mul->hasNoSignedWrap()) ||
(!isSigned && Mul->hasNoUnsignedWrap()))
return X;
// If X has the form X = A / Y then X * Y cannot overflow.
if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
return X;
}
// (X rem Y) / Y -> 0
if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
(!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
return Constant::getNullValue(Op0->getType());
// (X /u C1) /u C2 -> 0 if C1 * C2 overflow
ConstantInt *C1, *C2;
if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
match(Op1, m_ConstantInt(C2))) {
bool Overflow;
C1->getValue().umul_ov(C2->getValue(), Overflow);
if (Overflow)
return Constant::getNullValue(Op0->getType());
}
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
// If the operation is with the result of a phi instruction, check whether
// operating on all incoming values of the phi always yields the same value.
if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
return nullptr;
}
/// SimplifySDivInst - Given operands for an SDiv, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
return V;
return nullptr;
}
Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyUDivInst - Given operands for a UDiv, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
return V;
return nullptr;
}
Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
unsigned) {
// undef / X -> undef (the undef could be a snan).
if (match(Op0, m_Undef()))
return Op0;
// X / undef -> undef
if (match(Op1, m_Undef()))
return Op1;
return nullptr;
}
Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyRem - Given operands for an SRem or URem, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
const Query &Q, unsigned MaxRecurse) {
if (Constant *C0 = dyn_cast<Constant>(Op0)) {
if (Constant *C1 = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { C0, C1 };
return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
}
}
// X % undef -> undef
if (match(Op1, m_Undef()))
return Op1;
// undef % X -> 0
if (match(Op0, m_Undef()))
return Constant::getNullValue(Op0->getType());
// 0 % X -> 0, we don't need to preserve faults!
if (match(Op0, m_Zero()))
return Op0;
// X % 0 -> undef, we don't need to preserve faults!
if (match(Op1, m_Zero()))
return UndefValue::get(Op0->getType());
// X % 1 -> 0
if (match(Op1, m_One()))
return Constant::getNullValue(Op0->getType());
if (Op0->getType()->isIntegerTy(1))
// It can't be remainder by zero, hence it must be remainder by one.
return Constant::getNullValue(Op0->getType());
// X % X -> 0
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
// (X % Y) % Y -> X % Y
if ((Opcode == Instruction::SRem &&
match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
(Opcode == Instruction::URem &&
match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
return Op0;
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
// If the operation is with the result of a phi instruction, check whether
// operating on all incoming values of the phi always yields the same value.
if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
return nullptr;
}
/// SimplifySRemInst - Given operands for an SRem, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
return V;
return nullptr;
}
Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyURemInst - Given operands for a URem, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
return V;
return nullptr;
}
Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
unsigned) {
// undef % X -> undef (the undef could be a snan).
if (match(Op0, m_Undef()))
return Op0;
// X % undef -> undef
if (match(Op1, m_Undef()))
return Op1;
return nullptr;
}
Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// isUndefShift - Returns true if a shift by \c Amount always yields undef.
static bool isUndefShift(Value *Amount) {
Constant *C = dyn_cast<Constant>(Amount);
if (!C)
return false;
// X shift by undef -> undef because it may shift by the bitwidth.
if (isa<UndefValue>(C))
return true;
// Shifting by the bitwidth or more is undefined.
if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
if (CI->getValue().getLimitedValue() >=
CI->getType()->getScalarSizeInBits())
return true;
// If all lanes of a vector shift are undefined the whole shift is.
if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
if (!isUndefShift(C->getAggregateElement(I)))
return false;
return true;
}
return false;
}
/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
const Query &Q, unsigned MaxRecurse) {
if (Constant *C0 = dyn_cast<Constant>(Op0)) {
if (Constant *C1 = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { C0, C1 };
return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
}
}
// 0 shift by X -> 0
if (match(Op0, m_Zero()))
return Op0;
// X shift by 0 -> X
if (match(Op1, m_Zero()))
return Op0;
// Fold undefined shifts.
if (isUndefShift(Op1))
return UndefValue::get(Op0->getType());
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
// If the operation is with the result of a phi instruction, check whether
// operating on all incoming values of the phi always yields the same value.
if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
return nullptr;
}
/// \brief Given operands for an Shl, LShr or AShr, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
bool isExact, const Query &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
// X >> X -> 0
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
// The low bit cannot be shifted out of an exact shift if it is set.
if (isExact) {
unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
APInt Op0KnownZero(BitWidth, 0);
APInt Op0KnownOne(BitWidth, 0);
computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AT, Q.CxtI,
Q.DT);
if (Op0KnownOne[0])
return Op0;
}
return nullptr;
}
/// SimplifyShlInst - Given operands for an Shl, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const Query &Q, unsigned MaxRecurse) {
if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
return V;
// undef << X -> 0
if (match(Op0, m_Undef()))
return Constant::getNullValue(Op0->getType());
// (X >> A) << A -> X
Value *X;
if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
return X;
return nullptr;
}
Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyLShrInst - Given operands for an LShr, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
const Query &Q, unsigned MaxRecurse) {
if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
MaxRecurse))
return V;
// undef >>l X -> 0
// undef >>l X -> undef (if it's exact)
if (match(Op0, m_Undef()))
return isExact ? UndefValue::get(Op0->getType())
: Constant::getNullValue(Op0->getType());
// (X << A) >> A -> X
Value *X;
if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
return X;
return nullptr;
}
Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyAShrInst - Given operands for an AShr, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
const Query &Q, unsigned MaxRecurse) {
if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
MaxRecurse))
return V;
// all ones >>a X -> all ones
if (match(Op0, m_AllOnes()))
return Op0;
// undef >>a X -> 0
// undef >>a X -> undef (if it's exact)
if (match(Op0, m_Undef()))
return isExact ? UndefValue::get(Op0->getType())
: Constant::getNullValue(Op0->getType());
// (X << A) >> A -> X
Value *X;
if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
return X;
// Arithmetic shifting an all-sign-bit value is a no-op.
unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AT, Q.CxtI, Q.DT);
if (NumSignBits == Op0->getType()->getScalarSizeInBits())
return Op0;
return nullptr;
}
Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
ICmpInst *UnsignedICmp, bool IsAnd) {
Value *X, *Y;
ICmpInst::Predicate EqPred;
if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
!ICmpInst::isEquality(EqPred))
return nullptr;
ICmpInst::Predicate UnsignedPred;
if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
ICmpInst::isUnsigned(UnsignedPred))
;
else if (match(UnsignedICmp,
m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
ICmpInst::isUnsigned(UnsignedPred))
UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
else
return nullptr;
// X < Y && Y != 0 --> X < Y
// X < Y || Y != 0 --> Y != 0
if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
return IsAnd ? UnsignedICmp : ZeroICmp;
// X >= Y || Y != 0 --> true
// X >= Y || Y == 0 --> X >= Y
if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
if (EqPred == ICmpInst::ICMP_NE)
return getTrue(UnsignedICmp->getType());
return UnsignedICmp;
}
// X < Y && Y == 0 --> false
if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
IsAnd)
return getFalse(UnsignedICmp->getType());
return nullptr;
}
// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
// of possible values cannot be satisfied.
static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
ICmpInst::Predicate Pred0, Pred1;
ConstantInt *CI1, *CI2;
Value *V;
if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
return X;
if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
m_ConstantInt(CI2))))
return nullptr;
if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
return nullptr;
Type *ITy = Op0->getType();
auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
bool isNSW = AddInst->hasNoSignedWrap();
bool isNUW = AddInst->hasNoUnsignedWrap();
const APInt &CI1V = CI1->getValue();
const APInt &CI2V = CI2->getValue();
const APInt Delta = CI2V - CI1V;
if (CI1V.isStrictlyPositive()) {
if (Delta == 2) {
if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
return getFalse(ITy);
if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
return getFalse(ITy);
}
if (Delta == 1) {
if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
return getFalse(ITy);
if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
return getFalse(ITy);
}
}
if (CI1V.getBoolValue() && isNUW) {
if (Delta == 2)
if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
return getFalse(ITy);
if (Delta == 1)
if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
return getFalse(ITy);
}
return nullptr;
}
/// SimplifyAndInst - Given operands for an And, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
unsigned MaxRecurse) {
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
std::swap(Op0, Op1);
}
// X & undef -> 0
if (match(Op1, m_Undef()))
return Constant::getNullValue(Op0->getType());
// X & X = X
if (Op0 == Op1)
return Op0;
// X & 0 = 0
if (match(Op1, m_Zero()))
return Op1;
// X & -1 = X
if (match(Op1, m_AllOnes()))
return Op0;
// A & ~A = ~A & A = 0
if (match(Op0, m_Not(m_Specific(Op1))) ||
match(Op1, m_Not(m_Specific(Op0))))
return Constant::getNullValue(Op0->getType());
// (A | ?) & A = A
Value *A = nullptr, *B = nullptr;
if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
(A == Op1 || B == Op1))
return Op1;
// A & (A | ?) = A
if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
(A == Op0 || B == Op0))
return Op0;
// A & (-A) = A if A is a power of two or zero.
if (match(Op0, m_Neg(m_Specific(Op1))) ||
match(Op1, m_Neg(m_Specific(Op0)))) {
if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true, 0, Q.AT, Q.CxtI, Q.DT))
return Op0;
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true, 0, Q.AT, Q.CxtI, Q.DT))
return Op1;
}
if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
return V;
if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
return V;
}
}
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
MaxRecurse))
return V;
// And distributes over Or. Try some generic simplifications based on this.
if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Q, MaxRecurse))
return V;
// And distributes over Xor. Try some generic simplifications based on this.
if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
Q, MaxRecurse))
return V;
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
MaxRecurse))
return V;
// If the operation is with the result of a phi instruction, check whether
// operating on all incoming values of the phi always yields the same value.
if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
MaxRecurse))
return V;
return nullptr;
}
Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
// contains all possible values.
static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
ICmpInst::Predicate Pred0, Pred1;
ConstantInt *CI1, *CI2;
Value *V;
if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
return X;
if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
m_ConstantInt(CI2))))
return nullptr;
if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
return nullptr;
Type *ITy = Op0->getType();
auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
bool isNSW = AddInst->hasNoSignedWrap();
bool isNUW = AddInst->hasNoUnsignedWrap();
const APInt &CI1V = CI1->getValue();
const APInt &CI2V = CI2->getValue();
const APInt Delta = CI2V - CI1V;
if (CI1V.isStrictlyPositive()) {
if (Delta == 2) {
if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
return getTrue(ITy);
if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
return getTrue(ITy);
}
if (Delta == 1) {
if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
return getTrue(ITy);
if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
return getTrue(ITy);
}
}
if (CI1V.getBoolValue() && isNUW) {
if (Delta == 2)
if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
return getTrue(ITy);
if (Delta == 1)
if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
return getTrue(ITy);
}
return nullptr;
}
/// SimplifyOrInst - Given operands for an Or, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
unsigned MaxRecurse) {
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
std::swap(Op0, Op1);
}
// X | undef -> -1
if (match(Op1, m_Undef()))
return Constant::getAllOnesValue(Op0->getType());
// X | X = X
if (Op0 == Op1)
return Op0;
// X | 0 = X
if (match(Op1, m_Zero()))
return Op0;
// X | -1 = -1
if (match(Op1, m_AllOnes()))
return Op1;
// A | ~A = ~A | A = -1
if (match(Op0, m_Not(m_Specific(Op1))) ||
match(Op1, m_Not(m_Specific(Op0))))
return Constant::getAllOnesValue(Op0->getType());
// (A & ?) | A = A
Value *A = nullptr, *B = nullptr;
if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
(A == Op1 || B == Op1))
return Op1;
// A | (A & ?) = A
if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
(A == Op0 || B == Op0))
return Op0;
// ~(A & ?) | A = -1
if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
(A == Op1 || B == Op1))
return Constant::getAllOnesValue(Op1->getType());
// A | ~(A & ?) = -1
if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
(A == Op0 || B == Op0))
return Constant::getAllOnesValue(Op0->getType());
if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
return V;
if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
return V;
}
}
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
MaxRecurse))
return V;
// Or distributes over And. Try some generic simplifications based on this.
if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
MaxRecurse))
return V;
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
MaxRecurse))
return V;
// (A & C)|(B & D)
Value *C = nullptr, *D = nullptr;
if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
match(Op1, m_And(m_Value(B), m_Value(D)))) {
ConstantInt *C1 = dyn_cast<ConstantInt>(C);
ConstantInt *C2 = dyn_cast<ConstantInt>(D);
if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
// (A & C1)|(B & C2)
// If we have: ((V + N) & C1) | (V & C2)
// .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
// replace with V+N.
Value *V1, *V2;
if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
match(A, m_Add(m_Value(V1), m_Value(V2)))) {
// Add commutes, try both ways.
if (V1 == B && MaskedValueIsZero(V2, C2->getValue(), Q.DL,
0, Q.AT, Q.CxtI, Q.DT))
return A;
if (V2 == B && MaskedValueIsZero(V1, C2->getValue(), Q.DL,
0, Q.AT, Q.CxtI, Q.DT))
return A;
}
// Or commutes, try both ways.
if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
match(B, m_Add(m_Value(V1), m_Value(V2)))) {
// Add commutes, try both ways.
if (V1 == A && MaskedValueIsZero(V2, C1->getValue(), Q.DL,
0, Q.AT, Q.CxtI, Q.DT))
return B;
if (V2 == A && MaskedValueIsZero(V1, C1->getValue(), Q.DL,
0, Q.AT, Q.CxtI, Q.DT))
return B;
}
}
}
// If the operation is with the result of a phi instruction, check whether
// operating on all incoming values of the phi always yields the same value.
if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
return V;
return nullptr;
}
Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyXorInst - Given operands for a Xor, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
unsigned MaxRecurse) {
if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
std::swap(Op0, Op1);
}
// A ^ undef -> undef
if (match(Op1, m_Undef()))
return Op1;
// A ^ 0 = A
if (match(Op1, m_Zero()))
return Op0;
// A ^ A = 0
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
// A ^ ~A = ~A ^ A = -1
if (match(Op0, m_Not(m_Specific(Op1))) ||
match(Op1, m_Not(m_Specific(Op0))))
return Constant::getAllOnesValue(Op0->getType());
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
MaxRecurse))
return V;
// Threading Xor over selects and phi nodes is pointless, so don't bother.
// Threading over the select in "A ^ select(cond, B, C)" means evaluating
// "A^B" and "A^C" and seeing if they are equal; but they are equal if and
// only if B and C are equal. If B and C are equal then (since we assume
// that operands have already been simplified) "select(cond, B, C)" should
// have been simplified to the common value of B and C already. Analysing
// "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
// for threading over phi nodes.
return nullptr;
}
Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
static Type *GetCompareTy(Value *Op) {
return CmpInst::makeCmpResultType(Op->getType());
}
/// ExtractEquivalentCondition - Rummage around inside V looking for something
/// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
/// otherwise return null. Helper function for analyzing max/min idioms.
static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
Value *LHS, Value *RHS) {
SelectInst *SI = dyn_cast<SelectInst>(V);
if (!SI)
return nullptr;
CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
if (!Cmp)
return nullptr;
Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
return Cmp;
if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
LHS == CmpRHS && RHS == CmpLHS)
return Cmp;
return nullptr;
}
// A significant optimization not implemented here is assuming that alloca
// addresses are not equal to incoming argument values. They don't *alias*,
// as we say, but that doesn't mean they aren't equal, so we take a
// conservative approach.
//
// This is inspired in part by C++11 5.10p1:
// "Two pointers of the same type compare equal if and only if they are both
// null, both point to the same function, or both represent the same
// address."
//
// This is pretty permissive.
//
// It's also partly due to C11 6.5.9p6:
// "Two pointers compare equal if and only if both are null pointers, both are
// pointers to the same object (including a pointer to an object and a
// subobject at its beginning) or function, both are pointers to one past the
// last element of the same array object, or one is a pointer to one past the
// end of one array object and the other is a pointer to the start of a
// different array object that happens to immediately follow the first array
// object in the address space.)
//
// C11's version is more restrictive, however there's no reason why an argument
// couldn't be a one-past-the-end value for a stack object in the caller and be
// equal to the beginning of a stack object in the callee.
//
// If the C and C++ standards are ever made sufficiently restrictive in this
// area, it may be possible to update LLVM's semantics accordingly and reinstate
// this optimization.
static Constant *computePointerICmp(const DataLayout *DL,
const TargetLibraryInfo *TLI,
CmpInst::Predicate Pred,
Value *LHS, Value *RHS) {
// First, skip past any trivial no-ops.
LHS = LHS->stripPointerCasts();
RHS = RHS->stripPointerCasts();
// A non-null pointer is not equal to a null pointer.
if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
(Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
return ConstantInt::get(GetCompareTy(LHS),
!CmpInst::isTrueWhenEqual(Pred));
// We can only fold certain predicates on pointer comparisons.
switch (Pred) {
default:
return nullptr;
// Equality comaprisons are easy to fold.
case CmpInst::ICMP_EQ:
case CmpInst::ICMP_NE:
break;
// We can only handle unsigned relational comparisons because 'inbounds' on
// a GEP only protects against unsigned wrapping.
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE:
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
// However, we have to switch them to their signed variants to handle
// negative indices from the base pointer.
Pred = ICmpInst::getSignedPredicate(Pred);
break;
}
// Strip off any constant offsets so that we can reason about them.
// It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
// here and compare base addresses like AliasAnalysis does, however there are
// numerous hazards. AliasAnalysis and its utilities rely on special rules
// governing loads and stores which don't apply to icmps. Also, AliasAnalysis
// doesn't need to guarantee pointer inequality when it says NoAlias.
Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
// If LHS and RHS are related via constant offsets to the same base
// value, we can replace it with an icmp which just compares the offsets.
if (LHS == RHS)
return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
// Various optimizations for (in)equality comparisons.
if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
// Different non-empty allocations that exist at the same time have
// different addresses (if the program can tell). Global variables always
// exist, so they always exist during the lifetime of each other and all
// allocas. Two different allocas usually have different addresses...
//
// However, if there's an @llvm.stackrestore dynamically in between two
// allocas, they may have the same address. It's tempting to reduce the
// scope of the problem by only looking at *static* allocas here. That would
// cover the majority of allocas while significantly reducing the likelihood
// of having an @llvm.stackrestore pop up in the middle. However, it's not
// actually impossible for an @llvm.stackrestore to pop up in the middle of
// an entry block. Also, if we have a block that's not attached to a
// function, we can't tell if it's "static" under the current definition.
// Theoretically, this problem could be fixed by creating a new kind of
// instruction kind specifically for static allocas. Such a new instruction
// could be required to be at the top of the entry block, thus preventing it
// from being subject to a @llvm.stackrestore. Instcombine could even
// convert regular allocas into these special allocas. It'd be nifty.
// However, until then, this problem remains open.
//
// So, we'll assume that two non-empty allocas have different addresses
// for now.
//
// With all that, if the offsets are within the bounds of their allocations
// (and not one-past-the-end! so we can't use inbounds!), and their
// allocations aren't the same, the pointers are not equal.
//
// Note that it's not necessary to check for LHS being a global variable
// address, due to canonicalization and constant folding.
if (isa<AllocaInst>(LHS) &&
(isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
uint64_t LHSSize, RHSSize;
if (LHSOffsetCI && RHSOffsetCI &&
getObjectSize(LHS, LHSSize, DL, TLI) &&
getObjectSize(RHS, RHSSize, DL, TLI)) {
const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
if (!LHSOffsetValue.isNegative() &&
!RHSOffsetValue.isNegative() &&
LHSOffsetValue.ult(LHSSize) &&
RHSOffsetValue.ult(RHSSize)) {
return ConstantInt::get(GetCompareTy(LHS),
!CmpInst::isTrueWhenEqual(Pred));
}
}
// Repeat the above check but this time without depending on DataLayout
// or being able to compute a precise size.
if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
!cast<PointerType>(RHS->getType())->isEmptyTy() &&
LHSOffset->isNullValue() &&
RHSOffset->isNullValue())
return ConstantInt::get(GetCompareTy(LHS),
!CmpInst::isTrueWhenEqual(Pred));
}
// Even if an non-inbounds GEP occurs along the path we can still optimize
// equality comparisons concerning the result. We avoid walking the whole
// chain again by starting where the last calls to
// stripAndComputeConstantOffsets left off and accumulate the offsets.
Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
if (LHS == RHS)
return ConstantExpr::getICmp(Pred,
ConstantExpr::getAdd(LHSOffset, LHSNoBound),
ConstantExpr::getAdd(RHSOffset, RHSNoBound));
// If one side of the equality comparison must come from a noalias call
// (meaning a system memory allocation function), and the other side must
// come from a pointer that cannot overlap with dynamically-allocated
// memory within the lifetime of the current function (allocas, byval
// arguments, globals), then determine the comparison result here.
SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
GetUnderlyingObjects(LHS, LHSUObjs, DL);
GetUnderlyingObjects(RHS, RHSUObjs, DL);
// Is the set of underlying objects all noalias calls?
auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
return std::all_of(Objects.begin(), Objects.end(),
[](Value *V){ return isNoAliasCall(V); });
};
// Is the set of underlying objects all things which must be disjoint from
// noalias calls. For allocas, we consider only static ones (dynamic
// allocas might be transformed into calls to malloc not simultaneously
// live with the compared-to allocation). For globals, we exclude symbols
// that might be resolve lazily to symbols in another dynamically-loaded
// library (and, thus, could be malloc'ed by the implementation).
auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
return std::all_of(Objects.begin(), Objects.end(),
[](Value *V){
if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
return AI->getParent() && AI->getParent()->getParent() &&
AI->isStaticAlloca();
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return (GV->hasLocalLinkage() ||
GV->hasHiddenVisibility() ||
GV->hasProtectedVisibility() ||
GV->hasUnnamedAddr()) &&
!GV->isThreadLocal();
if (const Argument *A = dyn_cast<Argument>(V))
return A->hasByValAttr();
return false;
});
};
if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
(IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
return ConstantInt::get(GetCompareTy(LHS),
!CmpInst::isTrueWhenEqual(Pred));
}
// Otherwise, fail.
return nullptr;
}
/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
if (Constant *CRHS = dyn_cast<Constant>(RHS))
return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
// If we have a constant, make sure it is on the RHS.
std::swap(LHS, RHS);
Pred = CmpInst::getSwappedPredicate(Pred);
}
Type *ITy = GetCompareTy(LHS); // The return type.
Type *OpTy = LHS->getType(); // The operand type.
// icmp X, X -> true/false
// X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
// because X could be 0.
if (LHS == RHS || isa<UndefValue>(RHS))
return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
// Special case logic when the operands have i1 type.
if (OpTy->getScalarType()->isIntegerTy(1)) {
switch (Pred) {
default: break;
case ICmpInst::ICMP_EQ:
// X == 1 -> X
if (match(RHS, m_One()))
return LHS;
break;
case ICmpInst::ICMP_NE:
// X != 0 -> X
if (match(RHS, m_Zero()))
return LHS;
break;
case ICmpInst::ICMP_UGT:
// X >u 0 -> X
if (match(RHS, m_Zero()))
return LHS;
break;
case ICmpInst::ICMP_UGE:
// X >=u 1 -> X
if (match(RHS, m_One()))
return LHS;
break;
case ICmpInst::ICMP_SLT:
// X <s 0 -> X
if (match(RHS, m_Zero()))
return LHS;
break;
case ICmpInst::ICMP_SLE:
// X <=s -1 -> X
if (match(RHS, m_One()))
return LHS;
break;
}
}
// If we are comparing with zero then try hard since this is a common case.
if (match(RHS, m_Zero())) {
bool LHSKnownNonNegative, LHSKnownNegative;
switch (Pred) {
default: llvm_unreachable("Unknown ICmp predicate!");
case ICmpInst::ICMP_ULT:
return getFalse(ITy);
case ICmpInst::ICMP_UGE:
return getTrue(ITy);
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_ULE:
if (isKnownNonZero(LHS, Q.DL, 0, Q.AT, Q.CxtI, Q.DT))
return getFalse(ITy);
break;
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_UGT:
if (isKnownNonZero(LHS, Q.DL, 0, Q.AT, Q.CxtI, Q.DT))
return getTrue(ITy);
break;
case ICmpInst::ICMP_SLT:
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
0, Q.AT, Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getTrue(ITy);
if (LHSKnownNonNegative)
return getFalse(ITy);
break;
case ICmpInst::ICMP_SLE:
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
0, Q.AT, Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getTrue(ITy);
if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL,
0, Q.AT, Q.CxtI, Q.DT))
return getFalse(ITy);
break;
case ICmpInst::ICMP_SGE:
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
0, Q.AT, Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getFalse(ITy);
if (LHSKnownNonNegative)
return getTrue(ITy);
break;
case ICmpInst::ICMP_SGT:
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
0, Q.AT, Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getFalse(ITy);
if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL,
0, Q.AT, Q.CxtI, Q.DT))
return getTrue(ITy);
break;
}
}
// See if we are doing a comparison with a constant integer.
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
// Rule out tautological comparisons (eg., ult 0 or uge 0).
ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
if (RHS_CR.isEmptySet())
return ConstantInt::getFalse(CI->getContext());
if (RHS_CR.isFullSet())
return ConstantInt::getTrue(CI->getContext());
// Many binary operators with constant RHS have easy to compute constant
// range. Use them to check whether the comparison is a tautology.
unsigned Width = CI->getBitWidth();
APInt Lower = APInt(Width, 0);
APInt Upper = APInt(Width, 0);
ConstantInt *CI2;
if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
// 'urem x, CI2' produces [0, CI2).
Upper = CI2->getValue();
} else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
// 'srem x, CI2' produces (-|CI2|, |CI2|).
Upper = CI2->getValue().abs();
Lower = (-Upper) + 1;
} else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
// 'udiv CI2, x' produces [0, CI2].
Upper = CI2->getValue() + 1;
} else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
// 'udiv x, CI2' produces [0, UINT_MAX / CI2].
APInt NegOne = APInt::getAllOnesValue(Width);
if (!CI2->isZero())
Upper = NegOne.udiv(CI2->getValue()) + 1;
} else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
if (CI2->isMinSignedValue()) {
// 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
Lower = CI2->getValue();
Upper = Lower.lshr(1) + 1;
} else {
// 'sdiv CI2, x' produces [-|CI2|, |CI2|].
Upper = CI2->getValue().abs() + 1;
Lower = (-Upper) + 1;
}
} else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
APInt IntMin = APInt::getSignedMinValue(Width);
APInt IntMax = APInt::getSignedMaxValue(Width);
APInt Val = CI2->getValue();
if (Val.isAllOnesValue()) {
// 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
// where CI2 != -1 and CI2 != 0 and CI2 != 1
Lower = IntMin + 1;
Upper = IntMax + 1;
} else if (Val.countLeadingZeros() < Width - 1) {
// 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
// where CI2 != -1 and CI2 != 0 and CI2 != 1
Lower = IntMin.sdiv(Val);
Upper = IntMax.sdiv(Val);
if (Lower.sgt(Upper))
std::swap(Lower, Upper);
Upper = Upper + 1;
assert(Upper != Lower && "Upper part of range has wrapped!");
}
} else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
// 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
Lower = CI2->getValue();
Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
} else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
if (CI2->isNegative()) {
// 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
Lower = CI2->getValue().shl(ShiftAmount);
Upper = CI2->getValue() + 1;
} else {
// 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
Lower = CI2->getValue();
Upper = CI2->getValue().shl(ShiftAmount) + 1;
}
} else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
// 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
APInt NegOne = APInt::getAllOnesValue(Width);
if (CI2->getValue().ult(Width))
Upper = NegOne.lshr(CI2->getValue()) + 1;
} else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
// 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
unsigned ShiftAmount = Width - 1;
if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
ShiftAmount = CI2->getValue().countTrailingZeros();
Lower = CI2->getValue().lshr(ShiftAmount);
Upper = CI2->getValue() + 1;
} else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
// 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
APInt IntMin = APInt::getSignedMinValue(Width);
APInt IntMax = APInt::getSignedMaxValue(Width);
if (CI2->getValue().ult(Width)) {
Lower = IntMin.ashr(CI2->getValue());
Upper = IntMax.ashr(CI2->getValue()) + 1;
}
} else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
unsigned ShiftAmount = Width - 1;
if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
ShiftAmount = CI2->getValue().countTrailingZeros();
if (CI2->isNegative()) {
// 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
Lower = CI2->getValue();
Upper = CI2->getValue().ashr(ShiftAmount) + 1;
} else {
// 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
Lower = CI2->getValue().ashr(ShiftAmount);
Upper = CI2->getValue() + 1;
}
} else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
// 'or x, CI2' produces [CI2, UINT_MAX].
Lower = CI2->getValue();
} else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
// 'and x, CI2' produces [0, CI2].
Upper = CI2->getValue() + 1;
}
if (Lower != Upper) {
ConstantRange LHS_CR = ConstantRange(Lower, Upper);
if (RHS_CR.contains(LHS_CR))
return ConstantInt::getTrue(RHS->getContext());
if (RHS_CR.inverse().contains(LHS_CR))
return ConstantInt::getFalse(RHS->getContext());
}
}
// Compare of cast, for example (zext X) != 0 -> X != 0
if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
Instruction *LI = cast<CastInst>(LHS);
Value *SrcOp = LI->getOperand(0);
Type *SrcTy = SrcOp->getType();
Type *DstTy = LI->getType();
// Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
// if the integer type is the same size as the pointer type.
if (MaxRecurse && Q.DL && isa<PtrToIntInst>(LI) &&
Q.DL->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
// Transfer the cast to the constant.
if (Value *V = SimplifyICmpInst(Pred, SrcOp,
ConstantExpr::getIntToPtr(RHSC, SrcTy),
Q, MaxRecurse-1))
return V;
} else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
if (RI->getOperand(0)->getType() == SrcTy)
// Compare without the cast.
if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Q, MaxRecurse-1))
return V;
}
}
if (isa<ZExtInst>(LHS)) {
// Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
// same type.
if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
// Compare X and Y. Note that signed predicates become unsigned.
if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
SrcOp, RI->getOperand(0), Q,
MaxRecurse-1))
return V;
}
// Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
// too. If not, then try to deduce the result of the comparison.
else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
// Compute the constant that would happen if we truncated to SrcTy then
// reextended to DstTy.
Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
// If the re-extended constant didn't change then this is effectively
// also a case of comparing two zero-extended values.
if (RExt == CI && MaxRecurse)
if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
SrcOp, Trunc, Q, MaxRecurse-1))
return V;
// Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
// there. Use this to work out the result of the comparison.
if (RExt != CI) {
switch (Pred) {
default: llvm_unreachable("Unknown ICmp predicate!");
// LHS <u RHS.
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
return ConstantInt::getFalse(CI->getContext());
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
return ConstantInt::getTrue(CI->getContext());
// LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
// is non-negative then LHS <s RHS.
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
return CI->getValue().isNegative() ?
ConstantInt::getTrue(CI->getContext()) :
ConstantInt::getFalse(CI->getContext());
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
return CI->getValue().isNegative() ?
ConstantInt::getFalse(CI->getContext()) :
ConstantInt::getTrue(CI->getContext());
}
}
}
}
if (isa<SExtInst>(LHS)) {
// Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
// same type.
if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
// Compare X and Y. Note that the predicate does not change.
if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Q, MaxRecurse-1))
return V;
}
// Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
// too. If not, then try to deduce the result of the comparison.
else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
// Compute the constant that would happen if we truncated to SrcTy then
// reextended to DstTy.
Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
// If the re-extended constant didn't change then this is effectively
// also a case of comparing two sign-extended values.
if (RExt == CI && MaxRecurse)
if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
return V;
// Otherwise the upper bits of LHS are all equal, while RHS has varying
// bits there. Use this to work out the result of the comparison.
if (RExt != CI) {
switch (Pred) {
default: llvm_unreachable("Unknown ICmp predicate!");
case ICmpInst::ICMP_EQ:
return ConstantInt::getFalse(CI->getContext());
case ICmpInst::ICMP_NE:
return ConstantInt::getTrue(CI->getContext());
// If RHS is non-negative then LHS <s RHS. If RHS is negative then
// LHS >s RHS.
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
return CI->getValue().isNegative() ?
ConstantInt::getTrue(CI->getContext()) :
ConstantInt::getFalse(CI->getContext());
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
return CI->getValue().isNegative() ?
ConstantInt::getFalse(CI->getContext()) :
ConstantInt::getTrue(CI->getContext());
// If LHS is non-negative then LHS <u RHS. If LHS is negative then
// LHS >u RHS.
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
// Comparison is true iff the LHS <s 0.
if (MaxRecurse)
if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
Constant::getNullValue(SrcTy),
Q, MaxRecurse-1))
return V;
break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
// Comparison is true iff the LHS >=s 0.
if (MaxRecurse)
if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
Constant::getNullValue(SrcTy),
Q, MaxRecurse-1))
return V;
break;
}
}
}
}
}
// Special logic for binary operators.
BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
if (MaxRecurse && (LBO || RBO)) {
// Analyze the case when either LHS or RHS is an add instruction.
Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
// LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
if (LBO && LBO->getOpcode() == Instruction::Add) {
A = LBO->getOperand(0); B = LBO->getOperand(1);
NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
(CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
(CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
}
if (RBO && RBO->getOpcode() == Instruction::Add) {
C = RBO->getOperand(0); D = RBO->getOperand(1);
NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
(CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
(CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
}
// icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
if ((A == RHS || B == RHS) && NoLHSWrapProblem)
if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
Constant::getNullValue(RHS->getType()),
Q, MaxRecurse-1))
return V;
// icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
if ((C == LHS || D == LHS) && NoRHSWrapProblem)
if (Value *V = SimplifyICmpInst(Pred,
Constant::getNullValue(LHS->getType()),
C == LHS ? D : C, Q, MaxRecurse-1))
return V;
// icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
if (A && C && (A == C || A == D || B == C || B == D) &&
NoLHSWrapProblem && NoRHSWrapProblem) {
// Determine Y and Z in the form icmp (X+Y), (X+Z).
Value *Y, *Z;
if (A == C) {
// C + B == C + D -> B == D
Y = B;
Z = D;
} else if (A == D) {
// D + B == C + D -> B == C
Y = B;
Z = C;
} else if (B == C) {
// A + C == C + D -> A == D
Y = A;
Z = D;
} else {
assert(B == D);
// A + D == C + D -> A == C
Y = A;
Z = C;
}
if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
return V;
}
}
// icmp pred (or X, Y), X
if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
m_Or(m_Specific(RHS), m_Value())))) {
if (Pred == ICmpInst::ICMP_ULT)
return getFalse(ITy);
if (Pred == ICmpInst::ICMP_UGE)
return getTrue(ITy);
}
// icmp pred X, (or X, Y)
if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
m_Or(m_Specific(LHS), m_Value())))) {
if (Pred == ICmpInst::ICMP_ULE)
return getTrue(ITy);
if (Pred == ICmpInst::ICMP_UGT)
return getFalse(ITy);
}
// icmp pred (and X, Y), X
if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
m_And(m_Specific(RHS), m_Value())))) {
if (Pred == ICmpInst::ICMP_UGT)
return getFalse(ITy);
if (Pred == ICmpInst::ICMP_ULE)
return getTrue(ITy);
}
// icmp pred X, (and X, Y)
if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
m_And(m_Specific(LHS), m_Value())))) {
if (Pred == ICmpInst::ICMP_UGE)
return getTrue(ITy);
if (Pred == ICmpInst::ICMP_ULT)
return getFalse(ITy);
}
// 0 - (zext X) pred C
if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
if (RHSC->getValue().isStrictlyPositive()) {
if (Pred == ICmpInst::ICMP_SLT)
return ConstantInt::getTrue(RHSC->getContext());
if (Pred == ICmpInst::ICMP_SGE)
return ConstantInt::getFalse(RHSC->getContext());
if (Pred == ICmpInst::ICMP_EQ)
return ConstantInt::getFalse(RHSC->getContext());
if (Pred == ICmpInst::ICMP_NE)
return ConstantInt::getTrue(RHSC->getContext());
}
if (RHSC->getValue().isNonNegative()) {
if (Pred == ICmpInst::ICMP_SLE)
return ConstantInt::getTrue(RHSC->getContext());
if (Pred == ICmpInst::ICMP_SGT)
return ConstantInt::getFalse(RHSC->getContext());
}
}
}
// icmp pred (urem X, Y), Y
if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
bool KnownNonNegative, KnownNegative;
switch (Pred) {
default:
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL,
0, Q.AT, Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
return getFalse(ITy);
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL,
0, Q.AT, Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
return getTrue(ITy);
}
}
// icmp pred X, (urem Y, X)
if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
bool KnownNonNegative, KnownNegative;
switch (Pred) {
default:
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL,
0, Q.AT, Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
return getTrue(ITy);
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL,
0, Q.AT, Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
return getFalse(ITy);
}
}
// x udiv y <=u x.
if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
// icmp pred (X /u Y), X
if (Pred == ICmpInst::ICMP_UGT)
return getFalse(ITy);
if (Pred == ICmpInst::ICMP_ULE)
return getTrue(ITy);
}
// handle:
// CI2 << X == CI
// CI2 << X != CI
//
// where CI2 is a power of 2 and CI isn't
if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
const APInt *CI2Val, *CIVal = &CI->getValue();
if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
CI2Val->isPowerOf2()) {
if (!CIVal->isPowerOf2()) {
// CI2 << X can equal zero in some circumstances,
// this simplification is unsafe if CI is zero.
//
// We know it is safe if:
// - The shift is nsw, we can't shift out the one bit.
// - The shift is nuw, we can't shift out the one bit.
// - CI2 is one
// - CI isn't zero
if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
*CI2Val == 1 || !CI->isZero()) {
if (Pred == ICmpInst::ICMP_EQ)
return ConstantInt::getFalse(RHS->getContext());
if (Pred == ICmpInst::ICMP_NE)
return ConstantInt::getTrue(RHS->getContext());
}
}
if (CIVal->isSignBit() && *CI2Val == 1) {
if (Pred == ICmpInst::ICMP_UGT)
return ConstantInt::getFalse(RHS->getContext());
if (Pred == ICmpInst::ICMP_ULE)
return ConstantInt::getTrue(RHS->getContext());
}
}
}
if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
LBO->getOperand(1) == RBO->getOperand(1)) {
switch (LBO->getOpcode()) {
default: break;
case Instruction::UDiv:
case Instruction::LShr:
if (ICmpInst::isSigned(Pred))
break;
// fall-through
case Instruction::SDiv:
case Instruction::AShr:
if (!LBO->isExact() || !RBO->isExact())
break;
if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
RBO->getOperand(0), Q, MaxRecurse-1))
return V;
break;
case Instruction::Shl: {
bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
if (!NUW && !NSW)
break;
if (!NSW && ICmpInst::isSigned(Pred))
break;
if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
RBO->getOperand(0), Q, MaxRecurse-1))
return V;
break;
}
}
}
// Simplify comparisons involving max/min.
Value *A, *B;
CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
// Signed variants on "max(a,b)>=a -> true".
if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
// We analyze this as smax(A, B) pred A.
P = Pred;
} else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
(A == LHS || B == LHS)) {
if (A != LHS) std::swap(A, B); // A pred smax(A, B).
EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
// We analyze this as smax(A, B) swapped-pred A.
P = CmpInst::getSwappedPredicate(Pred);
} else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
(A == RHS || B == RHS)) {
if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
// We analyze this as smax(-A, -B) swapped-pred -A.
// Note that we do not need to actually form -A or -B thanks to EqP.
P = CmpInst::getSwappedPredicate(Pred);
} else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
(A == LHS || B == LHS)) {
if (A != LHS) std::swap(A, B); // A pred smin(A, B).
EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
// We analyze this as smax(-A, -B) pred -A.
// Note that we do not need to actually form -A or -B thanks to EqP.
P = Pred;
}
if (P != CmpInst::BAD_ICMP_PREDICATE) {
// Cases correspond to "max(A, B) p A".
switch (P) {
default:
break;
case CmpInst::ICMP_EQ:
case CmpInst::ICMP_SLE:
// Equivalent to "A EqP B". This may be the same as the condition tested
// in the max/min; if so, we can just return that.
if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
return V;
if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
return V;
// Otherwise, see if "A EqP B" simplifies.
if (MaxRecurse)
if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
return V;
break;
case CmpInst::ICMP_NE:
case CmpInst::ICMP_SGT: {
CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
// Equivalent to "A InvEqP B". This may be the same as the condition
// tested in the max/min; if so, we can just return that.
if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
return V;
if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
return V;
// Otherwise, see if "A InvEqP B" simplifies.
if (MaxRecurse)
if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
return V;
break;
}
case CmpInst::ICMP_SGE:
// Always true.
return getTrue(ITy);
case CmpInst::ICMP_SLT:
// Always false.
return getFalse(ITy);
}
}
// Unsigned variants on "max(a,b)>=a -> true".
P = CmpInst::BAD_ICMP_PREDICATE;
if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
// We analyze this as umax(A, B) pred A.
P = Pred;
} else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
(A == LHS || B == LHS)) {
if (A != LHS) std::swap(A, B); // A pred umax(A, B).
EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
// We analyze this as umax(A, B) swapped-pred A.
P = CmpInst::getSwappedPredicate(Pred);
} else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
(A == RHS || B == RHS)) {
if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
// We analyze this as umax(-A, -B) swapped-pred -A.
// Note that we do not need to actually form -A or -B thanks to EqP.
P = CmpInst::getSwappedPredicate(Pred);
} else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
(A == LHS || B == LHS)) {
if (A != LHS) std::swap(A, B); // A pred umin(A, B).
EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
// We analyze this as umax(-A, -B) pred -A.
// Note that we do not need to actually form -A or -B thanks to EqP.
P = Pred;
}
if (P != CmpInst::BAD_ICMP_PREDICATE) {
// Cases correspond to "max(A, B) p A".
switch (P) {
default:
break;
case CmpInst::ICMP_EQ:
case CmpInst::ICMP_ULE:
// Equivalent to "A EqP B". This may be the same as the condition tested
// in the max/min; if so, we can just return that.
if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
return V;
if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
return V;
// Otherwise, see if "A EqP B" simplifies.
if (MaxRecurse)
if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
return V;
break;
case CmpInst::ICMP_NE:
case CmpInst::ICMP_UGT: {
CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
// Equivalent to "A InvEqP B". This may be the same as the condition
// tested in the max/min; if so, we can just return that.
if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
return V;
if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
return V;
// Otherwise, see if "A InvEqP B" simplifies.
if (MaxRecurse)
if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
return V;
break;
}
case CmpInst::ICMP_UGE:
// Always true.
return getTrue(ITy);
case CmpInst::ICMP_ULT:
// Always false.
return getFalse(ITy);
}
}
// Variants on "max(x,y) >= min(x,z)".
Value *C, *D;
if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
(A == C || A == D || B == C || B == D)) {
// max(x, ?) pred min(x, ?).
if (Pred == CmpInst::ICMP_SGE)
// Always true.
return getTrue(ITy);
if (Pred == CmpInst::ICMP_SLT)
// Always false.
return getFalse(ITy);
} else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
(A == C || A == D || B == C || B == D)) {
// min(x, ?) pred max(x, ?).
if (Pred == CmpInst::ICMP_SLE)
// Always true.
return getTrue(ITy);
if (Pred == CmpInst::ICMP_SGT)
// Always false.
return getFalse(ITy);
} else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
(A == C || A == D || B == C || B == D)) {
// max(x, ?) pred min(x, ?).
if (Pred == CmpInst::ICMP_UGE)
// Always true.
return getTrue(ITy);
if (Pred == CmpInst::ICMP_ULT)
// Always false.
return getFalse(ITy);
} else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
(A == C || A == D || B == C || B == D)) {
// min(x, ?) pred max(x, ?).
if (Pred == CmpInst::ICMP_ULE)
// Always true.
return getTrue(ITy);
if (Pred == CmpInst::ICMP_UGT)
// Always false.
return getFalse(ITy);
}
// Simplify comparisons of related pointers using a powerful, recursive
// GEP-walk when we have target data available..
if (LHS->getType()->isPointerTy())
if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
return C;
if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
(ICmpInst::isEquality(Pred) ||
(GLHS->isInBounds() && GRHS->isInBounds() &&
Pred == ICmpInst::getSignedPredicate(Pred)))) {
// The bases are equal and the indices are constant. Build a constant
// expression GEP with the same indices and a null base pointer to see
// what constant folding can make out of it.
Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
}
}
}
// If a bit is known to be zero for A and known to be one for B,
// then A and B cannot be equal.
if (ICmpInst::isEquality(Pred)) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
uint32_t BitWidth = CI->getBitWidth();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AT,
Q.CxtI, Q.DT);
const APInt &RHSVal = CI->getValue();
if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
return Pred == ICmpInst::ICMP_EQ
? ConstantInt::getFalse(CI->getContext())
: ConstantInt::getTrue(CI->getContext());
}
}
// If the comparison is with the result of a select instruction, check whether
// comparing with either branch of the select always yields the same value.
if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
return V;
// If the comparison is with the result of a phi instruction, check whether
// doing the compare with each incoming phi value yields a common result.
if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
return V;
return nullptr;
}
Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
Instruction *CxtI) {
return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
if (Constant *CRHS = dyn_cast<Constant>(RHS))
return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
// If we have a constant, make sure it is on the RHS.
std::swap(LHS, RHS);
Pred = CmpInst::getSwappedPredicate(Pred);
}
// Fold trivial predicates.
if (Pred == FCmpInst::FCMP_FALSE)
return ConstantInt::get(GetCompareTy(LHS), 0);
if (Pred == FCmpInst::FCMP_TRUE)
return ConstantInt::get(GetCompareTy(LHS), 1);
if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
return UndefValue::get(GetCompareTy(LHS));
// fcmp x,x -> true/false. Not all compares are foldable.
if (LHS == RHS) {
if (CmpInst::isTrueWhenEqual(Pred))
return ConstantInt::get(GetCompareTy(LHS), 1);
if (CmpInst::isFalseWhenEqual(Pred))
return ConstantInt::get(GetCompareTy(LHS), 0);
}
// Handle fcmp with constant RHS
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
// If the constant is a nan, see if we can fold the comparison based on it.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
if (CFP->getValueAPF().isNaN()) {
if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
return ConstantInt::getFalse(CFP->getContext());
assert(FCmpInst::isUnordered(Pred) &&
"Comparison must be either ordered or unordered!");
// True if unordered.
return ConstantInt::getTrue(CFP->getContext());
}
// Check whether the constant is an infinity.
if (CFP->getValueAPF().isInfinity()) {
if (CFP->getValueAPF().isNegative()) {
switch (Pred) {
case FCmpInst::FCMP_OLT:
// No value is ordered and less than negative infinity.
return ConstantInt::getFalse(CFP->getContext());
case FCmpInst::FCMP_UGE:
// All values are unordered with or at least negative infinity.
return ConstantInt::getTrue(CFP->getContext());
default:
break;
}
} else {
switch (Pred) {
case FCmpInst::FCMP_OGT:
// No value is ordered and greater than infinity.
return ConstantInt::getFalse(CFP->getContext());
case FCmpInst::FCMP_ULE:
// All values are unordered with and at most infinity.
return ConstantInt::getTrue(CFP->getContext());
default:
break;
}
}
}
}
}
// If the comparison is with the result of a select instruction, check whether
// comparing with either branch of the select always yields the same value.
if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
return V;
// If the comparison is with the result of a phi instruction, check whether
// doing the compare with each incoming phi value yields a common result.
if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
return V;
return nullptr;
}
Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
/// the result. If not, this returns null.
static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
Value *FalseVal, const Query &Q,
unsigned MaxRecurse) {
// select true, X, Y -> X
// select false, X, Y -> Y
if (Constant *CB = dyn_cast<Constant>(CondVal)) {
if (CB->isAllOnesValue())
return TrueVal;
if (CB->isNullValue())
return FalseVal;
}
// select C, X, X -> X
if (TrueVal == FalseVal)
return TrueVal;
if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
if (isa<Constant>(TrueVal))
return TrueVal;
return FalseVal;
}
if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
return FalseVal;
if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
return TrueVal;
if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) {
Value *X;
const APInt *Y;
if (ICI->isEquality() &&
match(ICI->getOperand(0), m_And(m_Value(X), m_APInt(Y))) &&
match(ICI->getOperand(1), m_Zero())) {
ICmpInst::Predicate Pred = ICI->getPredicate();
const APInt *C;
// (X & Y) == 0 ? X & ~Y : X --> X
// (X & Y) != 0 ? X & ~Y : X --> X & ~Y
if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
*Y == ~*C)
return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
// (X & Y) == 0 ? X : X & ~Y --> X & ~Y
// (X & Y) != 0 ? X : X & ~Y --> X
if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
*Y == ~*C)
return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
if (Y->isPowerOf2()) {
// (X & Y) == 0 ? X | Y : X --> X | Y
// (X & Y) != 0 ? X | Y : X --> X
if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
*Y == *C)
return Pred == ICmpInst::ICMP_EQ ? TrueVal : FalseVal;
// (X & Y) == 0 ? X : X | Y --> X
// (X & Y) != 0 ? X : X | Y --> X | Y
if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
*Y == *C)
return Pred == ICmpInst::ICMP_EQ ? TrueVal : FalseVal;
}
}
}
return nullptr;
}
Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
}
/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
// The type of the GEP pointer operand.
PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType());
unsigned AS = PtrTy->getAddressSpace();
// getelementptr P -> P.
if (Ops.size() == 1)
return Ops[0];
// Compute the (pointer) type returned by the GEP instruction.
Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
Type *GEPTy = PointerType::get(LastType, AS);
if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
GEPTy = VectorType::get(GEPTy, VT->getNumElements());
if (isa<UndefValue>(Ops[0]))
return UndefValue::get(GEPTy);
if (Ops.size() == 2) {
// getelementptr P, 0 -> P.
if (match(Ops[1], m_Zero()))
return Ops[0];
Type *Ty = PtrTy->getElementType();
if (Q.DL && Ty->isSized()) {
Value *P;
uint64_t C;
uint64_t TyAllocSize = Q.DL->getTypeAllocSize(Ty);
// getelementptr P, N -> P if P points to a type of zero size.
if (TyAllocSize == 0)
return Ops[0];
// The following transforms are only safe if the ptrtoint cast
// doesn't truncate the pointers.
if (Ops[1]->getType()->getScalarSizeInBits() ==
Q.DL->getPointerSizeInBits(AS)) {
auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
if (match(P, m_Zero()))
return Constant::getNullValue(GEPTy);
Value *Temp;
if (match(P, m_PtrToInt(m_Value(Temp))))
if (Temp->getType() == GEPTy)
return Temp;
return nullptr;
};
// getelementptr V, (sub P, V) -> P if P points to a type of size 1.
if (TyAllocSize == 1 &&
match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
if (Value *R = PtrToIntOrZero(P))
return R;
// getelementptr V, (ashr (sub P, V), C) -> Q
// if P points to a type of size 1 << C.
if (match(Ops[1],
m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
m_ConstantInt(C))) &&
TyAllocSize == 1ULL << C)
if (Value *R = PtrToIntOrZero(P))
return R;
// getelementptr V, (sdiv (sub P, V), C) -> Q
// if P points to a type of size C.
if (match(Ops[1],
m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
m_SpecificInt(TyAllocSize))))
if (Value *R = PtrToIntOrZero(P))
return R;
}
}
}
// Check to see if this is constant foldable.
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (!isa<Constant>(Ops[i]))
return nullptr;
return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
}
Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
}
/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
/// can fold the result. If not, this returns null.
static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs, const Query &Q,
unsigned) {
if (Constant *CAgg = dyn_cast<Constant>(Agg))
if (Constant *CVal = dyn_cast<Constant>(Val))
return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
// insertvalue x, undef, n -> x
if (match(Val, m_Undef()))
return Agg;
// insertvalue x, (extractvalue y, n), n
if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
if (EV->getAggregateOperand()->getType() == Agg->getType() &&
EV->getIndices() == Idxs) {
// insertvalue undef, (extractvalue y, n), n -> y
if (match(Agg, m_Undef()))
return EV->getAggregateOperand();
// insertvalue y, (extractvalue y, n), n -> y
if (Agg == EV->getAggregateOperand())
return Agg;
}
return nullptr;
}
Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyInsertValueInst(Agg, Val, Idxs,
Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
// If all of the PHI's incoming values are the same then replace the PHI node
// with the common value.
Value *CommonValue = nullptr;
bool HasUndefInput = false;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = PN->getIncomingValue(i);
// If the incoming value is the phi node itself, it can safely be skipped.
if (Incoming == PN) continue;
if (isa<UndefValue>(Incoming)) {
// Remember that we saw an undef value, but otherwise ignore them.
HasUndefInput = true;
continue;
}
if (CommonValue && Incoming != CommonValue)
return nullptr; // Not the same, bail out.
CommonValue = Incoming;
}
// If CommonValue is null then all of the incoming values were either undef or
// equal to the phi node itself.
if (!CommonValue)
return UndefValue::get(PN->getType());
// If we have a PHI node like phi(X, undef, X), where X is defined by some
// instruction, we cannot return X as the result of the PHI node unless it
// dominates the PHI block.
if (HasUndefInput)
return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
return CommonValue;
}
static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
if (Constant *C = dyn_cast<Constant>(Op))
return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
return nullptr;
}
Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
//=== Helper functions for higher up the class hierarchy.
/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
switch (Opcode) {
case Instruction::Add:
return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Q, MaxRecurse);
case Instruction::FAdd:
return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
case Instruction::Sub:
return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Q, MaxRecurse);
case Instruction::FSub:
return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
case Instruction::FMul:
return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
case Instruction::Shl:
return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Q, MaxRecurse);
case Instruction::LShr:
return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
case Instruction::AShr:
return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
default:
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
Constant *COps[] = {CLHS, CRHS};
return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
Q.TLI);
}
// If the operation is associative, try some generic simplifications.
if (Instruction::isAssociative(Opcode))
if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
return V;
// If the operation is with the result of a select instruction check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
return V;
// If the operation is with the result of a phi instruction, check whether
// operating on all incoming values of the phi always yields the same value.
if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
return V;
return nullptr;
}
}
Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
/// fold the result.
static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
}
Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
static bool IsIdempotent(Intrinsic::ID ID) {
switch (ID) {
default: return false;
// Unary idempotent: f(f(x)) = f(x)
case Intrinsic::fabs:
case Intrinsic::floor:
case Intrinsic::ceil:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::nearbyint:
case Intrinsic::round:
return true;
}
}
template <typename IterTy>
static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
const Query &Q, unsigned MaxRecurse) {
// Perform idempotent optimizations
if (!IsIdempotent(IID))
return nullptr;
// Unary Ops
if (std::distance(ArgBegin, ArgEnd) == 1)
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
if (II->getIntrinsicID() == IID)
return II;
return nullptr;
}
template <typename IterTy>
static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
const Query &Q, unsigned MaxRecurse) {
Type *Ty = V->getType();
if (PointerType *PTy = dyn_cast<PointerType>(Ty))
Ty = PTy->getElementType();
FunctionType *FTy = cast<FunctionType>(Ty);
// call undef -> undef
if (isa<UndefValue>(V))
return UndefValue::get(FTy->getReturnType());
Function *F = dyn_cast<Function>(V);
if (!F)
return nullptr;
if (unsigned IID = F->getIntrinsicID())
if (Value *Ret =
SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
return Ret;
if (!canConstantFoldCallTo(F))
return nullptr;
SmallVector<Constant *, 4> ConstantArgs;
ConstantArgs.reserve(ArgEnd - ArgBegin);
for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
Constant *C = dyn_cast<Constant>(*I);
if (!C)
return nullptr;
ConstantArgs.push_back(C);
}
return ConstantFoldCall(F, ConstantArgs, Q.TLI);
}
Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
User::op_iterator ArgEnd, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AT, CxtI),
RecursionLimit);
}
Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionTracker *AT,
const Instruction *CxtI) {
return ::SimplifyCall(V, Args.begin(), Args.end(),
Query(DL, TLI, DT, AT, CxtI), RecursionLimit);
}
/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction. If not, this returns null.
Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT) {
Value *Result;
switch (I->getOpcode()) {
default:
Result = ConstantFoldInstruction(I, DL, TLI);
break;
case Instruction::FAdd:
Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
I->getFastMathFlags(), DL, TLI, DT, AT, I);
break;
case Instruction::Add:
Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
DL, TLI, DT, AT, I);
break;
case Instruction::FSub:
Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
I->getFastMathFlags(), DL, TLI, DT, AT, I);
break;
case Instruction::Sub:
Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
DL, TLI, DT, AT, I);
break;
case Instruction::FMul:
Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
I->getFastMathFlags(), DL, TLI, DT, AT, I);
break;
case Instruction::Mul:
Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::SDiv:
Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::UDiv:
Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::FDiv:
Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::SRem:
Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::URem:
Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::FRem:
Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::Shl:
Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
DL, TLI, DT, AT, I);
break;
case Instruction::LShr:
Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->isExact(),
DL, TLI, DT, AT, I);
break;
case Instruction::AShr:
Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->isExact(),
DL, TLI, DT, AT, I);
break;
case Instruction::And:
Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::Or:
Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
AT, I);
break;
case Instruction::Xor:
Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::ICmp:
Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::FCmp:
Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
I->getOperand(0), I->getOperand(1),
DL, TLI, DT, AT, I);
break;
case Instruction::Select:
Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
I->getOperand(2), DL, TLI, DT, AT, I);
break;
case Instruction::GetElementPtr: {
SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Result = SimplifyGEPInst(Ops, DL, TLI, DT, AT, I);
break;
}
case Instruction::InsertValue: {
InsertValueInst *IV = cast<InsertValueInst>(I);
Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
IV->getInsertedValueOperand(),
IV->getIndices(), DL, TLI, DT, AT, I);
break;
}
case Instruction::PHI:
Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT, AT, I));
break;
case Instruction::Call: {
CallSite CS(cast<CallInst>(I));
Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
DL, TLI, DT, AT, I);
break;
}
case Instruction::Trunc:
Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT,
AT, I);
break;
}
/// If called on unreachable code, the above logic may report that the
/// instruction simplified to itself. Make life easier for users by
/// detecting that case here, returning a safe value instead.
return Result == I ? UndefValue::get(I->getType()) : Result;
}
/// \brief Implementation of recursive simplification through an instructions
/// uses.
///
/// This is the common implementation of the recursive simplification routines.
/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
/// instructions to process and attempt to simplify it using
/// InstructionSimplify.
///
/// This routine returns 'true' only when *it* simplifies something. The passed
/// in simplified value does not count toward this.
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT) {
bool Simplified = false;
SmallSetVector<Instruction *, 8> Worklist;
// If we have an explicit value to collapse to, do that round of the
// simplification loop by hand initially.
if (SimpleV) {
for (User *U : I->users())
if (U != I)
Worklist.insert(cast<Instruction>(U));
// Replace the instruction with its simplified value.
I->replaceAllUsesWith(SimpleV);
// Gracefully handle edge cases where the instruction is not wired into any
// parent block.
if (I->getParent())
I->eraseFromParent();
} else {
Worklist.insert(I);
}
// Note that we must test the size on each iteration, the worklist can grow.
for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
I = Worklist[Idx];
// See if this instruction simplifies.
SimpleV = SimplifyInstruction(I, DL, TLI, DT, AT);
if (!SimpleV)
continue;
Simplified = true;
// Stash away all the uses of the old instruction so we can check them for
// recursive simplifications after a RAUW. This is cheaper than checking all
// uses of To on the recursive step in most cases.
for (User *U : I->users())
Worklist.insert(cast<Instruction>(U));
// Replace the instruction with its simplified value.
I->replaceAllUsesWith(SimpleV);
// Gracefully handle edge cases where the instruction is not wired into any
// parent block.
if (I->getParent())
I->eraseFromParent();
}
return Simplified;
}
bool llvm::recursivelySimplifyInstruction(Instruction *I,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT) {
return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT, AT);
}
bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT,
AssumptionTracker *AT) {
assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
assert(SimpleV && "Must provide a simplified value.");
return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT, AT);
}