llvm/lib/Object/COFFObjectFile.cpp
Rui Ueyama 3a226015a0 Readobj: If NumbersOfSections is 0xffff, it's an COFF import library.
0xffff does not mean that there are 65535 sections in a COFF file but
indicates that it's a COFF import library. This patch fixes SEGV error
when an import library file is passed to llvm-readobj.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194844 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-15 20:23:25 +00:00

939 lines
32 KiB
C++

//===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the COFFObjectFile class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/COFF.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
using namespace llvm;
using namespace object;
namespace {
using support::ulittle8_t;
using support::ulittle16_t;
using support::ulittle32_t;
using support::little16_t;
}
namespace {
// Returns false if size is greater than the buffer size. And sets ec.
bool checkSize(const MemoryBuffer *m, error_code &ec, uint64_t size) {
if (m->getBufferSize() < size) {
ec = object_error::unexpected_eof;
return false;
}
return true;
}
// Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
// Returns unexpected_eof if error.
template<typename T>
error_code getObject(const T *&Obj, const MemoryBuffer *M, const uint8_t *Ptr,
const size_t Size = sizeof(T)) {
uintptr_t Addr = uintptr_t(Ptr);
if (Addr + Size < Addr ||
Addr + Size < Size ||
Addr + Size > uintptr_t(M->getBufferEnd())) {
return object_error::unexpected_eof;
}
Obj = reinterpret_cast<const T *>(Addr);
return object_error::success;
}
}
const coff_symbol *COFFObjectFile::toSymb(DataRefImpl Symb) const {
const coff_symbol *addr = reinterpret_cast<const coff_symbol*>(Symb.p);
# ifndef NDEBUG
// Verify that the symbol points to a valid entry in the symbol table.
uintptr_t offset = uintptr_t(addr) - uintptr_t(base());
if (offset < COFFHeader->PointerToSymbolTable
|| offset >= COFFHeader->PointerToSymbolTable
+ (COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))
report_fatal_error("Symbol was outside of symbol table.");
assert((offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol)
== 0 && "Symbol did not point to the beginning of a symbol");
# endif
return addr;
}
const coff_section *COFFObjectFile::toSec(DataRefImpl Sec) const {
const coff_section *addr = reinterpret_cast<const coff_section*>(Sec.p);
# ifndef NDEBUG
// Verify that the section points to a valid entry in the section table.
if (addr < SectionTable
|| addr >= (SectionTable + COFFHeader->NumberOfSections))
report_fatal_error("Section was outside of section table.");
uintptr_t offset = uintptr_t(addr) - uintptr_t(SectionTable);
assert(offset % sizeof(coff_section) == 0 &&
"Section did not point to the beginning of a section");
# endif
return addr;
}
error_code COFFObjectFile::getSymbolNext(DataRefImpl Symb,
SymbolRef &Result) const {
const coff_symbol *symb = toSymb(Symb);
symb += 1 + symb->NumberOfAuxSymbols;
Symb.p = reinterpret_cast<uintptr_t>(symb);
Result = SymbolRef(Symb, this);
return object_error::success;
}
error_code COFFObjectFile::getSymbolName(DataRefImpl Symb,
StringRef &Result) const {
const coff_symbol *symb = toSymb(Symb);
return getSymbolName(symb, Result);
}
error_code COFFObjectFile::getSymbolFileOffset(DataRefImpl Symb,
uint64_t &Result) const {
const coff_symbol *symb = toSymb(Symb);
const coff_section *Section = NULL;
if (error_code ec = getSection(symb->SectionNumber, Section))
return ec;
if (symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED)
Result = UnknownAddressOrSize;
else if (Section)
Result = Section->PointerToRawData + symb->Value;
else
Result = symb->Value;
return object_error::success;
}
error_code COFFObjectFile::getSymbolAddress(DataRefImpl Symb,
uint64_t &Result) const {
const coff_symbol *symb = toSymb(Symb);
const coff_section *Section = NULL;
if (error_code ec = getSection(symb->SectionNumber, Section))
return ec;
if (symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED)
Result = UnknownAddressOrSize;
else if (Section)
Result = Section->VirtualAddress + symb->Value;
else
Result = symb->Value;
return object_error::success;
}
error_code COFFObjectFile::getSymbolType(DataRefImpl Symb,
SymbolRef::Type &Result) const {
const coff_symbol *symb = toSymb(Symb);
Result = SymbolRef::ST_Other;
if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL &&
symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) {
Result = SymbolRef::ST_Unknown;
} else {
if (symb->getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
Result = SymbolRef::ST_Function;
} else {
uint32_t Characteristics = 0;
if (symb->SectionNumber > 0) {
const coff_section *Section = NULL;
if (error_code ec = getSection(symb->SectionNumber, Section))
return ec;
Characteristics = Section->Characteristics;
}
if (Characteristics & COFF::IMAGE_SCN_MEM_READ &&
~Characteristics & COFF::IMAGE_SCN_MEM_WRITE) // Read only.
Result = SymbolRef::ST_Data;
}
}
return object_error::success;
}
error_code COFFObjectFile::getSymbolFlags(DataRefImpl Symb,
uint32_t &Result) const {
const coff_symbol *symb = toSymb(Symb);
Result = SymbolRef::SF_None;
// TODO: Correctly set SF_FormatSpecific, SF_ThreadLocal, SF_Common
if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL &&
symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED)
Result |= SymbolRef::SF_Undefined;
// TODO: This are certainly too restrictive.
if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL)
Result |= SymbolRef::SF_Global;
if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL)
Result |= SymbolRef::SF_Weak;
if (symb->SectionNumber == COFF::IMAGE_SYM_ABSOLUTE)
Result |= SymbolRef::SF_Absolute;
return object_error::success;
}
error_code COFFObjectFile::getSymbolSize(DataRefImpl Symb,
uint64_t &Result) const {
// FIXME: Return the correct size. This requires looking at all the symbols
// in the same section as this symbol, and looking for either the next
// symbol, or the end of the section.
const coff_symbol *symb = toSymb(Symb);
const coff_section *Section = NULL;
if (error_code ec = getSection(symb->SectionNumber, Section))
return ec;
if (symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED)
Result = UnknownAddressOrSize;
else if (Section)
Result = Section->SizeOfRawData - symb->Value;
else
Result = 0;
return object_error::success;
}
error_code COFFObjectFile::getSymbolSection(DataRefImpl Symb,
section_iterator &Result) const {
const coff_symbol *symb = toSymb(Symb);
if (symb->SectionNumber <= COFF::IMAGE_SYM_UNDEFINED)
Result = end_sections();
else {
const coff_section *sec = 0;
if (error_code ec = getSection(symb->SectionNumber, sec)) return ec;
DataRefImpl Sec;
Sec.p = reinterpret_cast<uintptr_t>(sec);
Result = section_iterator(SectionRef(Sec, this));
}
return object_error::success;
}
error_code COFFObjectFile::getSymbolValue(DataRefImpl Symb,
uint64_t &Val) const {
report_fatal_error("getSymbolValue unimplemented in COFFObjectFile");
}
error_code COFFObjectFile::getSectionNext(DataRefImpl Sec,
SectionRef &Result) const {
const coff_section *sec = toSec(Sec);
sec += 1;
Sec.p = reinterpret_cast<uintptr_t>(sec);
Result = SectionRef(Sec, this);
return object_error::success;
}
error_code COFFObjectFile::getSectionName(DataRefImpl Sec,
StringRef &Result) const {
const coff_section *sec = toSec(Sec);
return getSectionName(sec, Result);
}
error_code COFFObjectFile::getSectionAddress(DataRefImpl Sec,
uint64_t &Result) const {
const coff_section *sec = toSec(Sec);
Result = sec->VirtualAddress;
return object_error::success;
}
error_code COFFObjectFile::getSectionSize(DataRefImpl Sec,
uint64_t &Result) const {
const coff_section *sec = toSec(Sec);
Result = sec->SizeOfRawData;
return object_error::success;
}
error_code COFFObjectFile::getSectionContents(DataRefImpl Sec,
StringRef &Result) const {
const coff_section *sec = toSec(Sec);
ArrayRef<uint8_t> Res;
error_code EC = getSectionContents(sec, Res);
Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
return EC;
}
error_code COFFObjectFile::getSectionAlignment(DataRefImpl Sec,
uint64_t &Res) const {
const coff_section *sec = toSec(Sec);
if (!sec)
return object_error::parse_failed;
Res = uint64_t(1) << (((sec->Characteristics & 0x00F00000) >> 20) - 1);
return object_error::success;
}
error_code COFFObjectFile::isSectionText(DataRefImpl Sec,
bool &Result) const {
const coff_section *sec = toSec(Sec);
Result = sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
return object_error::success;
}
error_code COFFObjectFile::isSectionData(DataRefImpl Sec,
bool &Result) const {
const coff_section *sec = toSec(Sec);
Result = sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
return object_error::success;
}
error_code COFFObjectFile::isSectionBSS(DataRefImpl Sec,
bool &Result) const {
const coff_section *sec = toSec(Sec);
Result = sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
return object_error::success;
}
error_code COFFObjectFile::isSectionRequiredForExecution(DataRefImpl Sec,
bool &Result) const {
// FIXME: Unimplemented
Result = true;
return object_error::success;
}
error_code COFFObjectFile::isSectionVirtual(DataRefImpl Sec,
bool &Result) const {
const coff_section *sec = toSec(Sec);
Result = sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
return object_error::success;
}
error_code COFFObjectFile::isSectionZeroInit(DataRefImpl Sec,
bool &Result) const {
// FIXME: Unimplemented.
Result = false;
return object_error::success;
}
error_code COFFObjectFile::isSectionReadOnlyData(DataRefImpl Sec,
bool &Result) const {
// FIXME: Unimplemented.
Result = false;
return object_error::success;
}
error_code COFFObjectFile::sectionContainsSymbol(DataRefImpl Sec,
DataRefImpl Symb,
bool &Result) const {
const coff_section *sec = toSec(Sec);
const coff_symbol *symb = toSymb(Symb);
const coff_section *symb_sec = 0;
if (error_code ec = getSection(symb->SectionNumber, symb_sec)) return ec;
if (symb_sec == sec)
Result = true;
else
Result = false;
return object_error::success;
}
relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Sec) const {
const coff_section *sec = toSec(Sec);
DataRefImpl ret;
if (sec->NumberOfRelocations == 0)
ret.p = 0;
else
ret.p = reinterpret_cast<uintptr_t>(base() + sec->PointerToRelocations);
return relocation_iterator(RelocationRef(ret, this));
}
relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Sec) const {
const coff_section *sec = toSec(Sec);
DataRefImpl ret;
if (sec->NumberOfRelocations == 0)
ret.p = 0;
else
ret.p = reinterpret_cast<uintptr_t>(
reinterpret_cast<const coff_relocation*>(
base() + sec->PointerToRelocations)
+ sec->NumberOfRelocations);
return relocation_iterator(RelocationRef(ret, this));
}
// Initialize the pointer to the symbol table.
error_code COFFObjectFile::initSymbolTablePtr() {
if (error_code ec = getObject(
SymbolTable, Data, base() + COFFHeader->PointerToSymbolTable,
COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))
return ec;
// Find string table. The first four byte of the string table contains the
// total size of the string table, including the size field itself. If the
// string table is empty, the value of the first four byte would be 4.
const uint8_t *StringTableAddr =
base() + COFFHeader->PointerToSymbolTable +
COFFHeader->NumberOfSymbols * sizeof(coff_symbol);
const ulittle32_t *StringTableSizePtr;
if (error_code ec = getObject(StringTableSizePtr, Data, StringTableAddr))
return ec;
StringTableSize = *StringTableSizePtr;
if (error_code ec =
getObject(StringTable, Data, StringTableAddr, StringTableSize))
return ec;
// Check that the string table is null terminated if has any in it.
if (StringTableSize < 4 ||
(StringTableSize > 4 && StringTable[StringTableSize - 1] != 0))
return object_error::parse_failed;
return object_error::success;
}
// Returns the file offset for the given RVA.
error_code COFFObjectFile::getRvaPtr(uint32_t Rva, uintptr_t &Res) const {
error_code ec;
for (section_iterator i = begin_sections(), e = end_sections(); i != e;
i.increment(ec)) {
if (ec)
return ec;
const coff_section *Section = getCOFFSection(i);
uint32_t SectionStart = Section->VirtualAddress;
uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
if (SectionStart <= Rva && Rva < SectionEnd) {
uint32_t Offset = Rva - SectionStart;
Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
return object_error::success;
}
}
return object_error::parse_failed;
}
// Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
// table entry.
error_code COFFObjectFile::
getHintName(uint32_t Rva, uint16_t &Hint, StringRef &Name) const {
uintptr_t IntPtr = 0;
if (error_code ec = getRvaPtr(Rva, IntPtr))
return ec;
const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
return object_error::success;
}
// Find the import table.
error_code COFFObjectFile::initImportTablePtr() {
// First, we get the RVA of the import table. If the file lacks a pointer to
// the import table, do nothing.
const data_directory *DataEntry;
if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
return object_error::success;
// Do nothing if the pointer to import table is NULL.
if (DataEntry->RelativeVirtualAddress == 0)
return object_error::success;
uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
NumberOfImportDirectory = DataEntry->Size /
sizeof(import_directory_table_entry);
// Find the section that contains the RVA. This is needed because the RVA is
// the import table's memory address which is different from its file offset.
uintptr_t IntPtr = 0;
if (error_code ec = getRvaPtr(ImportTableRva, IntPtr))
return ec;
ImportDirectory = reinterpret_cast<
const import_directory_table_entry *>(IntPtr);
// It's an error if there's no section containing the Import Table RVA.
return object_error::parse_failed;
}
COFFObjectFile::COFFObjectFile(MemoryBuffer *Object, error_code &ec)
: ObjectFile(Binary::ID_COFF, Object)
, COFFHeader(0)
, PE32Header(0)
, DataDirectory(0)
, SectionTable(0)
, SymbolTable(0)
, StringTable(0)
, StringTableSize(0)
, ImportDirectory(0)
, NumberOfImportDirectory(0) {
// Check that we at least have enough room for a header.
if (!checkSize(Data, ec, sizeof(coff_file_header))) return;
// The current location in the file where we are looking at.
uint64_t CurPtr = 0;
// PE header is optional and is present only in executables. If it exists,
// it is placed right after COFF header.
bool hasPEHeader = false;
// Check if this is a PE/COFF file.
if (base()[0] == 0x4d && base()[1] == 0x5a) {
// PE/COFF, seek through MS-DOS compatibility stub and 4-byte
// PE signature to find 'normal' COFF header.
if (!checkSize(Data, ec, 0x3c + 8)) return;
CurPtr = *reinterpret_cast<const ulittle16_t *>(base() + 0x3c);
// Check the PE magic bytes. ("PE\0\0")
if (std::memcmp(base() + CurPtr, "PE\0\0", 4) != 0) {
ec = object_error::parse_failed;
return;
}
CurPtr += 4; // Skip the PE magic bytes.
hasPEHeader = true;
}
if ((ec = getObject(COFFHeader, Data, base() + CurPtr)))
return;
CurPtr += sizeof(coff_file_header);
if (hasPEHeader) {
if ((ec = getObject(PE32Header, Data, base() + CurPtr)))
return;
if (PE32Header->Magic != 0x10b) {
// We only support PE32. If this is PE32 (not PE32+), the magic byte
// should be 0x10b. If this is not PE32, continue as if there's no PE
// header in this file.
PE32Header = 0;
} else if (PE32Header->NumberOfRvaAndSize > 0) {
const uint8_t *addr = base() + CurPtr + sizeof(pe32_header);
uint64_t size = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
if ((ec = getObject(DataDirectory, Data, addr, size)))
return;
}
CurPtr += COFFHeader->SizeOfOptionalHeader;
}
if (!COFFHeader->isImportLibrary())
if ((ec = getObject(SectionTable, Data, base() + CurPtr,
COFFHeader->NumberOfSections * sizeof(coff_section))))
return;
// Initialize the pointer to the symbol table.
if (COFFHeader->PointerToSymbolTable != 0)
if ((ec = initSymbolTablePtr()))
return;
// Initialize the pointer to the beginning of the import table.
if ((ec = initImportTablePtr()))
return;
ec = object_error::success;
}
symbol_iterator COFFObjectFile::begin_symbols() const {
DataRefImpl ret;
ret.p = reinterpret_cast<uintptr_t>(SymbolTable);
return symbol_iterator(SymbolRef(ret, this));
}
symbol_iterator COFFObjectFile::end_symbols() const {
// The symbol table ends where the string table begins.
DataRefImpl ret;
ret.p = reinterpret_cast<uintptr_t>(StringTable);
return symbol_iterator(SymbolRef(ret, this));
}
symbol_iterator COFFObjectFile::begin_dynamic_symbols() const {
// TODO: implement
report_fatal_error("Dynamic symbols unimplemented in COFFObjectFile");
}
symbol_iterator COFFObjectFile::end_dynamic_symbols() const {
// TODO: implement
report_fatal_error("Dynamic symbols unimplemented in COFFObjectFile");
}
library_iterator COFFObjectFile::begin_libraries_needed() const {
// TODO: implement
report_fatal_error("Libraries needed unimplemented in COFFObjectFile");
}
library_iterator COFFObjectFile::end_libraries_needed() const {
// TODO: implement
report_fatal_error("Libraries needed unimplemented in COFFObjectFile");
}
StringRef COFFObjectFile::getLoadName() const {
// COFF does not have this field.
return "";
}
import_directory_iterator COFFObjectFile::import_directory_begin() const {
DataRefImpl Imp;
Imp.p = reinterpret_cast<uintptr_t>(ImportDirectory);
return import_directory_iterator(ImportDirectoryEntryRef(Imp, this));
}
import_directory_iterator COFFObjectFile::import_directory_end() const {
DataRefImpl Imp;
if (ImportDirectory) {
Imp.p = reinterpret_cast<uintptr_t>(
ImportDirectory + (NumberOfImportDirectory - 1));
} else {
Imp.p = 0;
}
return import_directory_iterator(ImportDirectoryEntryRef(Imp, this));
}
section_iterator COFFObjectFile::begin_sections() const {
DataRefImpl ret;
ret.p = reinterpret_cast<uintptr_t>(SectionTable);
return section_iterator(SectionRef(ret, this));
}
section_iterator COFFObjectFile::end_sections() const {
DataRefImpl ret;
int numSections = COFFHeader->isImportLibrary()
? 0 : COFFHeader->NumberOfSections;
ret.p = reinterpret_cast<uintptr_t>(SectionTable + numSections);
return section_iterator(SectionRef(ret, this));
}
uint8_t COFFObjectFile::getBytesInAddress() const {
return getArch() == Triple::x86_64 ? 8 : 4;
}
StringRef COFFObjectFile::getFileFormatName() const {
switch(COFFHeader->Machine) {
case COFF::IMAGE_FILE_MACHINE_I386:
return "COFF-i386";
case COFF::IMAGE_FILE_MACHINE_AMD64:
return "COFF-x86-64";
default:
return "COFF-<unknown arch>";
}
}
unsigned COFFObjectFile::getArch() const {
switch(COFFHeader->Machine) {
case COFF::IMAGE_FILE_MACHINE_I386:
return Triple::x86;
case COFF::IMAGE_FILE_MACHINE_AMD64:
return Triple::x86_64;
default:
return Triple::UnknownArch;
}
}
// This method is kept here because lld uses this. As soon as we make
// lld to use getCOFFHeader, this method will be removed.
error_code COFFObjectFile::getHeader(const coff_file_header *&Res) const {
return getCOFFHeader(Res);
}
error_code COFFObjectFile::getCOFFHeader(const coff_file_header *&Res) const {
Res = COFFHeader;
return object_error::success;
}
error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
Res = PE32Header;
return object_error::success;
}
error_code COFFObjectFile::getDataDirectory(uint32_t index,
const data_directory *&Res) const {
// Error if if there's no data directory or the index is out of range.
if (!DataDirectory || index > PE32Header->NumberOfRvaAndSize)
return object_error::parse_failed;
Res = &DataDirectory[index];
return object_error::success;
}
error_code COFFObjectFile::getSection(int32_t index,
const coff_section *&Result) const {
// Check for special index values.
if (index == COFF::IMAGE_SYM_UNDEFINED ||
index == COFF::IMAGE_SYM_ABSOLUTE ||
index == COFF::IMAGE_SYM_DEBUG)
Result = NULL;
else if (index > 0 && index <= COFFHeader->NumberOfSections)
// We already verified the section table data, so no need to check again.
Result = SectionTable + (index - 1);
else
return object_error::parse_failed;
return object_error::success;
}
error_code COFFObjectFile::getString(uint32_t offset,
StringRef &Result) const {
if (StringTableSize <= 4)
// Tried to get a string from an empty string table.
return object_error::parse_failed;
if (offset >= StringTableSize)
return object_error::unexpected_eof;
Result = StringRef(StringTable + offset);
return object_error::success;
}
error_code COFFObjectFile::getSymbol(uint32_t index,
const coff_symbol *&Result) const {
if (index < COFFHeader->NumberOfSymbols)
Result = SymbolTable + index;
else
return object_error::parse_failed;
return object_error::success;
}
error_code COFFObjectFile::getSymbolName(const coff_symbol *symbol,
StringRef &Res) const {
// Check for string table entry. First 4 bytes are 0.
if (symbol->Name.Offset.Zeroes == 0) {
uint32_t Offset = symbol->Name.Offset.Offset;
if (error_code ec = getString(Offset, Res))
return ec;
return object_error::success;
}
if (symbol->Name.ShortName[7] == 0)
// Null terminated, let ::strlen figure out the length.
Res = StringRef(symbol->Name.ShortName);
else
// Not null terminated, use all 8 bytes.
Res = StringRef(symbol->Name.ShortName, 8);
return object_error::success;
}
ArrayRef<uint8_t> COFFObjectFile::getSymbolAuxData(
const coff_symbol *symbol) const {
const uint8_t *aux = NULL;
if ( symbol->NumberOfAuxSymbols > 0 ) {
// AUX data comes immediately after the symbol in COFF
aux = reinterpret_cast<const uint8_t *>(symbol + 1);
# ifndef NDEBUG
// Verify that the aux symbol points to a valid entry in the symbol table.
uintptr_t offset = uintptr_t(aux) - uintptr_t(base());
if (offset < COFFHeader->PointerToSymbolTable
|| offset >= COFFHeader->PointerToSymbolTable
+ (COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))
report_fatal_error("Aux Symbol data was outside of symbol table.");
assert((offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol)
== 0 && "Aux Symbol data did not point to the beginning of a symbol");
# endif
}
return ArrayRef<uint8_t>(aux, symbol->NumberOfAuxSymbols * sizeof(coff_symbol));
}
error_code COFFObjectFile::getSectionName(const coff_section *Sec,
StringRef &Res) const {
StringRef Name;
if (Sec->Name[7] == 0)
// Null terminated, let ::strlen figure out the length.
Name = Sec->Name;
else
// Not null terminated, use all 8 bytes.
Name = StringRef(Sec->Name, 8);
// Check for string table entry. First byte is '/'.
if (Name[0] == '/') {
uint32_t Offset;
if (Name.substr(1).getAsInteger(10, Offset))
return object_error::parse_failed;
if (error_code ec = getString(Offset, Name))
return ec;
}
Res = Name;
return object_error::success;
}
error_code COFFObjectFile::getSectionContents(const coff_section *Sec,
ArrayRef<uint8_t> &Res) const {
// The only thing that we need to verify is that the contents is contained
// within the file bounds. We don't need to make sure it doesn't cover other
// data, as there's nothing that says that is not allowed.
uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
uintptr_t ConEnd = ConStart + Sec->SizeOfRawData;
if (ConEnd > uintptr_t(Data->getBufferEnd()))
return object_error::parse_failed;
Res = ArrayRef<uint8_t>(reinterpret_cast<const unsigned char*>(ConStart),
Sec->SizeOfRawData);
return object_error::success;
}
const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
return reinterpret_cast<const coff_relocation*>(Rel.p);
}
error_code COFFObjectFile::getRelocationNext(DataRefImpl Rel,
RelocationRef &Res) const {
Rel.p = reinterpret_cast<uintptr_t>(
reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
Res = RelocationRef(Rel, this);
return object_error::success;
}
error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel,
uint64_t &Res) const {
report_fatal_error("getRelocationAddress not implemented in COFFObjectFile");
}
error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel,
uint64_t &Res) const {
Res = toRel(Rel)->VirtualAddress;
return object_error::success;
}
symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
const coff_relocation* R = toRel(Rel);
DataRefImpl Symb;
Symb.p = reinterpret_cast<uintptr_t>(SymbolTable + R->SymbolTableIndex);
return symbol_iterator(SymbolRef(Symb, this));
}
error_code COFFObjectFile::getRelocationType(DataRefImpl Rel,
uint64_t &Res) const {
const coff_relocation* R = toRel(Rel);
Res = R->Type;
return object_error::success;
}
const coff_section *COFFObjectFile::getCOFFSection(section_iterator &It) const {
return toSec(It->getRawDataRefImpl());
}
const coff_symbol *COFFObjectFile::getCOFFSymbol(symbol_iterator &It) const {
return toSymb(It->getRawDataRefImpl());
}
const coff_relocation *COFFObjectFile::getCOFFRelocation(
relocation_iterator &It) const {
return toRel(It->getRawDataRefImpl());
}
#define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(enum) \
case COFF::enum: res = #enum; break;
error_code COFFObjectFile::getRelocationTypeName(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const {
const coff_relocation *reloc = toRel(Rel);
StringRef res;
switch (COFFHeader->Machine) {
case COFF::IMAGE_FILE_MACHINE_AMD64:
switch (reloc->Type) {
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
default:
res = "Unknown";
}
break;
case COFF::IMAGE_FILE_MACHINE_I386:
switch (reloc->Type) {
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
default:
res = "Unknown";
}
break;
default:
res = "Unknown";
}
Result.append(res.begin(), res.end());
return object_error::success;
}
#undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
error_code COFFObjectFile::getRelocationValueString(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const {
const coff_relocation *reloc = toRel(Rel);
const coff_symbol *symb = 0;
if (error_code ec = getSymbol(reloc->SymbolTableIndex, symb)) return ec;
DataRefImpl sym;
sym.p = reinterpret_cast<uintptr_t>(symb);
StringRef symname;
if (error_code ec = getSymbolName(sym, symname)) return ec;
Result.append(symname.begin(), symname.end());
return object_error::success;
}
error_code COFFObjectFile::getLibraryNext(DataRefImpl LibData,
LibraryRef &Result) const {
report_fatal_error("getLibraryNext not implemented in COFFObjectFile");
}
error_code COFFObjectFile::getLibraryPath(DataRefImpl LibData,
StringRef &Result) const {
report_fatal_error("getLibraryPath not implemented in COFFObjectFile");
}
bool ImportDirectoryEntryRef::
operator==(const ImportDirectoryEntryRef &Other) const {
return ImportDirectoryPimpl == Other.ImportDirectoryPimpl;
}
static const import_directory_table_entry *toImportEntry(DataRefImpl Imp) {
return reinterpret_cast<const import_directory_table_entry *>(Imp.p);
}
error_code
ImportDirectoryEntryRef::getNext(ImportDirectoryEntryRef &Result) const {
const import_directory_table_entry *Dir = toImportEntry(ImportDirectoryPimpl);
Dir += 1;
DataRefImpl Next;
Next.p = reinterpret_cast<uintptr_t>(Dir);
Result = ImportDirectoryEntryRef(Next, OwningObject);
return object_error::success;
}
error_code ImportDirectoryEntryRef::
getImportTableEntry(const import_directory_table_entry *&Result) const {
Result = toImportEntry(ImportDirectoryPimpl);
return object_error::success;
}
error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
const import_directory_table_entry *Dir = toImportEntry(ImportDirectoryPimpl);
uintptr_t IntPtr = 0;
if (error_code ec = OwningObject->getRvaPtr(Dir->NameRVA, IntPtr))
return ec;
const char *Ptr = reinterpret_cast<const char *>(IntPtr);
Result = StringRef(Ptr);
return object_error::success;
}
error_code ImportDirectoryEntryRef::getImportLookupEntry(
const import_lookup_table_entry32 *&Result) const {
const import_directory_table_entry *Dir = toImportEntry(ImportDirectoryPimpl);
uintptr_t IntPtr = 0;
if (error_code ec = OwningObject->getRvaPtr(
Dir->ImportLookupTableRVA, IntPtr))
return ec;
Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr);
return object_error::success;
}
namespace llvm {
ObjectFile *ObjectFile::createCOFFObjectFile(MemoryBuffer *Object) {
error_code ec;
return new COFFObjectFile(Object, ec);
}
} // end namespace llvm