mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-02 16:56:50 +00:00
5b5bc3032f
makes it so that it constant folds instructions on the fly. This is good for several reasons: 0. Many instructions are constant foldable after inlining, particularly if inlining a call with constant arguments. 1. Without this, the inliner has to allocate memory for all of the instructions that can be constant folded, then a subsequent pass has to delete them. This gets the job done without this extra work. 2. This makes the inliner *pass* a bit more aggressive: in particular, it partially solves a phase order issue where the inliner would inline lots of code that folds away to nothing, but think that the resultant function is big because of this code that will be gone. Now the code never exists. This is the first part of a 2-step process. The second part will be smart enough to see when this implicit constant folding propagates a constant into a branch or switch instruction, making CFG edges dead. This implements Transforms/Inline/inline_constprop.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28521 91177308-0d34-0410-b5e6-96231b3b80d8
471 lines
20 KiB
C++
471 lines
20 KiB
C++
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements inlining of a function into a call site, resolving
|
|
// parameters and the return value as appropriate.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
using namespace llvm;
|
|
|
|
bool llvm::InlineFunction(CallInst *CI, CallGraph *CG) {
|
|
return InlineFunction(CallSite(CI), CG);
|
|
}
|
|
bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG) {
|
|
return InlineFunction(CallSite(II), CG);
|
|
}
|
|
|
|
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
|
|
/// in the body of the inlined function into invokes and turn unwind
|
|
/// instructions into branches to the invoke unwind dest.
|
|
///
|
|
/// II is the invoke instruction begin inlined. FirstNewBlock is the first
|
|
/// block of the inlined code (the last block is the end of the function),
|
|
/// and InlineCodeInfo is information about the code that got inlined.
|
|
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
|
|
ClonedCodeInfo &InlinedCodeInfo) {
|
|
BasicBlock *InvokeDest = II->getUnwindDest();
|
|
std::vector<Value*> InvokeDestPHIValues;
|
|
|
|
// If there are PHI nodes in the unwind destination block, we need to
|
|
// keep track of which values came into them from this invoke, then remove
|
|
// the entry for this block.
|
|
BasicBlock *InvokeBlock = II->getParent();
|
|
for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
// Save the value to use for this edge.
|
|
InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
|
|
}
|
|
|
|
Function *Caller = FirstNewBlock->getParent();
|
|
|
|
// The inlined code is currently at the end of the function, scan from the
|
|
// start of the inlined code to its end, checking for stuff we need to
|
|
// rewrite.
|
|
if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
|
|
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
|
|
BB != E; ++BB) {
|
|
if (InlinedCodeInfo.ContainsCalls) {
|
|
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
|
|
Instruction *I = BBI++;
|
|
|
|
// We only need to check for function calls: inlined invoke
|
|
// instructions require no special handling.
|
|
if (!isa<CallInst>(I)) continue;
|
|
CallInst *CI = cast<CallInst>(I);
|
|
|
|
// If this is an intrinsic function call, don't convert it to an
|
|
// invoke.
|
|
if (CI->getCalledFunction() &&
|
|
CI->getCalledFunction()->getIntrinsicID())
|
|
continue;
|
|
|
|
// Convert this function call into an invoke instruction.
|
|
// First, split the basic block.
|
|
BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
|
|
|
|
// Next, create the new invoke instruction, inserting it at the end
|
|
// of the old basic block.
|
|
InvokeInst *II =
|
|
new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
|
|
std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
|
|
CI->getName(), BB->getTerminator());
|
|
II->setCallingConv(CI->getCallingConv());
|
|
|
|
// Make sure that anything using the call now uses the invoke!
|
|
CI->replaceAllUsesWith(II);
|
|
|
|
// Delete the unconditional branch inserted by splitBasicBlock
|
|
BB->getInstList().pop_back();
|
|
Split->getInstList().pop_front(); // Delete the original call
|
|
|
|
// Update any PHI nodes in the exceptional block to indicate that
|
|
// there is now a new entry in them.
|
|
unsigned i = 0;
|
|
for (BasicBlock::iterator I = InvokeDest->begin();
|
|
isa<PHINode>(I); ++I, ++i) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
PN->addIncoming(InvokeDestPHIValues[i], BB);
|
|
}
|
|
|
|
// This basic block is now complete, start scanning the next one.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
|
|
// An UnwindInst requires special handling when it gets inlined into an
|
|
// invoke site. Once this happens, we know that the unwind would cause
|
|
// a control transfer to the invoke exception destination, so we can
|
|
// transform it into a direct branch to the exception destination.
|
|
new BranchInst(InvokeDest, UI);
|
|
|
|
// Delete the unwind instruction!
|
|
UI->getParent()->getInstList().pop_back();
|
|
|
|
// Update any PHI nodes in the exceptional block to indicate that
|
|
// there is now a new entry in them.
|
|
unsigned i = 0;
|
|
for (BasicBlock::iterator I = InvokeDest->begin();
|
|
isa<PHINode>(I); ++I, ++i) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
PN->addIncoming(InvokeDestPHIValues[i], BB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that everything is happy, we have one final detail. The PHI nodes in
|
|
// the exception destination block still have entries due to the original
|
|
// invoke instruction. Eliminate these entries (which might even delete the
|
|
// PHI node) now.
|
|
InvokeDest->removePredecessor(II->getParent());
|
|
}
|
|
|
|
/// UpdateCallGraphAfterInlining - Once we have finished inlining a call from
|
|
/// caller to callee, update the specified callgraph to reflect the changes we
|
|
/// made.
|
|
static void UpdateCallGraphAfterInlining(const Function *Caller,
|
|
const Function *Callee,
|
|
CallGraph &CG) {
|
|
// Update the call graph by deleting the edge from Callee to Caller
|
|
CallGraphNode *CalleeNode = CG[Callee];
|
|
CallGraphNode *CallerNode = CG[Caller];
|
|
CallerNode->removeCallEdgeTo(CalleeNode);
|
|
|
|
// Since we inlined all uninlined call sites in the callee into the caller,
|
|
// add edges from the caller to all of the callees of the callee.
|
|
for (CallGraphNode::iterator I = CalleeNode->begin(),
|
|
E = CalleeNode->end(); I != E; ++I)
|
|
CallerNode->addCalledFunction(*I);
|
|
}
|
|
|
|
|
|
// InlineFunction - This function inlines the called function into the basic
|
|
// block of the caller. This returns false if it is not possible to inline this
|
|
// call. The program is still in a well defined state if this occurs though.
|
|
//
|
|
// Note that this only does one level of inlining. For example, if the
|
|
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
|
|
// exists in the instruction stream. Similiarly this will inline a recursive
|
|
// function by one level.
|
|
//
|
|
bool llvm::InlineFunction(CallSite CS, CallGraph *CG) {
|
|
Instruction *TheCall = CS.getInstruction();
|
|
assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
|
|
"Instruction not in function!");
|
|
|
|
const Function *CalledFunc = CS.getCalledFunction();
|
|
if (CalledFunc == 0 || // Can't inline external function or indirect
|
|
CalledFunc->isExternal() || // call, or call to a vararg function!
|
|
CalledFunc->getFunctionType()->isVarArg()) return false;
|
|
|
|
|
|
// If the call to the callee is a non-tail call, we must clear the 'tail'
|
|
// flags on any calls that we inline.
|
|
bool MustClearTailCallFlags =
|
|
isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
|
|
|
|
BasicBlock *OrigBB = TheCall->getParent();
|
|
Function *Caller = OrigBB->getParent();
|
|
|
|
// Get an iterator to the last basic block in the function, which will have
|
|
// the new function inlined after it.
|
|
//
|
|
Function::iterator LastBlock = &Caller->back();
|
|
|
|
// Make sure to capture all of the return instructions from the cloned
|
|
// function.
|
|
std::vector<ReturnInst*> Returns;
|
|
ClonedCodeInfo InlinedFunctionInfo;
|
|
{ // Scope to destroy ValueMap after cloning.
|
|
std::map<const Value*, Value*> ValueMap;
|
|
|
|
// Calculate the vector of arguments to pass into the function cloner, which
|
|
// matches up the formal to the actual argument values.
|
|
assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
|
|
std::distance(CS.arg_begin(), CS.arg_end()) &&
|
|
"No varargs calls can be inlined!");
|
|
CallSite::arg_iterator AI = CS.arg_begin();
|
|
for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
|
|
E = CalledFunc->arg_end(); I != E; ++I, ++AI)
|
|
ValueMap[I] = *AI;
|
|
|
|
// We want the inliner to prune the code as it copies. We would LOVE to
|
|
// have no dead or constant instructions leftover after inlining occurs
|
|
// (which can happen, e.g., because an argument was constant), but we'll be
|
|
// happy with whatever the cloner can do.
|
|
CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
|
|
&InlinedFunctionInfo);
|
|
}
|
|
|
|
// Remember the first block that is newly cloned over.
|
|
Function::iterator FirstNewBlock = LastBlock; ++FirstNewBlock;
|
|
|
|
// If there are any alloca instructions in the block that used to be the entry
|
|
// block for the callee, move them to the entry block of the caller. First
|
|
// calculate which instruction they should be inserted before. We insert the
|
|
// instructions at the end of the current alloca list.
|
|
//
|
|
{
|
|
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
|
|
for (BasicBlock::iterator I = FirstNewBlock->begin(),
|
|
E = FirstNewBlock->end(); I != E; )
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
|
|
if (isa<Constant>(AI->getArraySize())) {
|
|
// Scan for the block of allocas that we can move over, and move them
|
|
// all at once.
|
|
while (isa<AllocaInst>(I) &&
|
|
isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
|
|
++I;
|
|
|
|
// Transfer all of the allocas over in a block. Using splice means
|
|
// that they instructions aren't removed from the symbol table, then
|
|
// reinserted.
|
|
Caller->front().getInstList().splice(InsertPoint,
|
|
FirstNewBlock->getInstList(),
|
|
AI, I);
|
|
}
|
|
}
|
|
|
|
// If the inlined code contained dynamic alloca instructions, wrap the inlined
|
|
// code with llvm.stacksave/llvm.stackrestore intrinsics.
|
|
if (InlinedFunctionInfo.ContainsDynamicAllocas) {
|
|
Module *M = Caller->getParent();
|
|
const Type *SBytePtr = PointerType::get(Type::SByteTy);
|
|
// Get the two intrinsics we care about.
|
|
Function *StackSave, *StackRestore;
|
|
StackSave = M->getOrInsertFunction("llvm.stacksave", SBytePtr, NULL);
|
|
StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
|
|
SBytePtr, NULL);
|
|
|
|
// Insert the llvm.stacksave.
|
|
Value *SavedPtr = new CallInst(StackSave, "savedstack",
|
|
FirstNewBlock->begin());
|
|
|
|
// Insert a call to llvm.stackrestore before any return instructions in the
|
|
// inlined function.
|
|
for (unsigned i = 0, e = Returns.size(); i != e; ++i)
|
|
new CallInst(StackRestore, SavedPtr, "", Returns[i]);
|
|
|
|
// Count the number of StackRestore calls we insert.
|
|
unsigned NumStackRestores = Returns.size();
|
|
|
|
// If we are inlining an invoke instruction, insert restores before each
|
|
// unwind. These unwinds will be rewritten into branches later.
|
|
if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
|
|
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
|
|
BB != E; ++BB)
|
|
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
|
|
new CallInst(StackRestore, SavedPtr, "", UI);
|
|
++NumStackRestores;
|
|
}
|
|
}
|
|
|
|
// If we are supposed to update the callgraph, do so now.
|
|
if (CG) {
|
|
CallGraphNode *StackSaveCGN = CG->getOrInsertFunction(StackSave);
|
|
CallGraphNode *StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
|
|
CallGraphNode *CallerNode = (*CG)[Caller];
|
|
|
|
// 'Caller' now calls llvm.stacksave one more time.
|
|
CallerNode->addCalledFunction(StackSaveCGN);
|
|
|
|
// 'Caller' now calls llvm.stackrestore the appropriate number of times.
|
|
for (unsigned i = 0; i != NumStackRestores; ++i)
|
|
CallerNode->addCalledFunction(StackRestoreCGN);
|
|
}
|
|
}
|
|
|
|
// If we are inlining tail call instruction through a call site that isn't
|
|
// marked 'tail', we must remove the tail marker for any calls in the inlined
|
|
// code.
|
|
if (MustClearTailCallFlags && InlinedFunctionInfo.ContainsCalls) {
|
|
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
|
|
BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (CallInst *CI = dyn_cast<CallInst>(I))
|
|
CI->setTailCall(false);
|
|
}
|
|
|
|
// If we are inlining for an invoke instruction, we must make sure to rewrite
|
|
// any inlined 'unwind' instructions into branches to the invoke exception
|
|
// destination, and call instructions into invoke instructions.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
|
|
HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
|
|
|
|
// If we cloned in _exactly one_ basic block, and if that block ends in a
|
|
// return instruction, we splice the body of the inlined callee directly into
|
|
// the calling basic block.
|
|
if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
|
|
// Move all of the instructions right before the call.
|
|
OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
|
|
FirstNewBlock->begin(), FirstNewBlock->end());
|
|
// Remove the cloned basic block.
|
|
Caller->getBasicBlockList().pop_back();
|
|
|
|
// If the call site was an invoke instruction, add a branch to the normal
|
|
// destination.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
|
|
new BranchInst(II->getNormalDest(), TheCall);
|
|
|
|
// If the return instruction returned a value, replace uses of the call with
|
|
// uses of the returned value.
|
|
if (!TheCall->use_empty())
|
|
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
|
|
|
|
// Since we are now done with the Call/Invoke, we can delete it.
|
|
TheCall->getParent()->getInstList().erase(TheCall);
|
|
|
|
// Since we are now done with the return instruction, delete it also.
|
|
Returns[0]->getParent()->getInstList().erase(Returns[0]);
|
|
|
|
// Update the callgraph if requested.
|
|
if (CG) UpdateCallGraphAfterInlining(Caller, CalledFunc, *CG);
|
|
|
|
// We are now done with the inlining.
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we have the normal case, of more than one block to inline or
|
|
// multiple return sites.
|
|
|
|
// We want to clone the entire callee function into the hole between the
|
|
// "starter" and "ender" blocks. How we accomplish this depends on whether
|
|
// this is an invoke instruction or a call instruction.
|
|
BasicBlock *AfterCallBB;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
|
|
|
// Add an unconditional branch to make this look like the CallInst case...
|
|
BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
|
|
|
|
// Split the basic block. This guarantees that no PHI nodes will have to be
|
|
// updated due to new incoming edges, and make the invoke case more
|
|
// symmetric to the call case.
|
|
AfterCallBB = OrigBB->splitBasicBlock(NewBr,
|
|
CalledFunc->getName()+".exit");
|
|
|
|
} else { // It's a call
|
|
// If this is a call instruction, we need to split the basic block that
|
|
// the call lives in.
|
|
//
|
|
AfterCallBB = OrigBB->splitBasicBlock(TheCall,
|
|
CalledFunc->getName()+".exit");
|
|
}
|
|
|
|
// Change the branch that used to go to AfterCallBB to branch to the first
|
|
// basic block of the inlined function.
|
|
//
|
|
TerminatorInst *Br = OrigBB->getTerminator();
|
|
assert(Br && Br->getOpcode() == Instruction::Br &&
|
|
"splitBasicBlock broken!");
|
|
Br->setOperand(0, FirstNewBlock);
|
|
|
|
|
|
// Now that the function is correct, make it a little bit nicer. In
|
|
// particular, move the basic blocks inserted from the end of the function
|
|
// into the space made by splitting the source basic block.
|
|
//
|
|
Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
|
|
FirstNewBlock, Caller->end());
|
|
|
|
// Handle all of the return instructions that we just cloned in, and eliminate
|
|
// any users of the original call/invoke instruction.
|
|
if (Returns.size() > 1) {
|
|
// The PHI node should go at the front of the new basic block to merge all
|
|
// possible incoming values.
|
|
//
|
|
PHINode *PHI = 0;
|
|
if (!TheCall->use_empty()) {
|
|
PHI = new PHINode(CalledFunc->getReturnType(),
|
|
TheCall->getName(), AfterCallBB->begin());
|
|
|
|
// Anything that used the result of the function call should now use the
|
|
// PHI node as their operand.
|
|
//
|
|
TheCall->replaceAllUsesWith(PHI);
|
|
}
|
|
|
|
// Loop over all of the return instructions, turning them into unconditional
|
|
// branches to the merge point now, and adding entries to the PHI node as
|
|
// appropriate.
|
|
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
|
|
ReturnInst *RI = Returns[i];
|
|
|
|
if (PHI) {
|
|
assert(RI->getReturnValue() && "Ret should have value!");
|
|
assert(RI->getReturnValue()->getType() == PHI->getType() &&
|
|
"Ret value not consistent in function!");
|
|
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
|
|
}
|
|
|
|
// Add a branch to the merge point where the PHI node lives if it exists.
|
|
new BranchInst(AfterCallBB, RI);
|
|
|
|
// Delete the return instruction now
|
|
RI->getParent()->getInstList().erase(RI);
|
|
}
|
|
|
|
} else if (!Returns.empty()) {
|
|
// Otherwise, if there is exactly one return value, just replace anything
|
|
// using the return value of the call with the computed value.
|
|
if (!TheCall->use_empty())
|
|
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
|
|
|
|
// Splice the code from the return block into the block that it will return
|
|
// to, which contains the code that was after the call.
|
|
BasicBlock *ReturnBB = Returns[0]->getParent();
|
|
AfterCallBB->getInstList().splice(AfterCallBB->begin(),
|
|
ReturnBB->getInstList());
|
|
|
|
// Update PHI nodes that use the ReturnBB to use the AfterCallBB.
|
|
ReturnBB->replaceAllUsesWith(AfterCallBB);
|
|
|
|
// Delete the return instruction now and empty ReturnBB now.
|
|
Returns[0]->eraseFromParent();
|
|
ReturnBB->eraseFromParent();
|
|
} else if (!TheCall->use_empty()) {
|
|
// No returns, but something is using the return value of the call. Just
|
|
// nuke the result.
|
|
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
|
|
}
|
|
|
|
// Since we are now done with the Call/Invoke, we can delete it.
|
|
TheCall->eraseFromParent();
|
|
|
|
// We should always be able to fold the entry block of the function into the
|
|
// single predecessor of the block...
|
|
assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
|
|
BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
|
|
|
|
// Splice the code entry block into calling block, right before the
|
|
// unconditional branch.
|
|
OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
|
|
CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
|
|
|
|
// Remove the unconditional branch.
|
|
OrigBB->getInstList().erase(Br);
|
|
|
|
// Now we can remove the CalleeEntry block, which is now empty.
|
|
Caller->getBasicBlockList().erase(CalleeEntry);
|
|
|
|
// Update the callgraph if requested.
|
|
if (CG) UpdateCallGraphAfterInlining(Caller, CalledFunc, *CG);
|
|
|
|
return true;
|
|
}
|