llvm/lib/Target/X86/X86InstrFMA.td
Craig Topper 0ce91864ce [AVX-512] Give priority to EVEX encoded scalar FMA instructions when we have FMA, AVX512 and no VLX.
We were giving priority if VLX was enabled.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298046 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-17 06:10:37 +00:00

446 lines
22 KiB
TableGen

//===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes FMA (Fused Multiply-Add) instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// FMA3 - Intel 3 operand Fused Multiply-Add instructions
//===----------------------------------------------------------------------===//
// For all FMA opcodes declared in fma3p_rm and fma3s_rm milticlasses defined
// below, both the register and memory variants are commutable.
// For the register form the commutable operands are 1, 2 and 3.
// For the memory variant the folded operand must be in 3. Thus,
// in that case, only the operands 1 and 2 can be swapped.
// Commuting some of operands may require the opcode change.
// FMA*213*:
// operands 1 and 2 (memory & register forms): *213* --> *213*(no changes);
// operands 1 and 3 (register forms only): *213* --> *231*;
// operands 2 and 3 (register forms only): *213* --> *132*.
// FMA*132*:
// operands 1 and 2 (memory & register forms): *132* --> *231*;
// operands 1 and 3 (register forms only): *132* --> *132*(no changes);
// operands 2 and 3 (register forms only): *132* --> *213*.
// FMA*231*:
// operands 1 and 2 (memory & register forms): *231* --> *132*;
// operands 1 and 3 (register forms only): *231* --> *213*;
// operands 2 and 3 (register forms only): *231* --> *231*(no changes).
let Constraints = "$src1 = $dst", hasSideEffects = 0, isCommutable = 1 in
multiclass fma3p_rm<bits<8> opc, string OpcodeStr,
PatFrag MemFrag128, PatFrag MemFrag256,
ValueType OpVT128, ValueType OpVT256,
SDPatternOperator Op = null_frag> {
def r : FMA3<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst, (OpVT128 (Op VR128:$src2,
VR128:$src1, VR128:$src3)))]>;
let mayLoad = 1 in
def m : FMA3<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, f128mem:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst, (OpVT128 (Op VR128:$src2, VR128:$src1,
(MemFrag128 addr:$src3))))]>;
def Yr : FMA3<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, VR256:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR256:$dst, (OpVT256 (Op VR256:$src2, VR256:$src1,
VR256:$src3)))]>, VEX_L;
let mayLoad = 1 in
def Ym : FMA3<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, f256mem:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR256:$dst,
(OpVT256 (Op VR256:$src2, VR256:$src1,
(MemFrag256 addr:$src3))))]>, VEX_L;
}
multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
string OpcodeStr, string PackTy, string Suff,
PatFrag MemFrag128, PatFrag MemFrag256,
SDNode Op, ValueType OpTy128, ValueType OpTy256> {
defm NAME#213#Suff : fma3p_rm<opc213,
!strconcat(OpcodeStr, "213", PackTy),
MemFrag128, MemFrag256, OpTy128, OpTy256, Op>;
defm NAME#132#Suff : fma3p_rm<opc132,
!strconcat(OpcodeStr, "132", PackTy),
MemFrag128, MemFrag256, OpTy128, OpTy256>;
defm NAME#231#Suff : fma3p_rm<opc231,
!strconcat(OpcodeStr, "231", PackTy),
MemFrag128, MemFrag256, OpTy128, OpTy256>;
}
// Fused Multiply-Add
let ExeDomain = SSEPackedSingle in {
defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", "PS",
loadv4f32, loadv8f32, X86Fmadd, v4f32, v8f32>;
defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", "PS",
loadv4f32, loadv8f32, X86Fmsub, v4f32, v8f32>;
defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps", "PS",
loadv4f32, loadv8f32, X86Fmaddsub,
v4f32, v8f32>;
defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps", "PS",
loadv4f32, loadv8f32, X86Fmsubadd,
v4f32, v8f32>;
}
let ExeDomain = SSEPackedDouble in {
defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", "PD",
loadv2f64, loadv4f64, X86Fmadd, v2f64,
v4f64>, VEX_W;
defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", "PD",
loadv2f64, loadv4f64, X86Fmsub, v2f64,
v4f64>, VEX_W;
defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd", "PD",
loadv2f64, loadv4f64, X86Fmaddsub,
v2f64, v4f64>, VEX_W;
defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd", "PD",
loadv2f64, loadv4f64, X86Fmsubadd,
v2f64, v4f64>, VEX_W;
}
// Fused Negative Multiply-Add
let ExeDomain = SSEPackedSingle in {
defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", "PS", loadv4f32,
loadv8f32, X86Fnmadd, v4f32, v8f32>;
defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", "PS", loadv4f32,
loadv8f32, X86Fnmsub, v4f32, v8f32>;
}
let ExeDomain = SSEPackedDouble in {
defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", "PD", loadv2f64,
loadv4f64, X86Fnmadd, v2f64, v4f64>, VEX_W;
defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd", "PD", loadv2f64,
loadv4f64, X86Fnmsub, v2f64, v4f64>, VEX_W;
}
// All source register operands of FMA opcodes defined in fma3s_rm multiclass
// can be commuted. In many cases such commute transformation requres an opcode
// adjustment, for example, commuting the operands 1 and 2 in FMA*132 form
// would require an opcode change to FMA*231:
// FMA*132* reg1, reg2, reg3; // reg1 * reg3 + reg2;
// -->
// FMA*231* reg2, reg1, reg3; // reg1 * reg3 + reg2;
// Please see more detailed comment at the very beginning of the section
// defining FMA3 opcodes above.
let Constraints = "$src1 = $dst", isCommutable = 1, hasSideEffects = 0 in
multiclass fma3s_rm<bits<8> opc, string OpcodeStr,
X86MemOperand x86memop, RegisterClass RC,
SDPatternOperator OpNode = null_frag> {
def r : FMA3<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set RC:$dst, (OpNode RC:$src2, RC:$src1, RC:$src3))]>;
let mayLoad = 1 in
def m : FMA3<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, RC:$src2, x86memop:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set RC:$dst,
(OpNode RC:$src2, RC:$src1, (load addr:$src3)))]>;
}
// These FMA*_Int instructions are defined specially for being used when
// the scalar FMA intrinsics are lowered to machine instructions, and in that
// sense, they are similar to existing ADD*_Int, SUB*_Int, MUL*_Int, etc.
// instructions.
//
// All of the FMA*_Int opcodes are defined as commutable here.
// Commuting the 2nd and 3rd source register operands of FMAs is quite trivial
// and the corresponding optimizations have been developed.
// Commuting the 1st operand of FMA*_Int requires some additional analysis,
// the commute optimization is legal only if all users of FMA*_Int use only
// the lowest element of the FMA*_Int instruction. Even though such analysis
// may be not implemented yet we allow the routines doing the actual commute
// transformation to decide if one or another instruction is commutable or not.
let Constraints = "$src1 = $dst", isCommutable = 1, isCodeGenOnly = 1,
hasSideEffects = 0 in
multiclass fma3s_rm_int<bits<8> opc, string OpcodeStr,
Operand memopr, RegisterClass RC> {
def r_Int : FMA3<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[]>;
let mayLoad = 1 in
def m_Int : FMA3<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, RC:$src2, memopr:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[]>;
}
multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
string OpStr, string PackTy, string Suff,
SDNode OpNode, RegisterClass RC,
X86MemOperand x86memop> {
let Predicates = [HasFMA, NoAVX512] in {
defm NAME#132#Suff : fma3s_rm<opc132, !strconcat(OpStr, "132", PackTy),
x86memop, RC>;
defm NAME#213#Suff : fma3s_rm<opc213, !strconcat(OpStr, "213", PackTy),
x86memop, RC, OpNode>;
defm NAME#231#Suff : fma3s_rm<opc231, !strconcat(OpStr, "231", PackTy),
x86memop, RC>;
}
}
// The FMA 213 form is created for lowering of scalar FMA intrinscis
// to machine instructions.
// The FMA 132 form can trivially be get by commuting the 2nd and 3rd operands
// of FMA 213 form.
// The FMA 231 form can be get only by commuting the 1st operand of 213 or 132
// forms and is possible only after special analysis of all uses of the initial
// instruction. Such analysis do not exist yet and thus introducing the 231
// form of FMA*_Int instructions is done using an optimistic assumption that
// such analysis will be implemented eventually.
multiclass fma3s_int_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
string OpStr, string PackTy, string Suff,
RegisterClass RC, Operand memop> {
defm NAME#132#Suff : fma3s_rm_int<opc132, !strconcat(OpStr, "132", PackTy),
memop, RC>;
defm NAME#213#Suff : fma3s_rm_int<opc213, !strconcat(OpStr, "213", PackTy),
memop, RC>;
defm NAME#231#Suff : fma3s_rm_int<opc231, !strconcat(OpStr, "231", PackTy),
memop, RC>;
}
multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231,
string OpStr, Intrinsic IntF32, Intrinsic IntF64,
SDNode OpNode> {
let ExeDomain = SSEPackedSingle in
defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", "SS", OpNode,
FR32, f32mem>,
fma3s_int_forms<opc132, opc213, opc231, OpStr, "ss", "SS",
VR128, ssmem>;
let ExeDomain = SSEPackedDouble in
defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", "SD", OpNode,
FR64, f64mem>,
fma3s_int_forms<opc132, opc213, opc231, OpStr, "sd", "SD",
VR128, sdmem>, VEX_W;
// These patterns use the 123 ordering, instead of 213, even though
// they match the intrinsic to the 213 version of the instruction.
// This is because src1 is tied to dest, and the scalar intrinsics
// require the pass-through values to come from the first source
// operand, not the second.
let Predicates = [HasFMA] in {
def : Pat<(IntF32 VR128:$src1, VR128:$src2, VR128:$src3),
(COPY_TO_REGCLASS(!cast<Instruction>(NAME#"213SSr_Int")
$src1, $src2, $src3), VR128)>;
def : Pat<(IntF64 VR128:$src1, VR128:$src2, VR128:$src3),
(COPY_TO_REGCLASS(!cast<Instruction>(NAME#"213SDr_Int")
$src1, $src2, $src3), VR128)>;
}
}
defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", int_x86_fma_vfmadd_ss,
int_x86_fma_vfmadd_sd, X86Fmadd>, VEX_LIG;
defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", int_x86_fma_vfmsub_ss,
int_x86_fma_vfmsub_sd, X86Fmsub>, VEX_LIG;
defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", int_x86_fma_vfnmadd_ss,
int_x86_fma_vfnmadd_sd, X86Fnmadd>, VEX_LIG;
defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", int_x86_fma_vfnmsub_ss,
int_x86_fma_vfnmsub_sd, X86Fnmsub>, VEX_LIG;
//===----------------------------------------------------------------------===//
// FMA4 - AMD 4 operand Fused Multiply-Add instructions
//===----------------------------------------------------------------------===//
multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, ValueType OpVT, SDNode OpNode,
PatFrag mem_frag> {
let isCommutable = 1 in
def rr : FMA4<opc, MRMSrcRegOp4, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG;
def rm : FMA4<opc, MRMSrcMemOp4, (outs RC:$dst),
(ins RC:$src1, RC:$src2, x86memop:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (OpNode RC:$src1, RC:$src2,
(mem_frag addr:$src3)))]>, VEX_W, VEX_LIG;
def mr : FMA4<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
(OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG;
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
def rr_REV : FMA4<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
VEX_LIG;
}
multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop,
ComplexPattern mem_cpat, Intrinsic Int> {
let isCodeGenOnly = 1 in {
def rr_Int : FMA4<opc, MRMSrcRegOp4, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(Int VR128:$src1, VR128:$src2, VR128:$src3))]>, VEX_W, VEX_LIG;
def rm_Int : FMA4<opc, MRMSrcMemOp4, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, memop:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst, (Int VR128:$src1, VR128:$src2,
mem_cpat:$src3))]>, VEX_W, VEX_LIG;
def mr_Int : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, memop:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(Int VR128:$src1, mem_cpat:$src2, VR128:$src3))]>, VEX_LIG;
} // isCodeGenOnly = 1
}
multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT128, ValueType OpVT256,
PatFrag ld_frag128, PatFrag ld_frag256> {
let isCommutable = 1 in
def rr : FMA4<opc, MRMSrcRegOp4, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>,
VEX_W;
def rm : FMA4<opc, MRMSrcMemOp4, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, f128mem:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2,
(ld_frag128 addr:$src3)))]>, VEX_W;
def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>;
let isCommutable = 1 in
def Yrr : FMA4<opc, MRMSrcRegOp4, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, VR256:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR256:$dst,
(OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>,
VEX_W, VEX_L;
def Yrm : FMA4<opc, MRMSrcMemOp4, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, f256mem:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2,
(ld_frag256 addr:$src3)))]>, VEX_W, VEX_L;
def Ymr : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2, VR256:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR256:$dst, (OpNode VR256:$src1,
(ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L;
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>;
def Yrr_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, VR256:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
VEX_L;
} // isCodeGenOnly = 1
}
let ExeDomain = SSEPackedSingle in {
// Scalar Instructions
defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86Fmadd, loadf32>,
fma4s_int<0x6A, "vfmaddss", ssmem, sse_load_f32,
int_x86_fma_vfmadd_ss>;
defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86Fmsub, loadf32>,
fma4s_int<0x6E, "vfmsubss", ssmem, sse_load_f32,
int_x86_fma_vfmsub_ss>;
defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32,
X86Fnmadd, loadf32>,
fma4s_int<0x7A, "vfnmaddss", ssmem, sse_load_f32,
int_x86_fma_vfnmadd_ss>;
defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32,
X86Fnmsub, loadf32>,
fma4s_int<0x7E, "vfnmsubss", ssmem, sse_load_f32,
int_x86_fma_vfnmsub_ss>;
// Packed Instructions
defm VFMADDPS4 : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32,
loadv4f32, loadv8f32>;
defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32,
loadv4f32, loadv8f32>;
}
let ExeDomain = SSEPackedDouble in {
// Scalar Instructions
defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, X86Fmadd, loadf64>,
fma4s_int<0x6B, "vfmaddsd", sdmem, sse_load_f64,
int_x86_fma_vfmadd_sd>;
defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86Fmsub, loadf64>,
fma4s_int<0x6F, "vfmsubsd", sdmem, sse_load_f64,
int_x86_fma_vfmsub_sd>;
defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64,
X86Fnmadd, loadf64>,
fma4s_int<0x7B, "vfnmaddsd", sdmem, sse_load_f64,
int_x86_fma_vfnmadd_sd>;
defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64,
X86Fnmsub, loadf64>,
fma4s_int<0x7F, "vfnmsubsd", sdmem, sse_load_f64,
int_x86_fma_vfnmsub_sd>;
// Packed Instructions
defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64,
loadv2f64, loadv4f64>;
defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64,
loadv2f64, loadv4f64>;
}