llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
Dan Gohman 3f23744df4 Fix some register-alias-related bugs in the post-RA scheduler liveness
computation code. Also, avoid adding output-depenency edges when both
defs are dead, which frequently happens with EFLAGS defs.

Compute Depth and Height lazily, and always in terms of edge latency
values. For the schedulers that don't care about latency, edge latencies
are set to 1.

Eliminate Cycle and CycleBound, and LatencyPriorityQueue's Latencies array.
These are all subsumed by the Depth and Height fields.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61073 91177308-0d34-0410-b5e6-96231b3b80d8
2008-12-16 03:25:46 +00:00

270 lines
9.7 KiB
C++

//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAG class, which is a base class used by
// scheduling implementation classes.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
ScheduleDAGSDNodes::ScheduleDAGSDNodes(SelectionDAG *dag, MachineBasicBlock *bb,
const TargetMachine &tm)
: ScheduleDAG(dag, bb, tm) {
}
SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
SUnit *SU = NewSUnit(Old->getNode());
SU->OrigNode = Old->OrigNode;
SU->Latency = Old->Latency;
SU->isTwoAddress = Old->isTwoAddress;
SU->isCommutable = Old->isCommutable;
SU->hasPhysRegDefs = Old->hasPhysRegDefs;
return SU;
}
/// CheckForPhysRegDependency - Check if the dependency between def and use of
/// a specified operand is a physical register dependency. If so, returns the
/// register and the cost of copying the register.
static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
const TargetRegisterInfo *TRI,
const TargetInstrInfo *TII,
unsigned &PhysReg, int &Cost) {
if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
return;
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
return;
unsigned ResNo = User->getOperand(2).getResNo();
if (Def->isMachineOpcode()) {
const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
if (ResNo >= II.getNumDefs() &&
II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
PhysReg = Reg;
const TargetRegisterClass *RC =
TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo));
Cost = RC->getCopyCost();
}
}
}
/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
/// This SUnit graph is similar to the SelectionDAG, but represents flagged
/// together nodes with a single SUnit.
void ScheduleDAGSDNodes::BuildSchedUnits() {
// Reserve entries in the vector for each of the SUnits we are creating. This
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
// invalidated.
SUnits.reserve(DAG->allnodes_size());
// During scheduling, the NodeId field of SDNode is used to map SDNodes
// to their associated SUnits by holding SUnits table indices. A value
// of -1 means the SDNode does not yet have an associated SUnit.
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
E = DAG->allnodes_end(); NI != E; ++NI)
NI->setNodeId(-1);
// Check to see if the scheduler cares about latencies.
bool UnitLatencies = ForceUnitLatencies();
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
E = DAG->allnodes_end(); NI != E; ++NI) {
if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
continue;
// If this node has already been processed, stop now.
if (NI->getNodeId() != -1) continue;
SUnit *NodeSUnit = NewSUnit(NI);
// See if anything is flagged to this node, if so, add them to flagged
// nodes. Nodes can have at most one flag input and one flag output. Flags
// are required the be the last operand and result of a node.
// Scan up to find flagged preds.
SDNode *N = NI;
if (N->getNumOperands() &&
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
do {
N = N->getOperand(N->getNumOperands()-1).getNode();
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
} while (N->getNumOperands() &&
N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
}
// Scan down to find any flagged succs.
N = NI;
while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
SDValue FlagVal(N, N->getNumValues()-1);
// There are either zero or one users of the Flag result.
bool HasFlagUse = false;
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI)
if (FlagVal.isOperandOf(*UI)) {
HasFlagUse = true;
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
N = *UI;
break;
}
if (!HasFlagUse) break;
}
// If there are flag operands involved, N is now the bottom-most node
// of the sequence of nodes that are flagged together.
// Update the SUnit.
NodeSUnit->setNode(N);
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
// Assign the Latency field of NodeSUnit using target-provided information.
if (UnitLatencies)
NodeSUnit->Latency = 1;
else
ComputeLatency(NodeSUnit);
}
// Pass 2: add the preds, succs, etc.
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
SUnit *SU = &SUnits[su];
SDNode *MainNode = SU->getNode();
if (MainNode->isMachineOpcode()) {
unsigned Opc = MainNode->getMachineOpcode();
const TargetInstrDesc &TID = TII->get(Opc);
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
SU->isTwoAddress = true;
break;
}
}
if (TID.isCommutable())
SU->isCommutable = true;
}
// Find all predecessors and successors of the group.
for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
if (N->isMachineOpcode() &&
TII->get(N->getMachineOpcode()).getImplicitDefs() &&
CountResults(N) > TII->get(N->getMachineOpcode()).getNumDefs())
SU->hasPhysRegDefs = true;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDNode *OpN = N->getOperand(i).getNode();
if (isPassiveNode(OpN)) continue; // Not scheduled.
SUnit *OpSU = &SUnits[OpN->getNodeId()];
assert(OpSU && "Node has no SUnit!");
if (OpSU == SU) continue; // In the same group.
MVT OpVT = N->getOperand(i).getValueType();
assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
bool isChain = OpVT == MVT::Other;
unsigned PhysReg = 0;
int Cost = 1;
// Determine if this is a physical register dependency.
CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
assert((PhysReg == 0 || !isChain) &&
"Chain dependence via physreg data?");
SU->addPred(SDep(OpSU, isChain ? SDep::Order : SDep::Data,
OpSU->Latency, PhysReg));
}
}
}
}
void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
// Compute the latency for the node. We use the sum of the latencies for
// all nodes flagged together into this SUnit.
if (InstrItins.isEmpty()) {
// No latency information.
SU->Latency = 1;
return;
}
SU->Latency = 0;
bool SawMachineOpcode = false;
for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
if (N->isMachineOpcode()) {
SawMachineOpcode = true;
SU->Latency +=
InstrItins.getLatency(TII->get(N->getMachineOpcode()).getSchedClass());
}
// Ensure that CopyToReg and similar nodes have a non-zero latency.
if (!SawMachineOpcode)
SU->Latency = 1;
}
/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional flag operands (which do
/// not go into the resulting MachineInstr).
unsigned ScheduleDAGSDNodes::CountResults(SDNode *Node) {
unsigned N = Node->getNumValues();
while (N && Node->getValueType(N - 1) == MVT::Flag)
--N;
if (N && Node->getValueType(N - 1) == MVT::Other)
--N; // Skip over chain result.
return N;
}
/// CountOperands - The inputs to target nodes have any actual inputs first,
/// followed by special operands that describe memory references, then an
/// optional chain operand, then an optional flag operand. Compute the number
/// of actual operands that will go into the resulting MachineInstr.
unsigned ScheduleDAGSDNodes::CountOperands(SDNode *Node) {
unsigned N = ComputeMemOperandsEnd(Node);
while (N && isa<MemOperandSDNode>(Node->getOperand(N - 1).getNode()))
--N; // Ignore MEMOPERAND nodes
return N;
}
/// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode
/// operand
unsigned ScheduleDAGSDNodes::ComputeMemOperandsEnd(SDNode *Node) {
unsigned N = Node->getNumOperands();
while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
--N;
if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
--N; // Ignore chain if it exists.
return N;
}
void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
if (SU->getNode())
SU->getNode()->dump(DAG);
else
cerr << "CROSS RC COPY ";
cerr << "\n";
SmallVector<SDNode *, 4> FlaggedNodes;
for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
FlaggedNodes.push_back(N);
while (!FlaggedNodes.empty()) {
cerr << " ";
FlaggedNodes.back()->dump(DAG);
cerr << "\n";
FlaggedNodes.pop_back();
}
}