llvm/lib/CodeGen/Passes.cpp
Bob Wilson 3fb99a7368 Consistently use AnalysisID types in TargetPassConfig.
This makes it possible to just use a zero value to represent "no pass", so
the phony NoPassID global variable is no longer needed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159568 91177308-0d34-0410-b5e6-96231b3b80d8
2012-07-02 19:48:37 +00:00

707 lines
27 KiB
C++

//===-- Passes.cpp - Target independent code generation passes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines interfaces to access the target independent code
// generation passes provided by the LLVM backend.
//
//===---------------------------------------------------------------------===//
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
static cl::opt<bool> DisablePostRA("disable-post-ra", cl::Hidden,
cl::desc("Disable Post Regalloc"));
static cl::opt<bool> DisableBranchFold("disable-branch-fold", cl::Hidden,
cl::desc("Disable branch folding"));
static cl::opt<bool> DisableTailDuplicate("disable-tail-duplicate", cl::Hidden,
cl::desc("Disable tail duplication"));
static cl::opt<bool> DisableEarlyTailDup("disable-early-taildup", cl::Hidden,
cl::desc("Disable pre-register allocation tail duplication"));
static cl::opt<bool> DisableBlockPlacement("disable-block-placement",
cl::Hidden, cl::desc("Disable the probability-driven block placement, and "
"re-enable the old code placement pass"));
static cl::opt<bool> EnableBlockPlacementStats("enable-block-placement-stats",
cl::Hidden, cl::desc("Collect probability-driven block placement stats"));
static cl::opt<bool> DisableCodePlace("disable-code-place", cl::Hidden,
cl::desc("Disable code placement"));
static cl::opt<bool> DisableSSC("disable-ssc", cl::Hidden,
cl::desc("Disable Stack Slot Coloring"));
static cl::opt<bool> DisableMachineDCE("disable-machine-dce", cl::Hidden,
cl::desc("Disable Machine Dead Code Elimination"));
static cl::opt<bool> DisableMachineLICM("disable-machine-licm", cl::Hidden,
cl::desc("Disable Machine LICM"));
static cl::opt<bool> DisableMachineCSE("disable-machine-cse", cl::Hidden,
cl::desc("Disable Machine Common Subexpression Elimination"));
static cl::opt<cl::boolOrDefault>
OptimizeRegAlloc("optimize-regalloc", cl::Hidden,
cl::desc("Enable optimized register allocation compilation path."));
static cl::opt<cl::boolOrDefault>
EnableMachineSched("enable-misched", cl::Hidden,
cl::desc("Enable the machine instruction scheduling pass."));
static cl::opt<bool> EnableStrongPHIElim("strong-phi-elim", cl::Hidden,
cl::desc("Use strong PHI elimination."));
static cl::opt<bool> DisablePostRAMachineLICM("disable-postra-machine-licm",
cl::Hidden,
cl::desc("Disable Machine LICM"));
static cl::opt<bool> DisableMachineSink("disable-machine-sink", cl::Hidden,
cl::desc("Disable Machine Sinking"));
static cl::opt<bool> DisableLSR("disable-lsr", cl::Hidden,
cl::desc("Disable Loop Strength Reduction Pass"));
static cl::opt<bool> DisableCGP("disable-cgp", cl::Hidden,
cl::desc("Disable Codegen Prepare"));
static cl::opt<bool> DisableCopyProp("disable-copyprop", cl::Hidden,
cl::desc("Disable Copy Propagation pass"));
static cl::opt<bool> PrintLSR("print-lsr-output", cl::Hidden,
cl::desc("Print LLVM IR produced by the loop-reduce pass"));
static cl::opt<bool> PrintISelInput("print-isel-input", cl::Hidden,
cl::desc("Print LLVM IR input to isel pass"));
static cl::opt<bool> PrintGCInfo("print-gc", cl::Hidden,
cl::desc("Dump garbage collector data"));
static cl::opt<bool> VerifyMachineCode("verify-machineinstrs", cl::Hidden,
cl::desc("Verify generated machine code"),
cl::init(getenv("LLVM_VERIFY_MACHINEINSTRS")!=NULL));
static cl::opt<std::string>
PrintMachineInstrs("print-machineinstrs", cl::ValueOptional,
cl::desc("Print machine instrs"),
cl::value_desc("pass-name"), cl::init("option-unspecified"));
/// Allow standard passes to be disabled by command line options. This supports
/// simple binary flags that either suppress the pass or do nothing.
/// i.e. -disable-mypass=false has no effect.
/// These should be converted to boolOrDefault in order to use applyOverride.
static AnalysisID applyDisable(AnalysisID PassID, bool Override) {
if (Override)
return 0;
return PassID;
}
/// Allow Pass selection to be overriden by command line options. This supports
/// flags with ternary conditions. TargetID is passed through by default. The
/// pass is suppressed when the option is false. When the option is true, the
/// StandardID is selected if the target provides no default.
static AnalysisID applyOverride(AnalysisID TargetID, cl::boolOrDefault Override,
AnalysisID StandardID) {
switch (Override) {
case cl::BOU_UNSET:
return TargetID;
case cl::BOU_TRUE:
if (TargetID)
return TargetID;
if (StandardID == 0)
report_fatal_error("Target cannot enable pass");
return StandardID;
case cl::BOU_FALSE:
return 0;
}
llvm_unreachable("Invalid command line option state");
}
/// Allow standard passes to be disabled by the command line, regardless of who
/// is adding the pass.
///
/// StandardID is the pass identified in the standard pass pipeline and provided
/// to addPass(). It may be a target-specific ID in the case that the target
/// directly adds its own pass, but in that case we harmlessly fall through.
///
/// TargetID is the pass that the target has configured to override StandardID.
///
/// StandardID may be a pseudo ID. In that case TargetID is the name of the real
/// pass to run. This allows multiple options to control a single pass depending
/// on where in the pipeline that pass is added.
static AnalysisID overridePass(AnalysisID StandardID, AnalysisID TargetID) {
if (StandardID == &PostRASchedulerID)
return applyDisable(TargetID, DisablePostRA);
if (StandardID == &BranchFolderPassID)
return applyDisable(TargetID, DisableBranchFold);
if (StandardID == &TailDuplicateID)
return applyDisable(TargetID, DisableTailDuplicate);
if (StandardID == &TargetPassConfig::EarlyTailDuplicateID)
return applyDisable(TargetID, DisableEarlyTailDup);
if (StandardID == &MachineBlockPlacementID)
return applyDisable(TargetID, DisableCodePlace);
if (StandardID == &CodePlacementOptID)
return applyDisable(TargetID, DisableCodePlace);
if (StandardID == &StackSlotColoringID)
return applyDisable(TargetID, DisableSSC);
if (StandardID == &DeadMachineInstructionElimID)
return applyDisable(TargetID, DisableMachineDCE);
if (StandardID == &MachineLICMID)
return applyDisable(TargetID, DisableMachineLICM);
if (StandardID == &MachineCSEID)
return applyDisable(TargetID, DisableMachineCSE);
if (StandardID == &MachineSchedulerID)
return applyOverride(TargetID, EnableMachineSched, StandardID);
if (StandardID == &TargetPassConfig::PostRAMachineLICMID)
return applyDisable(TargetID, DisablePostRAMachineLICM);
if (StandardID == &MachineSinkingID)
return applyDisable(TargetID, DisableMachineSink);
if (StandardID == &MachineCopyPropagationID)
return applyDisable(TargetID, DisableCopyProp);
return TargetID;
}
//===---------------------------------------------------------------------===//
/// TargetPassConfig
//===---------------------------------------------------------------------===//
INITIALIZE_PASS(TargetPassConfig, "targetpassconfig",
"Target Pass Configuration", false, false)
char TargetPassConfig::ID = 0;
// Pseudo Pass IDs.
char TargetPassConfig::EarlyTailDuplicateID = 0;
char TargetPassConfig::PostRAMachineLICMID = 0;
namespace llvm {
class PassConfigImpl {
public:
// List of passes explicitly substituted by this target. Normally this is
// empty, but it is a convenient way to suppress or replace specific passes
// that are part of a standard pass pipeline without overridding the entire
// pipeline. This mechanism allows target options to inherit a standard pass's
// user interface. For example, a target may disable a standard pass by
// default by substituting a pass ID of zero, and the user may still enable
// that standard pass with an explicit command line option.
DenseMap<AnalysisID,AnalysisID> TargetPasses;
/// Store the pairs of <AnalysisID, AnalysisID> of which the second pass
/// is inserted after each instance of the first one.
SmallVector<std::pair<AnalysisID, AnalysisID>, 4> InsertedPasses;
};
} // namespace llvm
// Out of line virtual method.
TargetPassConfig::~TargetPassConfig() {
delete Impl;
}
// Out of line constructor provides default values for pass options and
// registers all common codegen passes.
TargetPassConfig::TargetPassConfig(TargetMachine *tm, PassManagerBase &pm)
: ImmutablePass(ID), PM(&pm), TM(tm), Impl(0), Initialized(false),
DisableVerify(false),
EnableTailMerge(true) {
Impl = new PassConfigImpl();
// Register all target independent codegen passes to activate their PassIDs,
// including this pass itself.
initializeCodeGen(*PassRegistry::getPassRegistry());
// Substitute Pseudo Pass IDs for real ones.
substitutePass(&EarlyTailDuplicateID, &TailDuplicateID);
substitutePass(&PostRAMachineLICMID, &MachineLICMID);
// Temporarily disable experimental passes.
substitutePass(&MachineSchedulerID, 0);
}
/// Insert InsertedPassID pass after TargetPassID.
void TargetPassConfig::insertPass(AnalysisID TargetPassID,
AnalysisID InsertedPassID) {
assert(TargetPassID != InsertedPassID && "Insert a pass after itself!");
std::pair<AnalysisID, AnalysisID> P(TargetPassID, InsertedPassID);
Impl->InsertedPasses.push_back(P);
}
/// createPassConfig - Create a pass configuration object to be used by
/// addPassToEmitX methods for generating a pipeline of CodeGen passes.
///
/// Targets may override this to extend TargetPassConfig.
TargetPassConfig *LLVMTargetMachine::createPassConfig(PassManagerBase &PM) {
return new TargetPassConfig(this, PM);
}
TargetPassConfig::TargetPassConfig()
: ImmutablePass(ID), PM(0) {
llvm_unreachable("TargetPassConfig should not be constructed on-the-fly");
}
// Helper to verify the analysis is really immutable.
void TargetPassConfig::setOpt(bool &Opt, bool Val) {
assert(!Initialized && "PassConfig is immutable");
Opt = Val;
}
void TargetPassConfig::substitutePass(AnalysisID StandardID,
AnalysisID TargetID) {
Impl->TargetPasses[StandardID] = TargetID;
}
AnalysisID TargetPassConfig::getPassSubstitution(AnalysisID ID) const {
DenseMap<AnalysisID, AnalysisID>::const_iterator
I = Impl->TargetPasses.find(ID);
if (I == Impl->TargetPasses.end())
return ID;
return I->second;
}
/// Add a pass to the PassManager.
void TargetPassConfig::addPass(Pass *P) {
PM->add(P);
}
/// Add a CodeGen pass at this point in the pipeline after checking for target
/// and command line overrides.
AnalysisID TargetPassConfig::addPass(AnalysisID PassID) {
assert(!Initialized && "PassConfig is immutable");
AnalysisID TargetID = getPassSubstitution(PassID);
AnalysisID FinalID = overridePass(PassID, TargetID);
if (FinalID == 0)
return FinalID;
Pass *P = Pass::createPass(FinalID);
if (!P)
llvm_unreachable("Pass ID not registered");
addPass(P);
// Add the passes after the pass P if there is any.
for (SmallVector<std::pair<AnalysisID, AnalysisID>, 4>::iterator
I = Impl->InsertedPasses.begin(), E = Impl->InsertedPasses.end();
I != E; ++I) {
if ((*I).first == PassID) {
assert((*I).second && "Illegal Pass ID!");
Pass *NP = Pass::createPass((*I).second);
assert(NP && "Pass ID not registered");
addPass(NP);
}
}
return FinalID;
}
void TargetPassConfig::printAndVerify(const char *Banner) {
if (TM->shouldPrintMachineCode())
addPass(createMachineFunctionPrinterPass(dbgs(), Banner));
if (VerifyMachineCode)
addPass(createMachineVerifierPass(Banner));
}
/// Add common target configurable passes that perform LLVM IR to IR transforms
/// following machine independent optimization.
void TargetPassConfig::addIRPasses() {
// Basic AliasAnalysis support.
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
addPass(createTypeBasedAliasAnalysisPass());
addPass(createBasicAliasAnalysisPass());
// Before running any passes, run the verifier to determine if the input
// coming from the front-end and/or optimizer is valid.
if (!DisableVerify)
addPass(createVerifierPass());
// Run loop strength reduction before anything else.
if (getOptLevel() != CodeGenOpt::None && !DisableLSR) {
addPass(createLoopStrengthReducePass(getTargetLowering()));
if (PrintLSR)
addPass(createPrintFunctionPass("\n\n*** Code after LSR ***\n", &dbgs()));
}
addPass(createGCLoweringPass());
// Make sure that no unreachable blocks are instruction selected.
addPass(createUnreachableBlockEliminationPass());
}
/// Turn exception handling constructs into something the code generators can
/// handle.
void TargetPassConfig::addPassesToHandleExceptions() {
switch (TM->getMCAsmInfo()->getExceptionHandlingType()) {
case ExceptionHandling::SjLj:
// SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both
// Dwarf EH prepare needs to be run after SjLj prepare. Otherwise,
// catch info can get misplaced when a selector ends up more than one block
// removed from the parent invoke(s). This could happen when a landing
// pad is shared by multiple invokes and is also a target of a normal
// edge from elsewhere.
addPass(createSjLjEHPreparePass(TM->getTargetLowering()));
// FALLTHROUGH
case ExceptionHandling::DwarfCFI:
case ExceptionHandling::ARM:
case ExceptionHandling::Win64:
addPass(createDwarfEHPass(TM));
break;
case ExceptionHandling::None:
addPass(createLowerInvokePass(TM->getTargetLowering()));
// The lower invoke pass may create unreachable code. Remove it.
addPass(createUnreachableBlockEliminationPass());
break;
}
}
/// Add common passes that perform LLVM IR to IR transforms in preparation for
/// instruction selection.
void TargetPassConfig::addISelPrepare() {
if (getOptLevel() != CodeGenOpt::None && !DisableCGP)
addPass(createCodeGenPreparePass(getTargetLowering()));
addPass(createStackProtectorPass(getTargetLowering()));
addPreISel();
if (PrintISelInput)
addPass(createPrintFunctionPass("\n\n"
"*** Final LLVM Code input to ISel ***\n",
&dbgs()));
// All passes which modify the LLVM IR are now complete; run the verifier
// to ensure that the IR is valid.
if (!DisableVerify)
addPass(createVerifierPass());
}
/// Add the complete set of target-independent postISel code generator passes.
///
/// This can be read as the standard order of major LLVM CodeGen stages. Stages
/// with nontrivial configuration or multiple passes are broken out below in
/// add%Stage routines.
///
/// Any TargetPassConfig::addXX routine may be overriden by the Target. The
/// addPre/Post methods with empty header implementations allow injecting
/// target-specific fixups just before or after major stages. Additionally,
/// targets have the flexibility to change pass order within a stage by
/// overriding default implementation of add%Stage routines below. Each
/// technique has maintainability tradeoffs because alternate pass orders are
/// not well supported. addPre/Post works better if the target pass is easily
/// tied to a common pass. But if it has subtle dependencies on multiple passes,
/// the target should override the stage instead.
///
/// TODO: We could use a single addPre/Post(ID) hook to allow pass injection
/// before/after any target-independent pass. But it's currently overkill.
void TargetPassConfig::addMachinePasses() {
// Print the instruction selected machine code...
printAndVerify("After Instruction Selection");
// Insert a machine instr printer pass after the specified pass.
// If -print-machineinstrs specified, print machineinstrs after all passes.
if (StringRef(PrintMachineInstrs.getValue()).equals(""))
TM->Options.PrintMachineCode = true;
else if (!StringRef(PrintMachineInstrs.getValue())
.equals("option-unspecified")) {
const PassRegistry *PR = PassRegistry::getPassRegistry();
const PassInfo *TPI = PR->getPassInfo(PrintMachineInstrs.getValue());
const PassInfo *IPI = PR->getPassInfo(StringRef("print-machineinstrs"));
assert (TPI && IPI && "Pass ID not registered!");
const char *TID = (char *)(TPI->getTypeInfo());
const char *IID = (char *)(IPI->getTypeInfo());
insertPass(TID, IID);
}
// Expand pseudo-instructions emitted by ISel.
addPass(&ExpandISelPseudosID);
// Add passes that optimize machine instructions in SSA form.
if (getOptLevel() != CodeGenOpt::None) {
addMachineSSAOptimization();
}
else {
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
addPass(&LocalStackSlotAllocationID);
}
// Run pre-ra passes.
if (addPreRegAlloc())
printAndVerify("After PreRegAlloc passes");
// Run register allocation and passes that are tightly coupled with it,
// including phi elimination and scheduling.
if (getOptimizeRegAlloc())
addOptimizedRegAlloc(createRegAllocPass(true));
else
addFastRegAlloc(createRegAllocPass(false));
// Run post-ra passes.
if (addPostRegAlloc())
printAndVerify("After PostRegAlloc passes");
// Insert prolog/epilog code. Eliminate abstract frame index references...
addPass(&PrologEpilogCodeInserterID);
printAndVerify("After PrologEpilogCodeInserter");
/// Add passes that optimize machine instructions after register allocation.
if (getOptLevel() != CodeGenOpt::None)
addMachineLateOptimization();
// Expand pseudo instructions before second scheduling pass.
addPass(&ExpandPostRAPseudosID);
printAndVerify("After ExpandPostRAPseudos");
// Run pre-sched2 passes.
if (addPreSched2())
printAndVerify("After PreSched2 passes");
// Second pass scheduler.
if (getOptLevel() != CodeGenOpt::None) {
addPass(&PostRASchedulerID);
printAndVerify("After PostRAScheduler");
}
// GC
addPass(&GCMachineCodeAnalysisID);
if (PrintGCInfo)
addPass(createGCInfoPrinter(dbgs()));
// Basic block placement.
if (getOptLevel() != CodeGenOpt::None)
addBlockPlacement();
if (addPreEmitPass())
printAndVerify("After PreEmit passes");
}
/// Add passes that optimize machine instructions in SSA form.
void TargetPassConfig::addMachineSSAOptimization() {
// Pre-ra tail duplication.
if (addPass(&EarlyTailDuplicateID))
printAndVerify("After Pre-RegAlloc TailDuplicate");
// Optimize PHIs before DCE: removing dead PHI cycles may make more
// instructions dead.
addPass(&OptimizePHIsID);
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
addPass(&LocalStackSlotAllocationID);
// With optimization, dead code should already be eliminated. However
// there is one known exception: lowered code for arguments that are only
// used by tail calls, where the tail calls reuse the incoming stack
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
addPass(&DeadMachineInstructionElimID);
printAndVerify("After codegen DCE pass");
addPass(&MachineLICMID);
addPass(&MachineCSEID);
addPass(&MachineSinkingID);
printAndVerify("After Machine LICM, CSE and Sinking passes");
addPass(&PeepholeOptimizerID);
printAndVerify("After codegen peephole optimization pass");
}
//===---------------------------------------------------------------------===//
/// Register Allocation Pass Configuration
//===---------------------------------------------------------------------===//
bool TargetPassConfig::getOptimizeRegAlloc() const {
switch (OptimizeRegAlloc) {
case cl::BOU_UNSET: return getOptLevel() != CodeGenOpt::None;
case cl::BOU_TRUE: return true;
case cl::BOU_FALSE: return false;
}
llvm_unreachable("Invalid optimize-regalloc state");
}
/// RegisterRegAlloc's global Registry tracks allocator registration.
MachinePassRegistry RegisterRegAlloc::Registry;
/// A dummy default pass factory indicates whether the register allocator is
/// overridden on the command line.
static FunctionPass *useDefaultRegisterAllocator() { return 0; }
static RegisterRegAlloc
defaultRegAlloc("default",
"pick register allocator based on -O option",
useDefaultRegisterAllocator);
/// -regalloc=... command line option.
static cl::opt<RegisterRegAlloc::FunctionPassCtor, false,
RegisterPassParser<RegisterRegAlloc> >
RegAlloc("regalloc",
cl::init(&useDefaultRegisterAllocator),
cl::desc("Register allocator to use"));
/// Instantiate the default register allocator pass for this target for either
/// the optimized or unoptimized allocation path. This will be added to the pass
/// manager by addFastRegAlloc in the unoptimized case or addOptimizedRegAlloc
/// in the optimized case.
///
/// A target that uses the standard regalloc pass order for fast or optimized
/// allocation may still override this for per-target regalloc
/// selection. But -regalloc=... always takes precedence.
FunctionPass *TargetPassConfig::createTargetRegisterAllocator(bool Optimized) {
if (Optimized)
return createGreedyRegisterAllocator();
else
return createFastRegisterAllocator();
}
/// Find and instantiate the register allocation pass requested by this target
/// at the current optimization level. Different register allocators are
/// defined as separate passes because they may require different analysis.
///
/// This helper ensures that the regalloc= option is always available,
/// even for targets that override the default allocator.
///
/// FIXME: When MachinePassRegistry register pass IDs instead of function ptrs,
/// this can be folded into addPass.
FunctionPass *TargetPassConfig::createRegAllocPass(bool Optimized) {
RegisterRegAlloc::FunctionPassCtor Ctor = RegisterRegAlloc::getDefault();
// Initialize the global default.
if (!Ctor) {
Ctor = RegAlloc;
RegisterRegAlloc::setDefault(RegAlloc);
}
if (Ctor != useDefaultRegisterAllocator)
return Ctor();
// With no -regalloc= override, ask the target for a regalloc pass.
return createTargetRegisterAllocator(Optimized);
}
/// Add the minimum set of target-independent passes that are required for
/// register allocation. No coalescing or scheduling.
void TargetPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
addPass(&PHIEliminationID);
addPass(&TwoAddressInstructionPassID);
addPass(RegAllocPass);
printAndVerify("After Register Allocation");
}
/// Add standard target-independent passes that are tightly coupled with
/// optimized register allocation, including coalescing, machine instruction
/// scheduling, and register allocation itself.
void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
addPass(&ProcessImplicitDefsID);
// LiveVariables currently requires pure SSA form.
//
// FIXME: Once TwoAddressInstruction pass no longer uses kill flags,
// LiveVariables can be removed completely, and LiveIntervals can be directly
// computed. (We still either need to regenerate kill flags after regalloc, or
// preferably fix the scavenger to not depend on them).
addPass(&LiveVariablesID);
// Add passes that move from transformed SSA into conventional SSA. This is a
// "copy coalescing" problem.
//
if (!EnableStrongPHIElim) {
// Edge splitting is smarter with machine loop info.
addPass(&MachineLoopInfoID);
addPass(&PHIEliminationID);
}
addPass(&TwoAddressInstructionPassID);
if (EnableStrongPHIElim)
addPass(&StrongPHIEliminationID);
addPass(&RegisterCoalescerID);
// PreRA instruction scheduling.
if (addPass(&MachineSchedulerID))
printAndVerify("After Machine Scheduling");
// Add the selected register allocation pass.
addPass(RegAllocPass);
printAndVerify("After Register Allocation, before rewriter");
// Allow targets to change the register assignments before rewriting.
if (addPreRewrite())
printAndVerify("After pre-rewrite passes");
// Finally rewrite virtual registers.
addPass(&VirtRegRewriterID);
printAndVerify("After Virtual Register Rewriter");
// FinalizeRegAlloc is convenient until MachineInstrBundles is more mature,
// but eventually, all users of it should probably be moved to addPostRA and
// it can go away. Currently, it's the intended place for targets to run
// FinalizeMachineBundles, because passes other than MachineScheduling an
// RegAlloc itself may not be aware of bundles.
if (addFinalizeRegAlloc())
printAndVerify("After RegAlloc finalization");
// Perform stack slot coloring and post-ra machine LICM.
//
// FIXME: Re-enable coloring with register when it's capable of adding
// kill markers.
addPass(&StackSlotColoringID);
// Run post-ra machine LICM to hoist reloads / remats.
//
// FIXME: can this move into MachineLateOptimization?
addPass(&PostRAMachineLICMID);
printAndVerify("After StackSlotColoring and postra Machine LICM");
}
//===---------------------------------------------------------------------===//
/// Post RegAlloc Pass Configuration
//===---------------------------------------------------------------------===//
/// Add passes that optimize machine instructions after register allocation.
void TargetPassConfig::addMachineLateOptimization() {
// Branch folding must be run after regalloc and prolog/epilog insertion.
if (addPass(&BranchFolderPassID))
printAndVerify("After BranchFolding");
// Tail duplication.
if (addPass(&TailDuplicateID))
printAndVerify("After TailDuplicate");
// Copy propagation.
if (addPass(&MachineCopyPropagationID))
printAndVerify("After copy propagation pass");
}
/// Add standard basic block placement passes.
void TargetPassConfig::addBlockPlacement() {
AnalysisID PassID = 0;
if (!DisableBlockPlacement) {
// MachineBlockPlacement is a new pass which subsumes the functionality of
// CodPlacementOpt. The old code placement pass can be restored by
// disabling block placement, but eventually it will be removed.
PassID = addPass(&MachineBlockPlacementID);
} else {
PassID = addPass(&CodePlacementOptID);
}
if (PassID) {
// Run a separate pass to collect block placement statistics.
if (EnableBlockPlacementStats)
addPass(&MachineBlockPlacementStatsID);
printAndVerify("After machine block placement.");
}
}