mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-05 19:29:01 +00:00
4b892417a6
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255921 91177308-0d34-0410-b5e6-96231b3b80d8
567 lines
21 KiB
C++
567 lines
21 KiB
C++
//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implement a loop-aware load elimination pass.
|
|
//
|
|
// It uses LoopAccessAnalysis to identify loop-carried dependences with a
|
|
// distance of one between stores and loads. These form the candidates for the
|
|
// transformation. The source value of each store then propagated to the user
|
|
// of the corresponding load. This makes the load dead.
|
|
//
|
|
// The pass can also version the loop and add memchecks in order to prove that
|
|
// may-aliasing stores can't change the value in memory before it's read by the
|
|
// load.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Utils/LoopVersioning.h"
|
|
#include <forward_list>
|
|
|
|
#define LLE_OPTION "loop-load-elim"
|
|
#define DEBUG_TYPE LLE_OPTION
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned> CheckPerElim(
|
|
"runtime-check-per-loop-load-elim", cl::Hidden,
|
|
cl::desc("Max number of memchecks allowed per eliminated load on average"),
|
|
cl::init(1));
|
|
|
|
static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
|
|
"loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
|
|
cl::desc("The maximum number of SCEV checks allowed for Loop "
|
|
"Load Elimination"));
|
|
|
|
|
|
STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
|
|
|
|
namespace {
|
|
|
|
/// \brief Represent a store-to-forwarding candidate.
|
|
struct StoreToLoadForwardingCandidate {
|
|
LoadInst *Load;
|
|
StoreInst *Store;
|
|
|
|
StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
|
|
: Load(Load), Store(Store) {}
|
|
|
|
/// \brief Return true if the dependence from the store to the load has a
|
|
/// distance of one. E.g. A[i+1] = A[i]
|
|
bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE) const {
|
|
Value *LoadPtr = Load->getPointerOperand();
|
|
Value *StorePtr = Store->getPointerOperand();
|
|
Type *LoadPtrType = LoadPtr->getType();
|
|
Type *LoadType = LoadPtrType->getPointerElementType();
|
|
|
|
assert(LoadPtrType->getPointerAddressSpace() ==
|
|
StorePtr->getType()->getPointerAddressSpace() &&
|
|
LoadType == StorePtr->getType()->getPointerElementType() &&
|
|
"Should be a known dependence");
|
|
|
|
auto &DL = Load->getParent()->getModule()->getDataLayout();
|
|
unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
|
|
|
|
auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
|
|
auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
|
|
|
|
// We don't need to check non-wrapping here because forward/backward
|
|
// dependence wouldn't be valid if these weren't monotonic accesses.
|
|
auto *Dist = cast<SCEVConstant>(
|
|
PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
|
|
const APInt &Val = Dist->getAPInt();
|
|
return Val.abs() == TypeByteSize;
|
|
}
|
|
|
|
Value *getLoadPtr() const { return Load->getPointerOperand(); }
|
|
|
|
#ifndef NDEBUG
|
|
friend raw_ostream &operator<<(raw_ostream &OS,
|
|
const StoreToLoadForwardingCandidate &Cand) {
|
|
OS << *Cand.Store << " -->\n";
|
|
OS.indent(2) << *Cand.Load << "\n";
|
|
return OS;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
/// \brief Check if the store dominates all latches, so as long as there is no
|
|
/// intervening store this value will be loaded in the next iteration.
|
|
bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
|
|
DominatorTree *DT) {
|
|
SmallVector<BasicBlock *, 8> Latches;
|
|
L->getLoopLatches(Latches);
|
|
return std::all_of(Latches.begin(), Latches.end(),
|
|
[&](const BasicBlock *Latch) {
|
|
return DT->dominates(StoreBlock, Latch);
|
|
});
|
|
}
|
|
|
|
/// \brief The per-loop class that does most of the work.
|
|
class LoadEliminationForLoop {
|
|
public:
|
|
LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
|
|
DominatorTree *DT)
|
|
: L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.PSE) {}
|
|
|
|
/// \brief Look through the loop-carried and loop-independent dependences in
|
|
/// this loop and find store->load dependences.
|
|
///
|
|
/// Note that no candidate is returned if LAA has failed to analyze the loop
|
|
/// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
|
|
std::forward_list<StoreToLoadForwardingCandidate>
|
|
findStoreToLoadDependences(const LoopAccessInfo &LAI) {
|
|
std::forward_list<StoreToLoadForwardingCandidate> Candidates;
|
|
|
|
const auto *Deps = LAI.getDepChecker().getDependences();
|
|
if (!Deps)
|
|
return Candidates;
|
|
|
|
// Find store->load dependences (consequently true dep). Both lexically
|
|
// forward and backward dependences qualify. Disqualify loads that have
|
|
// other unknown dependences.
|
|
|
|
SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
|
|
|
|
for (const auto &Dep : *Deps) {
|
|
Instruction *Source = Dep.getSource(LAI);
|
|
Instruction *Destination = Dep.getDestination(LAI);
|
|
|
|
if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
|
|
if (isa<LoadInst>(Source))
|
|
LoadsWithUnknownDepedence.insert(Source);
|
|
if (isa<LoadInst>(Destination))
|
|
LoadsWithUnknownDepedence.insert(Destination);
|
|
continue;
|
|
}
|
|
|
|
if (Dep.isBackward())
|
|
// Note that the designations source and destination follow the program
|
|
// order, i.e. source is always first. (The direction is given by the
|
|
// DepType.)
|
|
std::swap(Source, Destination);
|
|
else
|
|
assert(Dep.isForward() && "Needs to be a forward dependence");
|
|
|
|
auto *Store = dyn_cast<StoreInst>(Source);
|
|
if (!Store)
|
|
continue;
|
|
auto *Load = dyn_cast<LoadInst>(Destination);
|
|
if (!Load)
|
|
continue;
|
|
Candidates.emplace_front(Load, Store);
|
|
}
|
|
|
|
if (!LoadsWithUnknownDepedence.empty())
|
|
Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
|
|
return LoadsWithUnknownDepedence.count(C.Load);
|
|
});
|
|
|
|
return Candidates;
|
|
}
|
|
|
|
/// \brief Return the index of the instruction according to program order.
|
|
unsigned getInstrIndex(Instruction *Inst) {
|
|
auto I = InstOrder.find(Inst);
|
|
assert(I != InstOrder.end() && "No index for instruction");
|
|
return I->second;
|
|
}
|
|
|
|
/// \brief If a load has multiple candidates associated (i.e. different
|
|
/// stores), it means that it could be forwarding from multiple stores
|
|
/// depending on control flow. Remove these candidates.
|
|
///
|
|
/// Here, we rely on LAA to include the relevant loop-independent dependences.
|
|
/// LAA is known to omit these in the very simple case when the read and the
|
|
/// write within an alias set always takes place using the *same* pointer.
|
|
///
|
|
/// However, we know that this is not the case here, i.e. we can rely on LAA
|
|
/// to provide us with loop-independent dependences for the cases we're
|
|
/// interested. Consider the case for example where a loop-independent
|
|
/// dependece S1->S2 invalidates the forwarding S3->S2.
|
|
///
|
|
/// A[i] = ... (S1)
|
|
/// ... = A[i] (S2)
|
|
/// A[i+1] = ... (S3)
|
|
///
|
|
/// LAA will perform dependence analysis here because there are two
|
|
/// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
|
|
void removeDependencesFromMultipleStores(
|
|
std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
|
|
// If Store is nullptr it means that we have multiple stores forwarding to
|
|
// this store.
|
|
typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
|
|
LoadToSingleCandT;
|
|
LoadToSingleCandT LoadToSingleCand;
|
|
|
|
for (const auto &Cand : Candidates) {
|
|
bool NewElt;
|
|
LoadToSingleCandT::iterator Iter;
|
|
|
|
std::tie(Iter, NewElt) =
|
|
LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
|
|
if (!NewElt) {
|
|
const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
|
|
// Already multiple stores forward to this load.
|
|
if (OtherCand == nullptr)
|
|
continue;
|
|
|
|
// Handle the very basic of case when the two stores are in the same
|
|
// block so deciding which one forwards is easy. The later one forwards
|
|
// as long as they both have a dependence distance of one to the load.
|
|
if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
|
|
Cand.isDependenceDistanceOfOne(PSE) &&
|
|
OtherCand->isDependenceDistanceOfOne(PSE)) {
|
|
// They are in the same block, the later one will forward to the load.
|
|
if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
|
|
OtherCand = &Cand;
|
|
} else
|
|
OtherCand = nullptr;
|
|
}
|
|
}
|
|
|
|
Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
|
|
if (LoadToSingleCand[Cand.Load] != &Cand) {
|
|
DEBUG(dbgs() << "Removing from candidates: \n" << Cand
|
|
<< " The load may have multiple stores forwarding to "
|
|
<< "it\n");
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
}
|
|
|
|
/// \brief Given two pointers operations by their RuntimePointerChecking
|
|
/// indices, return true if they require an alias check.
|
|
///
|
|
/// We need a check if one is a pointer for a candidate load and the other is
|
|
/// a pointer for a possibly intervening store.
|
|
bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
|
|
const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
|
|
const std::set<Value *> &CandLoadPtrs) {
|
|
Value *Ptr1 =
|
|
LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
|
|
Value *Ptr2 =
|
|
LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
|
|
return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
|
|
(PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
|
|
}
|
|
|
|
/// \brief Return pointers that are possibly written to on the path from a
|
|
/// forwarding store to a load.
|
|
///
|
|
/// These pointers need to be alias-checked against the forwarding candidates.
|
|
SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
|
|
const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
|
|
// From FirstStore to LastLoad neither of the elimination candidate loads
|
|
// should overlap with any of the stores.
|
|
//
|
|
// E.g.:
|
|
//
|
|
// st1 C[i]
|
|
// ld1 B[i] <-------,
|
|
// ld0 A[i] <----, | * LastLoad
|
|
// ... | |
|
|
// st2 E[i] | |
|
|
// st3 B[i+1] -- | -' * FirstStore
|
|
// st0 A[i+1] ---'
|
|
// st4 D[i]
|
|
//
|
|
// st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
|
|
// ld0.
|
|
|
|
LoadInst *LastLoad =
|
|
std::max_element(Candidates.begin(), Candidates.end(),
|
|
[&](const StoreToLoadForwardingCandidate &A,
|
|
const StoreToLoadForwardingCandidate &B) {
|
|
return getInstrIndex(A.Load) < getInstrIndex(B.Load);
|
|
})
|
|
->Load;
|
|
StoreInst *FirstStore =
|
|
std::min_element(Candidates.begin(), Candidates.end(),
|
|
[&](const StoreToLoadForwardingCandidate &A,
|
|
const StoreToLoadForwardingCandidate &B) {
|
|
return getInstrIndex(A.Store) <
|
|
getInstrIndex(B.Store);
|
|
})
|
|
->Store;
|
|
|
|
// We're looking for stores after the first forwarding store until the end
|
|
// of the loop, then from the beginning of the loop until the last
|
|
// forwarded-to load. Collect the pointer for the stores.
|
|
SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
|
|
|
|
auto InsertStorePtr = [&](Instruction *I) {
|
|
if (auto *S = dyn_cast<StoreInst>(I))
|
|
PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
|
|
};
|
|
const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
|
|
std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
|
|
MemInstrs.end(), InsertStorePtr);
|
|
std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
|
|
InsertStorePtr);
|
|
|
|
return PtrsWrittenOnFwdingPath;
|
|
}
|
|
|
|
/// \brief Determine the pointer alias checks to prove that there are no
|
|
/// intervening stores.
|
|
SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
|
|
const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
|
|
|
|
SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
|
|
findPointersWrittenOnForwardingPath(Candidates);
|
|
|
|
// Collect the pointers of the candidate loads.
|
|
// FIXME: SmallSet does not work with std::inserter.
|
|
std::set<Value *> CandLoadPtrs;
|
|
std::transform(Candidates.begin(), Candidates.end(),
|
|
std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
|
|
std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
|
|
|
|
const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
|
|
SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
|
|
|
|
std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
|
|
[&](const RuntimePointerChecking::PointerCheck &Check) {
|
|
for (auto PtrIdx1 : Check.first->Members)
|
|
for (auto PtrIdx2 : Check.second->Members)
|
|
if (needsChecking(PtrIdx1, PtrIdx2,
|
|
PtrsWrittenOnFwdingPath, CandLoadPtrs))
|
|
return true;
|
|
return false;
|
|
});
|
|
|
|
DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
|
|
DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
|
|
|
|
return Checks;
|
|
}
|
|
|
|
/// \brief Perform the transformation for a candidate.
|
|
void
|
|
propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
|
|
SCEVExpander &SEE) {
|
|
//
|
|
// loop:
|
|
// %x = load %gep_i
|
|
// = ... %x
|
|
// store %y, %gep_i_plus_1
|
|
//
|
|
// =>
|
|
//
|
|
// ph:
|
|
// %x.initial = load %gep_0
|
|
// loop:
|
|
// %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
|
|
// %x = load %gep_i <---- now dead
|
|
// = ... %x.storeforward
|
|
// store %y, %gep_i_plus_1
|
|
|
|
Value *Ptr = Cand.Load->getPointerOperand();
|
|
auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
|
|
auto *PH = L->getLoopPreheader();
|
|
Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
|
|
PH->getTerminator());
|
|
Value *Initial =
|
|
new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
|
|
PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
|
|
&L->getHeader()->front());
|
|
PHI->addIncoming(Initial, PH);
|
|
PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
|
|
|
|
Cand.Load->replaceAllUsesWith(PHI);
|
|
}
|
|
|
|
/// \brief Top-level driver for each loop: find store->load forwarding
|
|
/// candidates, add run-time checks and perform transformation.
|
|
bool processLoop() {
|
|
DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
|
|
<< "\" checking " << *L << "\n");
|
|
// Look for store-to-load forwarding cases across the
|
|
// backedge. E.g.:
|
|
//
|
|
// loop:
|
|
// %x = load %gep_i
|
|
// = ... %x
|
|
// store %y, %gep_i_plus_1
|
|
//
|
|
// =>
|
|
//
|
|
// ph:
|
|
// %x.initial = load %gep_0
|
|
// loop:
|
|
// %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
|
|
// %x = load %gep_i <---- now dead
|
|
// = ... %x.storeforward
|
|
// store %y, %gep_i_plus_1
|
|
|
|
// First start with store->load dependences.
|
|
auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
|
|
if (StoreToLoadDependences.empty())
|
|
return false;
|
|
|
|
// Generate an index for each load and store according to the original
|
|
// program order. This will be used later.
|
|
InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
|
|
|
|
// To keep things simple for now, remove those where the load is potentially
|
|
// fed by multiple stores.
|
|
removeDependencesFromMultipleStores(StoreToLoadDependences);
|
|
if (StoreToLoadDependences.empty())
|
|
return false;
|
|
|
|
// Filter the candidates further.
|
|
SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
|
|
unsigned NumForwarding = 0;
|
|
for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
|
|
DEBUG(dbgs() << "Candidate " << Cand);
|
|
// Make sure that the stored values is available everywhere in the loop in
|
|
// the next iteration.
|
|
if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
|
|
continue;
|
|
|
|
// Check whether the SCEV difference is the same as the induction step,
|
|
// thus we load the value in the next iteration.
|
|
if (!Cand.isDependenceDistanceOfOne(PSE))
|
|
continue;
|
|
|
|
++NumForwarding;
|
|
DEBUG(dbgs()
|
|
<< NumForwarding
|
|
<< ". Valid store-to-load forwarding across the loop backedge\n");
|
|
Candidates.push_back(Cand);
|
|
}
|
|
if (Candidates.empty())
|
|
return false;
|
|
|
|
// Check intervening may-alias stores. These need runtime checks for alias
|
|
// disambiguation.
|
|
SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
|
|
collectMemchecks(Candidates);
|
|
|
|
// Too many checks are likely to outweigh the benefits of forwarding.
|
|
if (Checks.size() > Candidates.size() * CheckPerElim) {
|
|
DEBUG(dbgs() << "Too many run-time checks needed.\n");
|
|
return false;
|
|
}
|
|
|
|
if (LAI.PSE.getUnionPredicate().getComplexity() >
|
|
LoadElimSCEVCheckThreshold) {
|
|
DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
|
|
return false;
|
|
}
|
|
|
|
// Point of no-return, start the transformation. First, version the loop if
|
|
// necessary.
|
|
if (!Checks.empty() || !LAI.PSE.getUnionPredicate().isAlwaysTrue()) {
|
|
LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
|
|
LV.setAliasChecks(std::move(Checks));
|
|
LV.setSCEVChecks(LAI.PSE.getUnionPredicate());
|
|
LV.versionLoop();
|
|
}
|
|
|
|
// Next, propagate the value stored by the store to the users of the load.
|
|
// Also for the first iteration, generate the initial value of the load.
|
|
SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
|
|
"storeforward");
|
|
for (const auto &Cand : Candidates)
|
|
propagateStoredValueToLoadUsers(Cand, SEE);
|
|
NumLoopLoadEliminted += NumForwarding;
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
Loop *L;
|
|
|
|
/// \brief Maps the load/store instructions to their index according to
|
|
/// program order.
|
|
DenseMap<Instruction *, unsigned> InstOrder;
|
|
|
|
// Analyses used.
|
|
LoopInfo *LI;
|
|
const LoopAccessInfo &LAI;
|
|
DominatorTree *DT;
|
|
PredicatedScalarEvolution PSE;
|
|
};
|
|
|
|
/// \brief The pass. Most of the work is delegated to the per-loop
|
|
/// LoadEliminationForLoop class.
|
|
class LoopLoadElimination : public FunctionPass {
|
|
public:
|
|
LoopLoadElimination() : FunctionPass(ID) {
|
|
initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *LAA = &getAnalysis<LoopAccessAnalysis>();
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
// Build up a worklist of inner-loops to vectorize. This is necessary as the
|
|
// act of distributing a loop creates new loops and can invalidate iterators
|
|
// across the loops.
|
|
SmallVector<Loop *, 8> Worklist;
|
|
|
|
for (Loop *TopLevelLoop : *LI)
|
|
for (Loop *L : depth_first(TopLevelLoop))
|
|
// We only handle inner-most loops.
|
|
if (L->empty())
|
|
Worklist.push_back(L);
|
|
|
|
// Now walk the identified inner loops.
|
|
bool Changed = false;
|
|
for (Loop *L : Worklist) {
|
|
const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
|
|
// The actual work is performed by LoadEliminationForLoop.
|
|
LoadEliminationForLoop LEL(L, LI, LAI, DT);
|
|
Changed |= LEL.processLoop();
|
|
}
|
|
|
|
// Process each loop nest in the function.
|
|
return Changed;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.addRequired<LoopAccessAnalysis>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
}
|
|
|
|
static char ID;
|
|
};
|
|
}
|
|
|
|
char LoopLoadElimination::ID;
|
|
static const char LLE_name[] = "Loop Load Elimination";
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
|
|
|
|
namespace llvm {
|
|
FunctionPass *createLoopLoadEliminationPass() {
|
|
return new LoopLoadElimination();
|
|
}
|
|
}
|