mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-14 23:48:49 +00:00
6eb43d2956
It's useful for the memory managers that are allocating a section to know what the name of the section is. At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about what each allocation is for. This allows clients that supply their own memory managers to do this. Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM client. This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory management C API). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191804 91177308-0d34-0410-b5e6-96231b3b80d8
440 lines
15 KiB
C++
440 lines
15 KiB
C++
//===-- ExecutionEngineBindings.cpp - C bindings for EEs ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the C bindings for the ExecutionEngine library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
#include "llvm-c/ExecutionEngine.h"
|
|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cstring>
|
|
|
|
using namespace llvm;
|
|
|
|
// Wrapping the C bindings types.
|
|
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(GenericValue, LLVMGenericValueRef)
|
|
|
|
inline DataLayout *unwrap(LLVMTargetDataRef P) {
|
|
return reinterpret_cast<DataLayout*>(P);
|
|
}
|
|
|
|
inline LLVMTargetDataRef wrap(const DataLayout *P) {
|
|
return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout*>(P));
|
|
}
|
|
|
|
inline TargetLibraryInfo *unwrap(LLVMTargetLibraryInfoRef P) {
|
|
return reinterpret_cast<TargetLibraryInfo*>(P);
|
|
}
|
|
|
|
inline LLVMTargetLibraryInfoRef wrap(const TargetLibraryInfo *P) {
|
|
TargetLibraryInfo *X = const_cast<TargetLibraryInfo*>(P);
|
|
return reinterpret_cast<LLVMTargetLibraryInfoRef>(X);
|
|
}
|
|
|
|
/*===-- Operations on generic values --------------------------------------===*/
|
|
|
|
LLVMGenericValueRef LLVMCreateGenericValueOfInt(LLVMTypeRef Ty,
|
|
unsigned long long N,
|
|
LLVMBool IsSigned) {
|
|
GenericValue *GenVal = new GenericValue();
|
|
GenVal->IntVal = APInt(unwrap<IntegerType>(Ty)->getBitWidth(), N, IsSigned);
|
|
return wrap(GenVal);
|
|
}
|
|
|
|
LLVMGenericValueRef LLVMCreateGenericValueOfPointer(void *P) {
|
|
GenericValue *GenVal = new GenericValue();
|
|
GenVal->PointerVal = P;
|
|
return wrap(GenVal);
|
|
}
|
|
|
|
LLVMGenericValueRef LLVMCreateGenericValueOfFloat(LLVMTypeRef TyRef, double N) {
|
|
GenericValue *GenVal = new GenericValue();
|
|
switch (unwrap(TyRef)->getTypeID()) {
|
|
case Type::FloatTyID:
|
|
GenVal->FloatVal = N;
|
|
break;
|
|
case Type::DoubleTyID:
|
|
GenVal->DoubleVal = N;
|
|
break;
|
|
default:
|
|
llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
|
|
}
|
|
return wrap(GenVal);
|
|
}
|
|
|
|
unsigned LLVMGenericValueIntWidth(LLVMGenericValueRef GenValRef) {
|
|
return unwrap(GenValRef)->IntVal.getBitWidth();
|
|
}
|
|
|
|
unsigned long long LLVMGenericValueToInt(LLVMGenericValueRef GenValRef,
|
|
LLVMBool IsSigned) {
|
|
GenericValue *GenVal = unwrap(GenValRef);
|
|
if (IsSigned)
|
|
return GenVal->IntVal.getSExtValue();
|
|
else
|
|
return GenVal->IntVal.getZExtValue();
|
|
}
|
|
|
|
void *LLVMGenericValueToPointer(LLVMGenericValueRef GenVal) {
|
|
return unwrap(GenVal)->PointerVal;
|
|
}
|
|
|
|
double LLVMGenericValueToFloat(LLVMTypeRef TyRef, LLVMGenericValueRef GenVal) {
|
|
switch (unwrap(TyRef)->getTypeID()) {
|
|
case Type::FloatTyID:
|
|
return unwrap(GenVal)->FloatVal;
|
|
case Type::DoubleTyID:
|
|
return unwrap(GenVal)->DoubleVal;
|
|
default:
|
|
llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
|
|
}
|
|
}
|
|
|
|
void LLVMDisposeGenericValue(LLVMGenericValueRef GenVal) {
|
|
delete unwrap(GenVal);
|
|
}
|
|
|
|
/*===-- Operations on execution engines -----------------------------------===*/
|
|
|
|
LLVMBool LLVMCreateExecutionEngineForModule(LLVMExecutionEngineRef *OutEE,
|
|
LLVMModuleRef M,
|
|
char **OutError) {
|
|
std::string Error;
|
|
EngineBuilder builder(unwrap(M));
|
|
builder.setEngineKind(EngineKind::Either)
|
|
.setErrorStr(&Error);
|
|
if (ExecutionEngine *EE = builder.create()){
|
|
*OutEE = wrap(EE);
|
|
return 0;
|
|
}
|
|
*OutError = strdup(Error.c_str());
|
|
return 1;
|
|
}
|
|
|
|
LLVMBool LLVMCreateInterpreterForModule(LLVMExecutionEngineRef *OutInterp,
|
|
LLVMModuleRef M,
|
|
char **OutError) {
|
|
std::string Error;
|
|
EngineBuilder builder(unwrap(M));
|
|
builder.setEngineKind(EngineKind::Interpreter)
|
|
.setErrorStr(&Error);
|
|
if (ExecutionEngine *Interp = builder.create()) {
|
|
*OutInterp = wrap(Interp);
|
|
return 0;
|
|
}
|
|
*OutError = strdup(Error.c_str());
|
|
return 1;
|
|
}
|
|
|
|
LLVMBool LLVMCreateJITCompilerForModule(LLVMExecutionEngineRef *OutJIT,
|
|
LLVMModuleRef M,
|
|
unsigned OptLevel,
|
|
char **OutError) {
|
|
std::string Error;
|
|
EngineBuilder builder(unwrap(M));
|
|
builder.setEngineKind(EngineKind::JIT)
|
|
.setErrorStr(&Error)
|
|
.setOptLevel((CodeGenOpt::Level)OptLevel);
|
|
if (ExecutionEngine *JIT = builder.create()) {
|
|
*OutJIT = wrap(JIT);
|
|
return 0;
|
|
}
|
|
*OutError = strdup(Error.c_str());
|
|
return 1;
|
|
}
|
|
|
|
void LLVMInitializeMCJITCompilerOptions(LLVMMCJITCompilerOptions *PassedOptions,
|
|
size_t SizeOfPassedOptions) {
|
|
LLVMMCJITCompilerOptions options;
|
|
memset(&options, 0, sizeof(options)); // Most fields are zero by default.
|
|
options.CodeModel = LLVMCodeModelJITDefault;
|
|
|
|
memcpy(PassedOptions, &options,
|
|
std::min(sizeof(options), SizeOfPassedOptions));
|
|
}
|
|
|
|
LLVMBool LLVMCreateMCJITCompilerForModule(
|
|
LLVMExecutionEngineRef *OutJIT, LLVMModuleRef M,
|
|
LLVMMCJITCompilerOptions *PassedOptions, size_t SizeOfPassedOptions,
|
|
char **OutError) {
|
|
LLVMMCJITCompilerOptions options;
|
|
// If the user passed a larger sized options struct, then they were compiled
|
|
// against a newer LLVM. Tell them that something is wrong.
|
|
if (SizeOfPassedOptions > sizeof(options)) {
|
|
*OutError = strdup(
|
|
"Refusing to use options struct that is larger than my own; assuming "
|
|
"LLVM library mismatch.");
|
|
return 1;
|
|
}
|
|
|
|
// Defend against the user having an old version of the API by ensuring that
|
|
// any fields they didn't see are cleared. We must defend against fields being
|
|
// set to the bitwise equivalent of zero, and assume that this means "do the
|
|
// default" as if that option hadn't been available.
|
|
LLVMInitializeMCJITCompilerOptions(&options, sizeof(options));
|
|
memcpy(&options, PassedOptions, SizeOfPassedOptions);
|
|
|
|
TargetOptions targetOptions;
|
|
targetOptions.NoFramePointerElim = options.NoFramePointerElim;
|
|
targetOptions.EnableFastISel = options.EnableFastISel;
|
|
|
|
std::string Error;
|
|
EngineBuilder builder(unwrap(M));
|
|
builder.setEngineKind(EngineKind::JIT)
|
|
.setErrorStr(&Error)
|
|
.setUseMCJIT(true)
|
|
.setOptLevel((CodeGenOpt::Level)options.OptLevel)
|
|
.setCodeModel(unwrap(options.CodeModel))
|
|
.setTargetOptions(targetOptions);
|
|
if (options.MCJMM)
|
|
builder.setMCJITMemoryManager(unwrap(options.MCJMM));
|
|
if (ExecutionEngine *JIT = builder.create()) {
|
|
*OutJIT = wrap(JIT);
|
|
return 0;
|
|
}
|
|
*OutError = strdup(Error.c_str());
|
|
return 1;
|
|
}
|
|
|
|
LLVMBool LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE,
|
|
LLVMModuleProviderRef MP,
|
|
char **OutError) {
|
|
/* The module provider is now actually a module. */
|
|
return LLVMCreateExecutionEngineForModule(OutEE,
|
|
reinterpret_cast<LLVMModuleRef>(MP),
|
|
OutError);
|
|
}
|
|
|
|
LLVMBool LLVMCreateInterpreter(LLVMExecutionEngineRef *OutInterp,
|
|
LLVMModuleProviderRef MP,
|
|
char **OutError) {
|
|
/* The module provider is now actually a module. */
|
|
return LLVMCreateInterpreterForModule(OutInterp,
|
|
reinterpret_cast<LLVMModuleRef>(MP),
|
|
OutError);
|
|
}
|
|
|
|
LLVMBool LLVMCreateJITCompiler(LLVMExecutionEngineRef *OutJIT,
|
|
LLVMModuleProviderRef MP,
|
|
unsigned OptLevel,
|
|
char **OutError) {
|
|
/* The module provider is now actually a module. */
|
|
return LLVMCreateJITCompilerForModule(OutJIT,
|
|
reinterpret_cast<LLVMModuleRef>(MP),
|
|
OptLevel, OutError);
|
|
}
|
|
|
|
|
|
void LLVMDisposeExecutionEngine(LLVMExecutionEngineRef EE) {
|
|
delete unwrap(EE);
|
|
}
|
|
|
|
void LLVMRunStaticConstructors(LLVMExecutionEngineRef EE) {
|
|
unwrap(EE)->runStaticConstructorsDestructors(false);
|
|
}
|
|
|
|
void LLVMRunStaticDestructors(LLVMExecutionEngineRef EE) {
|
|
unwrap(EE)->runStaticConstructorsDestructors(true);
|
|
}
|
|
|
|
int LLVMRunFunctionAsMain(LLVMExecutionEngineRef EE, LLVMValueRef F,
|
|
unsigned ArgC, const char * const *ArgV,
|
|
const char * const *EnvP) {
|
|
unwrap(EE)->finalizeObject();
|
|
|
|
std::vector<std::string> ArgVec;
|
|
for (unsigned I = 0; I != ArgC; ++I)
|
|
ArgVec.push_back(ArgV[I]);
|
|
|
|
return unwrap(EE)->runFunctionAsMain(unwrap<Function>(F), ArgVec, EnvP);
|
|
}
|
|
|
|
LLVMGenericValueRef LLVMRunFunction(LLVMExecutionEngineRef EE, LLVMValueRef F,
|
|
unsigned NumArgs,
|
|
LLVMGenericValueRef *Args) {
|
|
unwrap(EE)->finalizeObject();
|
|
|
|
std::vector<GenericValue> ArgVec;
|
|
ArgVec.reserve(NumArgs);
|
|
for (unsigned I = 0; I != NumArgs; ++I)
|
|
ArgVec.push_back(*unwrap(Args[I]));
|
|
|
|
GenericValue *Result = new GenericValue();
|
|
*Result = unwrap(EE)->runFunction(unwrap<Function>(F), ArgVec);
|
|
return wrap(Result);
|
|
}
|
|
|
|
void LLVMFreeMachineCodeForFunction(LLVMExecutionEngineRef EE, LLVMValueRef F) {
|
|
unwrap(EE)->freeMachineCodeForFunction(unwrap<Function>(F));
|
|
}
|
|
|
|
void LLVMAddModule(LLVMExecutionEngineRef EE, LLVMModuleRef M){
|
|
unwrap(EE)->addModule(unwrap(M));
|
|
}
|
|
|
|
void LLVMAddModuleProvider(LLVMExecutionEngineRef EE, LLVMModuleProviderRef MP){
|
|
/* The module provider is now actually a module. */
|
|
LLVMAddModule(EE, reinterpret_cast<LLVMModuleRef>(MP));
|
|
}
|
|
|
|
LLVMBool LLVMRemoveModule(LLVMExecutionEngineRef EE, LLVMModuleRef M,
|
|
LLVMModuleRef *OutMod, char **OutError) {
|
|
Module *Mod = unwrap(M);
|
|
unwrap(EE)->removeModule(Mod);
|
|
*OutMod = wrap(Mod);
|
|
return 0;
|
|
}
|
|
|
|
LLVMBool LLVMRemoveModuleProvider(LLVMExecutionEngineRef EE,
|
|
LLVMModuleProviderRef MP,
|
|
LLVMModuleRef *OutMod, char **OutError) {
|
|
/* The module provider is now actually a module. */
|
|
return LLVMRemoveModule(EE, reinterpret_cast<LLVMModuleRef>(MP), OutMod,
|
|
OutError);
|
|
}
|
|
|
|
LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name,
|
|
LLVMValueRef *OutFn) {
|
|
if (Function *F = unwrap(EE)->FindFunctionNamed(Name)) {
|
|
*OutFn = wrap(F);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE,
|
|
LLVMValueRef Fn) {
|
|
return unwrap(EE)->recompileAndRelinkFunction(unwrap<Function>(Fn));
|
|
}
|
|
|
|
LLVMTargetDataRef LLVMGetExecutionEngineTargetData(LLVMExecutionEngineRef EE) {
|
|
return wrap(unwrap(EE)->getDataLayout());
|
|
}
|
|
|
|
void LLVMAddGlobalMapping(LLVMExecutionEngineRef EE, LLVMValueRef Global,
|
|
void* Addr) {
|
|
unwrap(EE)->addGlobalMapping(unwrap<GlobalValue>(Global), Addr);
|
|
}
|
|
|
|
void *LLVMGetPointerToGlobal(LLVMExecutionEngineRef EE, LLVMValueRef Global) {
|
|
unwrap(EE)->finalizeObject();
|
|
|
|
return unwrap(EE)->getPointerToGlobal(unwrap<GlobalValue>(Global));
|
|
}
|
|
|
|
/*===-- Operations on memory managers -------------------------------------===*/
|
|
|
|
namespace {
|
|
|
|
struct SimpleBindingMMFunctions {
|
|
LLVMMemoryManagerAllocateCodeSectionCallback AllocateCodeSection;
|
|
LLVMMemoryManagerAllocateDataSectionCallback AllocateDataSection;
|
|
LLVMMemoryManagerFinalizeMemoryCallback FinalizeMemory;
|
|
LLVMMemoryManagerDestroyCallback Destroy;
|
|
};
|
|
|
|
class SimpleBindingMemoryManager : public RTDyldMemoryManager {
|
|
public:
|
|
SimpleBindingMemoryManager(const SimpleBindingMMFunctions& Functions,
|
|
void *Opaque);
|
|
virtual ~SimpleBindingMemoryManager();
|
|
|
|
virtual uint8_t *allocateCodeSection(
|
|
uintptr_t Size, unsigned Alignment, unsigned SectionID,
|
|
StringRef SectionName);
|
|
|
|
virtual uint8_t *allocateDataSection(
|
|
uintptr_t Size, unsigned Alignment, unsigned SectionID,
|
|
StringRef SectionName, bool isReadOnly);
|
|
|
|
virtual bool finalizeMemory(std::string *ErrMsg);
|
|
|
|
private:
|
|
SimpleBindingMMFunctions Functions;
|
|
void *Opaque;
|
|
};
|
|
|
|
SimpleBindingMemoryManager::SimpleBindingMemoryManager(
|
|
const SimpleBindingMMFunctions& Functions,
|
|
void *Opaque)
|
|
: Functions(Functions), Opaque(Opaque) {
|
|
assert(Functions.AllocateCodeSection &&
|
|
"No AllocateCodeSection function provided!");
|
|
assert(Functions.AllocateDataSection &&
|
|
"No AllocateDataSection function provided!");
|
|
assert(Functions.FinalizeMemory &&
|
|
"No FinalizeMemory function provided!");
|
|
assert(Functions.Destroy &&
|
|
"No Destroy function provided!");
|
|
}
|
|
|
|
SimpleBindingMemoryManager::~SimpleBindingMemoryManager() {
|
|
Functions.Destroy(Opaque);
|
|
}
|
|
|
|
uint8_t *SimpleBindingMemoryManager::allocateCodeSection(
|
|
uintptr_t Size, unsigned Alignment, unsigned SectionID,
|
|
StringRef SectionName) {
|
|
return Functions.AllocateCodeSection(Opaque, Size, Alignment, SectionID,
|
|
SectionName.str().c_str());
|
|
}
|
|
|
|
uint8_t *SimpleBindingMemoryManager::allocateDataSection(
|
|
uintptr_t Size, unsigned Alignment, unsigned SectionID,
|
|
StringRef SectionName, bool isReadOnly) {
|
|
return Functions.AllocateDataSection(Opaque, Size, Alignment, SectionID,
|
|
SectionName.str().c_str(),
|
|
isReadOnly);
|
|
}
|
|
|
|
bool SimpleBindingMemoryManager::finalizeMemory(std::string *ErrMsg) {
|
|
char *errMsgCString = 0;
|
|
bool result = Functions.FinalizeMemory(Opaque, &errMsgCString);
|
|
assert((result || !errMsgCString) &&
|
|
"Did not expect an error message if FinalizeMemory succeeded");
|
|
if (errMsgCString) {
|
|
if (ErrMsg)
|
|
*ErrMsg = errMsgCString;
|
|
free(errMsgCString);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
LLVMMCJITMemoryManagerRef LLVMCreateSimpleMCJITMemoryManager(
|
|
void *Opaque,
|
|
LLVMMemoryManagerAllocateCodeSectionCallback AllocateCodeSection,
|
|
LLVMMemoryManagerAllocateDataSectionCallback AllocateDataSection,
|
|
LLVMMemoryManagerFinalizeMemoryCallback FinalizeMemory,
|
|
LLVMMemoryManagerDestroyCallback Destroy) {
|
|
|
|
if (!AllocateCodeSection || !AllocateDataSection || !FinalizeMemory ||
|
|
!Destroy)
|
|
return NULL;
|
|
|
|
SimpleBindingMMFunctions functions;
|
|
functions.AllocateCodeSection = AllocateCodeSection;
|
|
functions.AllocateDataSection = AllocateDataSection;
|
|
functions.FinalizeMemory = FinalizeMemory;
|
|
functions.Destroy = Destroy;
|
|
return wrap(new SimpleBindingMemoryManager(functions, Opaque));
|
|
}
|
|
|
|
void LLVMDisposeMCJITMemoryManager(LLVMMCJITMemoryManagerRef MM) {
|
|
delete unwrap(MM);
|
|
}
|
|
|