mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-15 17:07:52 +00:00
6deac82729
Summary: Dead store elimination gets very expensive when large numbers of instructions need to be analyzed. This patch limits the number of instructions analyzed per store to the value of the memdep-block-scan-limit parameter (which defaults to 100). This resulted in no observed difference in performance of the generated code, and no change in the statistics for the dead store elimination pass, but improved compilation time on some files by more than an order of magnitude. Reviewers: dexonsmith, bruno, george.burgess.iv, dberlin, reames, davidxl Subscribers: davide, chandlerc, dberlin, davidxl, eraman, tejohnson, mbodart, llvm-commits Differential Revision: https://reviews.llvm.org/D15537 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279833 91177308-0d34-0410-b5e6-96231b3b80d8
1247 lines
47 KiB
C++
1247 lines
47 KiB
C++
//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a trivial dead store elimination that only considers
|
|
// basic-block local redundant stores.
|
|
//
|
|
// FIXME: This should eventually be extended to be a post-dominator tree
|
|
// traversal. Doing so would be pretty trivial.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dse"
|
|
|
|
STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
|
|
STATISTIC(NumFastStores, "Number of stores deleted");
|
|
STATISTIC(NumFastOther , "Number of other instrs removed");
|
|
STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
|
|
|
|
static cl::opt<bool>
|
|
EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
|
|
cl::init(true), cl::Hidden,
|
|
cl::desc("Enable partial-overwrite tracking in DSE"));
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
typedef std::map<int64_t, int64_t> OverlapIntervalsTy;
|
|
typedef DenseMap<Instruction *, OverlapIntervalsTy> InstOverlapIntervalsTy;
|
|
|
|
/// Delete this instruction. Before we do, go through and zero out all the
|
|
/// operands of this instruction. If any of them become dead, delete them and
|
|
/// the computation tree that feeds them.
|
|
/// If ValueSet is non-null, remove any deleted instructions from it as well.
|
|
static void
|
|
deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
|
|
MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
|
|
InstOverlapIntervalsTy &IOL,
|
|
DenseMap<Instruction*, size_t> *InstrOrdering,
|
|
SmallSetVector<Value *, 16> *ValueSet = nullptr) {
|
|
SmallVector<Instruction*, 32> NowDeadInsts;
|
|
|
|
NowDeadInsts.push_back(I);
|
|
--NumFastOther;
|
|
|
|
// Keeping the iterator straight is a pain, so we let this routine tell the
|
|
// caller what the next instruction is after we're done mucking about.
|
|
BasicBlock::iterator NewIter = *BBI;
|
|
|
|
// Before we touch this instruction, remove it from memdep!
|
|
do {
|
|
Instruction *DeadInst = NowDeadInsts.pop_back_val();
|
|
++NumFastOther;
|
|
|
|
// This instruction is dead, zap it, in stages. Start by removing it from
|
|
// MemDep, which needs to know the operands and needs it to be in the
|
|
// function.
|
|
MD.removeInstruction(DeadInst);
|
|
|
|
for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
|
|
Value *Op = DeadInst->getOperand(op);
|
|
DeadInst->setOperand(op, nullptr);
|
|
|
|
// If this operand just became dead, add it to the NowDeadInsts list.
|
|
if (!Op->use_empty()) continue;
|
|
|
|
if (Instruction *OpI = dyn_cast<Instruction>(Op))
|
|
if (isInstructionTriviallyDead(OpI, &TLI))
|
|
NowDeadInsts.push_back(OpI);
|
|
}
|
|
|
|
if (ValueSet) ValueSet->remove(DeadInst);
|
|
InstrOrdering->erase(DeadInst);
|
|
IOL.erase(DeadInst);
|
|
|
|
if (NewIter == DeadInst->getIterator())
|
|
NewIter = DeadInst->eraseFromParent();
|
|
else
|
|
DeadInst->eraseFromParent();
|
|
} while (!NowDeadInsts.empty());
|
|
*BBI = NewIter;
|
|
}
|
|
|
|
/// Does this instruction write some memory? This only returns true for things
|
|
/// that we can analyze with other helpers below.
|
|
static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo &TLI) {
|
|
if (isa<StoreInst>(I))
|
|
return true;
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::init_trampoline:
|
|
case Intrinsic::lifetime_end:
|
|
return true;
|
|
}
|
|
}
|
|
if (auto CS = CallSite(I)) {
|
|
if (Function *F = CS.getCalledFunction()) {
|
|
StringRef FnName = F->getName();
|
|
if (TLI.has(LibFunc::strcpy) && FnName == TLI.getName(LibFunc::strcpy))
|
|
return true;
|
|
if (TLI.has(LibFunc::strncpy) && FnName == TLI.getName(LibFunc::strncpy))
|
|
return true;
|
|
if (TLI.has(LibFunc::strcat) && FnName == TLI.getName(LibFunc::strcat))
|
|
return true;
|
|
if (TLI.has(LibFunc::strncat) && FnName == TLI.getName(LibFunc::strncat))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return a Location stored to by the specified instruction. If isRemovable
|
|
/// returns true, this function and getLocForRead completely describe the memory
|
|
/// operations for this instruction.
|
|
static MemoryLocation getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
|
|
return MemoryLocation::get(SI);
|
|
|
|
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
|
|
// memcpy/memmove/memset.
|
|
MemoryLocation Loc = MemoryLocation::getForDest(MI);
|
|
return Loc;
|
|
}
|
|
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
|
|
if (!II)
|
|
return MemoryLocation();
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return MemoryLocation(); // Unhandled intrinsic.
|
|
case Intrinsic::init_trampoline:
|
|
// FIXME: We don't know the size of the trampoline, so we can't really
|
|
// handle it here.
|
|
return MemoryLocation(II->getArgOperand(0));
|
|
case Intrinsic::lifetime_end: {
|
|
uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
|
|
return MemoryLocation(II->getArgOperand(1), Len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return the location read by the specified "hasMemoryWrite" instruction if
|
|
/// any.
|
|
static MemoryLocation getLocForRead(Instruction *Inst,
|
|
const TargetLibraryInfo &TLI) {
|
|
assert(hasMemoryWrite(Inst, TLI) && "Unknown instruction case");
|
|
|
|
// The only instructions that both read and write are the mem transfer
|
|
// instructions (memcpy/memmove).
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
|
|
return MemoryLocation::getForSource(MTI);
|
|
return MemoryLocation();
|
|
}
|
|
|
|
/// If the value of this instruction and the memory it writes to is unused, may
|
|
/// we delete this instruction?
|
|
static bool isRemovable(Instruction *I) {
|
|
// Don't remove volatile/atomic stores.
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return SI->isUnordered();
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
|
|
case Intrinsic::lifetime_end:
|
|
// Never remove dead lifetime_end's, e.g. because it is followed by a
|
|
// free.
|
|
return false;
|
|
case Intrinsic::init_trampoline:
|
|
// Always safe to remove init_trampoline.
|
|
return true;
|
|
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy:
|
|
// Don't remove volatile memory intrinsics.
|
|
return !cast<MemIntrinsic>(II)->isVolatile();
|
|
}
|
|
}
|
|
|
|
if (auto CS = CallSite(I))
|
|
return CS.getInstruction()->use_empty();
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Returns true if the end of this instruction can be safely shortened in
|
|
/// length.
|
|
static bool isShortenableAtTheEnd(Instruction *I) {
|
|
// Don't shorten stores for now
|
|
if (isa<StoreInst>(I))
|
|
return false;
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default: return false;
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memcpy:
|
|
// Do shorten memory intrinsics.
|
|
// FIXME: Add memmove if it's also safe to transform.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Don't shorten libcalls calls for now.
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if the beginning of this instruction can be safely shortened
|
|
/// in length.
|
|
static bool isShortenableAtTheBeginning(Instruction *I) {
|
|
// FIXME: Handle only memset for now. Supporting memcpy/memmove should be
|
|
// easily done by offsetting the source address.
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
|
|
return II && II->getIntrinsicID() == Intrinsic::memset;
|
|
}
|
|
|
|
/// Return the pointer that is being written to.
|
|
static Value *getStoredPointerOperand(Instruction *I) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return SI->getPointerOperand();
|
|
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
|
|
return MI->getDest();
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default: llvm_unreachable("Unexpected intrinsic!");
|
|
case Intrinsic::init_trampoline:
|
|
return II->getArgOperand(0);
|
|
}
|
|
}
|
|
|
|
CallSite CS(I);
|
|
// All the supported functions so far happen to have dest as their first
|
|
// argument.
|
|
return CS.getArgument(0);
|
|
}
|
|
|
|
static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
|
|
const TargetLibraryInfo &TLI) {
|
|
uint64_t Size;
|
|
if (getObjectSize(V, Size, DL, &TLI))
|
|
return Size;
|
|
return MemoryLocation::UnknownSize;
|
|
}
|
|
|
|
namespace {
|
|
enum OverwriteResult {
|
|
OverwriteBegin,
|
|
OverwriteComplete,
|
|
OverwriteEnd,
|
|
OverwriteUnknown
|
|
};
|
|
}
|
|
|
|
/// Return 'OverwriteComplete' if a store to the 'Later' location completely
|
|
/// overwrites a store to the 'Earlier' location, 'OverwriteEnd' if the end of
|
|
/// the 'Earlier' location is completely overwritten by 'Later',
|
|
/// 'OverwriteBegin' if the beginning of the 'Earlier' location is overwritten
|
|
/// by 'Later', or 'OverwriteUnknown' if nothing can be determined.
|
|
static OverwriteResult isOverwrite(const MemoryLocation &Later,
|
|
const MemoryLocation &Earlier,
|
|
const DataLayout &DL,
|
|
const TargetLibraryInfo &TLI,
|
|
int64_t &EarlierOff, int64_t &LaterOff,
|
|
Instruction *DepWrite,
|
|
InstOverlapIntervalsTy &IOL) {
|
|
// If we don't know the sizes of either access, then we can't do a comparison.
|
|
if (Later.Size == MemoryLocation::UnknownSize ||
|
|
Earlier.Size == MemoryLocation::UnknownSize)
|
|
return OverwriteUnknown;
|
|
|
|
const Value *P1 = Earlier.Ptr->stripPointerCasts();
|
|
const Value *P2 = Later.Ptr->stripPointerCasts();
|
|
|
|
// If the start pointers are the same, we just have to compare sizes to see if
|
|
// the later store was larger than the earlier store.
|
|
if (P1 == P2) {
|
|
// Make sure that the Later size is >= the Earlier size.
|
|
if (Later.Size >= Earlier.Size)
|
|
return OverwriteComplete;
|
|
}
|
|
|
|
// Check to see if the later store is to the entire object (either a global,
|
|
// an alloca, or a byval/inalloca argument). If so, then it clearly
|
|
// overwrites any other store to the same object.
|
|
const Value *UO1 = GetUnderlyingObject(P1, DL),
|
|
*UO2 = GetUnderlyingObject(P2, DL);
|
|
|
|
// If we can't resolve the same pointers to the same object, then we can't
|
|
// analyze them at all.
|
|
if (UO1 != UO2)
|
|
return OverwriteUnknown;
|
|
|
|
// If the "Later" store is to a recognizable object, get its size.
|
|
uint64_t ObjectSize = getPointerSize(UO2, DL, TLI);
|
|
if (ObjectSize != MemoryLocation::UnknownSize)
|
|
if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
|
|
return OverwriteComplete;
|
|
|
|
// Okay, we have stores to two completely different pointers. Try to
|
|
// decompose the pointer into a "base + constant_offset" form. If the base
|
|
// pointers are equal, then we can reason about the two stores.
|
|
EarlierOff = 0;
|
|
LaterOff = 0;
|
|
const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
|
|
const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
|
|
|
|
// If the base pointers still differ, we have two completely different stores.
|
|
if (BP1 != BP2)
|
|
return OverwriteUnknown;
|
|
|
|
// The later store completely overlaps the earlier store if:
|
|
//
|
|
// 1. Both start at the same offset and the later one's size is greater than
|
|
// or equal to the earlier one's, or
|
|
//
|
|
// |--earlier--|
|
|
// |-- later --|
|
|
//
|
|
// 2. The earlier store has an offset greater than the later offset, but which
|
|
// still lies completely within the later store.
|
|
//
|
|
// |--earlier--|
|
|
// |----- later ------|
|
|
//
|
|
// We have to be careful here as *Off is signed while *.Size is unsigned.
|
|
if (EarlierOff >= LaterOff &&
|
|
Later.Size >= Earlier.Size &&
|
|
uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
|
|
return OverwriteComplete;
|
|
|
|
// We may now overlap, although the overlap is not complete. There might also
|
|
// be other incomplete overlaps, and together, they might cover the complete
|
|
// earlier write.
|
|
// Note: The correctness of this logic depends on the fact that this function
|
|
// is not even called providing DepWrite when there are any intervening reads.
|
|
if (EnablePartialOverwriteTracking &&
|
|
LaterOff < int64_t(EarlierOff + Earlier.Size) &&
|
|
int64_t(LaterOff + Later.Size) >= EarlierOff) {
|
|
|
|
// Insert our part of the overlap into the map.
|
|
auto &IM = IOL[DepWrite];
|
|
DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff << ", " <<
|
|
int64_t(EarlierOff + Earlier.Size) << ") Later [" <<
|
|
LaterOff << ", " << int64_t(LaterOff + Later.Size) << ")\n");
|
|
|
|
// Make sure that we only insert non-overlapping intervals and combine
|
|
// adjacent intervals. The intervals are stored in the map with the ending
|
|
// offset as the key (in the half-open sense) and the starting offset as
|
|
// the value.
|
|
int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + Later.Size;
|
|
|
|
// Find any intervals ending at, or after, LaterIntStart which start
|
|
// before LaterIntEnd.
|
|
auto ILI = IM.lower_bound(LaterIntStart);
|
|
if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
|
|
// This existing interval is overlapped with the current store somewhere
|
|
// in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
|
|
// intervals and adjusting our start and end.
|
|
LaterIntStart = std::min(LaterIntStart, ILI->second);
|
|
LaterIntEnd = std::max(LaterIntEnd, ILI->first);
|
|
ILI = IM.erase(ILI);
|
|
|
|
// Continue erasing and adjusting our end in case other previous
|
|
// intervals are also overlapped with the current store.
|
|
//
|
|
// |--- ealier 1 ---| |--- ealier 2 ---|
|
|
// |------- later---------|
|
|
//
|
|
while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
|
|
assert(ILI->second > LaterIntStart && "Unexpected interval");
|
|
LaterIntEnd = std::max(LaterIntEnd, ILI->first);
|
|
ILI = IM.erase(ILI);
|
|
}
|
|
}
|
|
|
|
IM[LaterIntEnd] = LaterIntStart;
|
|
|
|
ILI = IM.begin();
|
|
if (ILI->second <= EarlierOff &&
|
|
ILI->first >= int64_t(EarlierOff + Earlier.Size)) {
|
|
DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier [" <<
|
|
EarlierOff << ", " <<
|
|
int64_t(EarlierOff + Earlier.Size) <<
|
|
") Composite Later [" <<
|
|
ILI->second << ", " << ILI->first << ")\n");
|
|
++NumCompletePartials;
|
|
return OverwriteComplete;
|
|
}
|
|
}
|
|
|
|
// Another interesting case is if the later store overwrites the end of the
|
|
// earlier store.
|
|
//
|
|
// |--earlier--|
|
|
// |-- later --|
|
|
//
|
|
// In this case we may want to trim the size of earlier to avoid generating
|
|
// writes to addresses which will definitely be overwritten later
|
|
if (!EnablePartialOverwriteTracking &&
|
|
(LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + Earlier.Size) &&
|
|
int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size)))
|
|
return OverwriteEnd;
|
|
|
|
// Finally, we also need to check if the later store overwrites the beginning
|
|
// of the earlier store.
|
|
//
|
|
// |--earlier--|
|
|
// |-- later --|
|
|
//
|
|
// In this case we may want to move the destination address and trim the size
|
|
// of earlier to avoid generating writes to addresses which will definitely
|
|
// be overwritten later.
|
|
if (!EnablePartialOverwriteTracking &&
|
|
(LaterOff <= EarlierOff && int64_t(LaterOff + Later.Size) > EarlierOff)) {
|
|
assert(int64_t(LaterOff + Later.Size) <
|
|
int64_t(EarlierOff + Earlier.Size) &&
|
|
"Expect to be handled as OverwriteComplete");
|
|
return OverwriteBegin;
|
|
}
|
|
// Otherwise, they don't completely overlap.
|
|
return OverwriteUnknown;
|
|
}
|
|
|
|
/// If 'Inst' might be a self read (i.e. a noop copy of a
|
|
/// memory region into an identical pointer) then it doesn't actually make its
|
|
/// input dead in the traditional sense. Consider this case:
|
|
///
|
|
/// memcpy(A <- B)
|
|
/// memcpy(A <- A)
|
|
///
|
|
/// In this case, the second store to A does not make the first store to A dead.
|
|
/// The usual situation isn't an explicit A<-A store like this (which can be
|
|
/// trivially removed) but a case where two pointers may alias.
|
|
///
|
|
/// This function detects when it is unsafe to remove a dependent instruction
|
|
/// because the DSE inducing instruction may be a self-read.
|
|
static bool isPossibleSelfRead(Instruction *Inst,
|
|
const MemoryLocation &InstStoreLoc,
|
|
Instruction *DepWrite,
|
|
const TargetLibraryInfo &TLI,
|
|
AliasAnalysis &AA) {
|
|
// Self reads can only happen for instructions that read memory. Get the
|
|
// location read.
|
|
MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
|
|
if (!InstReadLoc.Ptr) return false; // Not a reading instruction.
|
|
|
|
// If the read and written loc obviously don't alias, it isn't a read.
|
|
if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
|
|
|
|
// Okay, 'Inst' may copy over itself. However, we can still remove a the
|
|
// DepWrite instruction if we can prove that it reads from the same location
|
|
// as Inst. This handles useful cases like:
|
|
// memcpy(A <- B)
|
|
// memcpy(A <- B)
|
|
// Here we don't know if A/B may alias, but we do know that B/B are must
|
|
// aliases, so removing the first memcpy is safe (assuming it writes <= #
|
|
// bytes as the second one.
|
|
MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
|
|
|
|
if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
|
|
return false;
|
|
|
|
// If DepWrite doesn't read memory or if we can't prove it is a must alias,
|
|
// then it can't be considered dead.
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the memory which is accessed by the second instruction is not
|
|
/// modified between the first and the second instruction.
|
|
/// Precondition: Second instruction must be dominated by the first
|
|
/// instruction.
|
|
static bool memoryIsNotModifiedBetween(Instruction *FirstI,
|
|
Instruction *SecondI,
|
|
AliasAnalysis *AA) {
|
|
SmallVector<BasicBlock *, 16> WorkList;
|
|
SmallPtrSet<BasicBlock *, 8> Visited;
|
|
BasicBlock::iterator FirstBBI(FirstI);
|
|
++FirstBBI;
|
|
BasicBlock::iterator SecondBBI(SecondI);
|
|
BasicBlock *FirstBB = FirstI->getParent();
|
|
BasicBlock *SecondBB = SecondI->getParent();
|
|
MemoryLocation MemLoc = MemoryLocation::get(SecondI);
|
|
|
|
// Start checking the store-block.
|
|
WorkList.push_back(SecondBB);
|
|
bool isFirstBlock = true;
|
|
|
|
// Check all blocks going backward until we reach the load-block.
|
|
while (!WorkList.empty()) {
|
|
BasicBlock *B = WorkList.pop_back_val();
|
|
|
|
// Ignore instructions before LI if this is the FirstBB.
|
|
BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
|
|
|
|
BasicBlock::iterator EI;
|
|
if (isFirstBlock) {
|
|
// Ignore instructions after SI if this is the first visit of SecondBB.
|
|
assert(B == SecondBB && "first block is not the store block");
|
|
EI = SecondBBI;
|
|
isFirstBlock = false;
|
|
} else {
|
|
// It's not SecondBB or (in case of a loop) the second visit of SecondBB.
|
|
// In this case we also have to look at instructions after SI.
|
|
EI = B->end();
|
|
}
|
|
for (; BI != EI; ++BI) {
|
|
Instruction *I = &*BI;
|
|
if (I->mayWriteToMemory() && I != SecondI) {
|
|
auto Res = AA->getModRefInfo(I, MemLoc);
|
|
if (Res != MRI_NoModRef)
|
|
return false;
|
|
}
|
|
}
|
|
if (B != FirstBB) {
|
|
assert(B != &FirstBB->getParent()->getEntryBlock() &&
|
|
"Should not hit the entry block because SI must be dominated by LI");
|
|
for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
|
|
if (!Visited.insert(*PredI).second)
|
|
continue;
|
|
WorkList.push_back(*PredI);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Find all blocks that will unconditionally lead to the block BB and append
|
|
/// them to F.
|
|
static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
|
|
BasicBlock *BB, DominatorTree *DT) {
|
|
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
|
|
BasicBlock *Pred = *I;
|
|
if (Pred == BB) continue;
|
|
TerminatorInst *PredTI = Pred->getTerminator();
|
|
if (PredTI->getNumSuccessors() != 1)
|
|
continue;
|
|
|
|
if (DT->isReachableFromEntry(Pred))
|
|
Blocks.push_back(Pred);
|
|
}
|
|
}
|
|
|
|
/// Handle frees of entire structures whose dependency is a store
|
|
/// to a field of that structure.
|
|
static bool handleFree(CallInst *F, AliasAnalysis *AA,
|
|
MemoryDependenceResults *MD, DominatorTree *DT,
|
|
const TargetLibraryInfo *TLI,
|
|
InstOverlapIntervalsTy &IOL,
|
|
DenseMap<Instruction*, size_t> *InstrOrdering) {
|
|
bool MadeChange = false;
|
|
|
|
MemoryLocation Loc = MemoryLocation(F->getOperand(0));
|
|
SmallVector<BasicBlock *, 16> Blocks;
|
|
Blocks.push_back(F->getParent());
|
|
const DataLayout &DL = F->getModule()->getDataLayout();
|
|
|
|
while (!Blocks.empty()) {
|
|
BasicBlock *BB = Blocks.pop_back_val();
|
|
Instruction *InstPt = BB->getTerminator();
|
|
if (BB == F->getParent()) InstPt = F;
|
|
|
|
MemDepResult Dep =
|
|
MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
|
|
while (Dep.isDef() || Dep.isClobber()) {
|
|
Instruction *Dependency = Dep.getInst();
|
|
if (!hasMemoryWrite(Dependency, *TLI) || !isRemovable(Dependency))
|
|
break;
|
|
|
|
Value *DepPointer =
|
|
GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
|
|
|
|
// Check for aliasing.
|
|
if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
|
|
break;
|
|
|
|
DEBUG(dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: "
|
|
<< *Dependency << '\n');
|
|
|
|
// DCE instructions only used to calculate that store.
|
|
BasicBlock::iterator BBI(Dependency);
|
|
deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, InstrOrdering);
|
|
++NumFastStores;
|
|
MadeChange = true;
|
|
|
|
// Inst's old Dependency is now deleted. Compute the next dependency,
|
|
// which may also be dead, as in
|
|
// s[0] = 0;
|
|
// s[1] = 0; // This has just been deleted.
|
|
// free(s);
|
|
Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
|
|
}
|
|
|
|
if (Dep.isNonLocal())
|
|
findUnconditionalPreds(Blocks, BB, DT);
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// Check to see if the specified location may alias any of the stack objects in
|
|
/// the DeadStackObjects set. If so, they become live because the location is
|
|
/// being loaded.
|
|
static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
|
|
SmallSetVector<Value *, 16> &DeadStackObjects,
|
|
const DataLayout &DL, AliasAnalysis *AA,
|
|
const TargetLibraryInfo *TLI) {
|
|
const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
|
|
|
|
// A constant can't be in the dead pointer set.
|
|
if (isa<Constant>(UnderlyingPointer))
|
|
return;
|
|
|
|
// If the kill pointer can be easily reduced to an alloca, don't bother doing
|
|
// extraneous AA queries.
|
|
if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
|
|
DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
|
|
return;
|
|
}
|
|
|
|
// Remove objects that could alias LoadedLoc.
|
|
DeadStackObjects.remove_if([&](Value *I) {
|
|
// See if the loaded location could alias the stack location.
|
|
MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI));
|
|
return !AA->isNoAlias(StackLoc, LoadedLoc);
|
|
});
|
|
}
|
|
|
|
/// Remove dead stores to stack-allocated locations in the function end block.
|
|
/// Ex:
|
|
/// %A = alloca i32
|
|
/// ...
|
|
/// store i32 1, i32* %A
|
|
/// ret void
|
|
static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
|
|
MemoryDependenceResults *MD,
|
|
const TargetLibraryInfo *TLI,
|
|
InstOverlapIntervalsTy &IOL,
|
|
DenseMap<Instruction*, size_t> *InstrOrdering) {
|
|
bool MadeChange = false;
|
|
|
|
// Keep track of all of the stack objects that are dead at the end of the
|
|
// function.
|
|
SmallSetVector<Value*, 16> DeadStackObjects;
|
|
|
|
// Find all of the alloca'd pointers in the entry block.
|
|
BasicBlock &Entry = BB.getParent()->front();
|
|
for (Instruction &I : Entry) {
|
|
if (isa<AllocaInst>(&I))
|
|
DeadStackObjects.insert(&I);
|
|
|
|
// Okay, so these are dead heap objects, but if the pointer never escapes
|
|
// then it's leaked by this function anyways.
|
|
else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
|
|
DeadStackObjects.insert(&I);
|
|
}
|
|
|
|
// Treat byval or inalloca arguments the same, stores to them are dead at the
|
|
// end of the function.
|
|
for (Argument &AI : BB.getParent()->args())
|
|
if (AI.hasByValOrInAllocaAttr())
|
|
DeadStackObjects.insert(&AI);
|
|
|
|
const DataLayout &DL = BB.getModule()->getDataLayout();
|
|
|
|
// Scan the basic block backwards
|
|
for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
|
|
--BBI;
|
|
|
|
// If we find a store, check to see if it points into a dead stack value.
|
|
if (hasMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
|
|
// See through pointer-to-pointer bitcasts
|
|
SmallVector<Value *, 4> Pointers;
|
|
GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
|
|
|
|
// Stores to stack values are valid candidates for removal.
|
|
bool AllDead = true;
|
|
for (Value *Pointer : Pointers)
|
|
if (!DeadStackObjects.count(Pointer)) {
|
|
AllDead = false;
|
|
break;
|
|
}
|
|
|
|
if (AllDead) {
|
|
Instruction *Dead = &*BBI;
|
|
|
|
DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
|
|
<< *Dead << "\n Objects: ";
|
|
for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
|
|
E = Pointers.end(); I != E; ++I) {
|
|
dbgs() << **I;
|
|
if (std::next(I) != E)
|
|
dbgs() << ", ";
|
|
}
|
|
dbgs() << '\n');
|
|
|
|
// DCE instructions only used to calculate that store.
|
|
deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
|
|
++NumFastStores;
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Remove any dead non-memory-mutating instructions.
|
|
if (isInstructionTriviallyDead(&*BBI, TLI)) {
|
|
DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: "
|
|
<< *&*BBI << '\n');
|
|
deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
|
|
++NumFastOther;
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
|
|
if (isa<AllocaInst>(BBI)) {
|
|
// Remove allocas from the list of dead stack objects; there can't be
|
|
// any references before the definition.
|
|
DeadStackObjects.remove(&*BBI);
|
|
continue;
|
|
}
|
|
|
|
if (auto CS = CallSite(&*BBI)) {
|
|
// Remove allocation function calls from the list of dead stack objects;
|
|
// there can't be any references before the definition.
|
|
if (isAllocLikeFn(&*BBI, TLI))
|
|
DeadStackObjects.remove(&*BBI);
|
|
|
|
// If this call does not access memory, it can't be loading any of our
|
|
// pointers.
|
|
if (AA->doesNotAccessMemory(CS))
|
|
continue;
|
|
|
|
// If the call might load from any of our allocas, then any store above
|
|
// the call is live.
|
|
DeadStackObjects.remove_if([&](Value *I) {
|
|
// See if the call site touches the value.
|
|
ModRefInfo A = AA->getModRefInfo(CS, I, getPointerSize(I, DL, *TLI));
|
|
|
|
return A == MRI_ModRef || A == MRI_Ref;
|
|
});
|
|
|
|
// If all of the allocas were clobbered by the call then we're not going
|
|
// to find anything else to process.
|
|
if (DeadStackObjects.empty())
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
|
|
// We can remove the dead stores, irrespective of the fence and its ordering
|
|
// (release/acquire/seq_cst). Fences only constraints the ordering of
|
|
// already visible stores, it does not make a store visible to other
|
|
// threads. So, skipping over a fence does not change a store from being
|
|
// dead.
|
|
if (isa<FenceInst>(*BBI))
|
|
continue;
|
|
|
|
MemoryLocation LoadedLoc;
|
|
|
|
// If we encounter a use of the pointer, it is no longer considered dead
|
|
if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
|
|
if (!L->isUnordered()) // Be conservative with atomic/volatile load
|
|
break;
|
|
LoadedLoc = MemoryLocation::get(L);
|
|
} else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
|
|
LoadedLoc = MemoryLocation::get(V);
|
|
} else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
|
|
LoadedLoc = MemoryLocation::getForSource(MTI);
|
|
} else if (!BBI->mayReadFromMemory()) {
|
|
// Instruction doesn't read memory. Note that stores that weren't removed
|
|
// above will hit this case.
|
|
continue;
|
|
} else {
|
|
// Unknown inst; assume it clobbers everything.
|
|
break;
|
|
}
|
|
|
|
// Remove any allocas from the DeadPointer set that are loaded, as this
|
|
// makes any stores above the access live.
|
|
removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI);
|
|
|
|
// If all of the allocas were clobbered by the access then we're not going
|
|
// to find anything else to process.
|
|
if (DeadStackObjects.empty())
|
|
break;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
|
|
int64_t &EarlierSize, int64_t LaterOffset,
|
|
int64_t LaterSize, bool IsOverwriteEnd) {
|
|
// TODO: base this on the target vector size so that if the earlier
|
|
// store was too small to get vector writes anyway then its likely
|
|
// a good idea to shorten it
|
|
// Power of 2 vector writes are probably always a bad idea to optimize
|
|
// as any store/memset/memcpy is likely using vector instructions so
|
|
// shortening it to not vector size is likely to be slower
|
|
MemIntrinsic *EarlierIntrinsic = cast<MemIntrinsic>(EarlierWrite);
|
|
unsigned EarlierWriteAlign = EarlierIntrinsic->getAlignment();
|
|
if (!IsOverwriteEnd)
|
|
LaterOffset = int64_t(LaterOffset + LaterSize);
|
|
|
|
if (!(llvm::isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
|
|
!((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
|
|
<< (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *EarlierWrite
|
|
<< "\n KILLER (offset " << LaterOffset << ", " << EarlierSize
|
|
<< ")\n");
|
|
|
|
int64_t NewLength = IsOverwriteEnd
|
|
? LaterOffset - EarlierOffset
|
|
: EarlierSize - (LaterOffset - EarlierOffset);
|
|
|
|
Value *EarlierWriteLength = EarlierIntrinsic->getLength();
|
|
Value *TrimmedLength =
|
|
ConstantInt::get(EarlierWriteLength->getType(), NewLength);
|
|
EarlierIntrinsic->setLength(TrimmedLength);
|
|
|
|
EarlierSize = NewLength;
|
|
if (!IsOverwriteEnd) {
|
|
int64_t OffsetMoved = (LaterOffset - EarlierOffset);
|
|
Value *Indices[1] = {
|
|
ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
|
|
GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
|
|
EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
|
|
EarlierIntrinsic->setDest(NewDestGEP);
|
|
EarlierOffset = EarlierOffset + OffsetMoved;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool tryToShortenEnd(Instruction *EarlierWrite,
|
|
OverlapIntervalsTy &IntervalMap,
|
|
int64_t &EarlierStart, int64_t &EarlierSize) {
|
|
if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
|
|
return false;
|
|
|
|
OverlapIntervalsTy::iterator OII = --IntervalMap.end();
|
|
int64_t LaterStart = OII->second;
|
|
int64_t LaterSize = OII->first - LaterStart;
|
|
|
|
if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
|
|
LaterStart + LaterSize >= EarlierStart + EarlierSize) {
|
|
if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
|
|
LaterSize, true)) {
|
|
IntervalMap.erase(OII);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool tryToShortenBegin(Instruction *EarlierWrite,
|
|
OverlapIntervalsTy &IntervalMap,
|
|
int64_t &EarlierStart, int64_t &EarlierSize) {
|
|
if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
|
|
return false;
|
|
|
|
OverlapIntervalsTy::iterator OII = IntervalMap.begin();
|
|
int64_t LaterStart = OII->second;
|
|
int64_t LaterSize = OII->first - LaterStart;
|
|
|
|
if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
|
|
assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
|
|
"Should have been handled as OverwriteComplete");
|
|
if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
|
|
LaterSize, false)) {
|
|
IntervalMap.erase(OII);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
|
|
const DataLayout &DL,
|
|
InstOverlapIntervalsTy &IOL) {
|
|
bool Changed = false;
|
|
for (auto OI : IOL) {
|
|
Instruction *EarlierWrite = OI.first;
|
|
MemoryLocation Loc = getLocForWrite(EarlierWrite, *AA);
|
|
assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
|
|
assert(Loc.Size != MemoryLocation::UnknownSize && "Unexpected mem loc");
|
|
|
|
const Value *Ptr = Loc.Ptr->stripPointerCasts();
|
|
int64_t EarlierStart = 0;
|
|
int64_t EarlierSize = int64_t(Loc.Size);
|
|
GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
|
|
OverlapIntervalsTy &IntervalMap = OI.second;
|
|
Changed |=
|
|
tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
|
|
if (IntervalMap.empty())
|
|
continue;
|
|
Changed |=
|
|
tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
|
|
AliasAnalysis *AA, MemoryDependenceResults *MD,
|
|
const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI,
|
|
InstOverlapIntervalsTy &IOL,
|
|
DenseMap<Instruction*, size_t> *InstrOrdering) {
|
|
// Must be a store instruction.
|
|
StoreInst *SI = dyn_cast<StoreInst>(Inst);
|
|
if (!SI)
|
|
return false;
|
|
|
|
// If we're storing the same value back to a pointer that we just loaded from,
|
|
// then the store can be removed.
|
|
if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
|
|
if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
|
|
isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
|
|
|
|
DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: "
|
|
<< *DepLoad << "\n STORE: " << *SI << '\n');
|
|
|
|
deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
|
|
++NumRedundantStores;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Remove null stores into the calloc'ed objects
|
|
Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
|
|
if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
|
|
Instruction *UnderlyingPointer =
|
|
dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
|
|
|
|
if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
|
|
memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
|
|
DEBUG(
|
|
dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: "
|
|
<< *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n');
|
|
|
|
deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
|
|
++NumRedundantStores;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
|
|
MemoryDependenceResults *MD, DominatorTree *DT,
|
|
const TargetLibraryInfo *TLI) {
|
|
const DataLayout &DL = BB.getModule()->getDataLayout();
|
|
bool MadeChange = false;
|
|
|
|
// FIXME: Maybe change this to use some abstraction like OrderedBasicBlock?
|
|
// The current OrderedBasicBlock can't deal with mutation at the moment.
|
|
size_t LastThrowingInstIndex = 0;
|
|
DenseMap<Instruction*, size_t> InstrOrdering;
|
|
size_t InstrIndex = 1;
|
|
|
|
// A map of interval maps representing partially-overwritten value parts.
|
|
InstOverlapIntervalsTy IOL;
|
|
|
|
// Do a top-down walk on the BB.
|
|
for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
|
|
// Handle 'free' calls specially.
|
|
if (CallInst *F = isFreeCall(&*BBI, TLI)) {
|
|
MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, &InstrOrdering);
|
|
// Increment BBI after handleFree has potentially deleted instructions.
|
|
// This ensures we maintain a valid iterator.
|
|
++BBI;
|
|
continue;
|
|
}
|
|
|
|
Instruction *Inst = &*BBI++;
|
|
|
|
size_t CurInstNumber = InstrIndex++;
|
|
InstrOrdering.insert(std::make_pair(Inst, CurInstNumber));
|
|
if (Inst->mayThrow()) {
|
|
LastThrowingInstIndex = CurInstNumber;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if Inst writes to memory. If not, continue.
|
|
if (!hasMemoryWrite(Inst, *TLI))
|
|
continue;
|
|
|
|
// eliminateNoopStore will update in iterator, if necessary.
|
|
if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, &InstrOrdering)) {
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
|
|
// If we find something that writes memory, get its memory dependence.
|
|
MemDepResult InstDep = MD->getDependency(Inst);
|
|
|
|
// Ignore any store where we can't find a local dependence.
|
|
// FIXME: cross-block DSE would be fun. :)
|
|
if (!InstDep.isDef() && !InstDep.isClobber())
|
|
continue;
|
|
|
|
// Figure out what location is being stored to.
|
|
MemoryLocation Loc = getLocForWrite(Inst, *AA);
|
|
|
|
// If we didn't get a useful location, fail.
|
|
if (!Loc.Ptr)
|
|
continue;
|
|
|
|
// Loop until we find a store we can eliminate or a load that
|
|
// invalidates the analysis. Without an upper bound on the number of
|
|
// instructions examined, this analysis can become very time-consuming.
|
|
// However, the potential gain diminishes as we process more instructions
|
|
// without eliminating any of them. Therefore, we limit the number of
|
|
// instructions we look at.
|
|
auto Limit = MD->getDefaultBlockScanLimit();
|
|
while (InstDep.isDef() || InstDep.isClobber()) {
|
|
// Get the memory clobbered by the instruction we depend on. MemDep will
|
|
// skip any instructions that 'Loc' clearly doesn't interact with. If we
|
|
// end up depending on a may- or must-aliased load, then we can't optimize
|
|
// away the store and we bail out. However, if we depend on something
|
|
// that overwrites the memory location we *can* potentially optimize it.
|
|
//
|
|
// Find out what memory location the dependent instruction stores.
|
|
Instruction *DepWrite = InstDep.getInst();
|
|
MemoryLocation DepLoc = getLocForWrite(DepWrite, *AA);
|
|
// If we didn't get a useful location, or if it isn't a size, bail out.
|
|
if (!DepLoc.Ptr)
|
|
break;
|
|
|
|
// Make sure we don't look past a call which might throw. This is an
|
|
// issue because MemoryDependenceAnalysis works in the wrong direction:
|
|
// it finds instructions which dominate the current instruction, rather than
|
|
// instructions which are post-dominated by the current instruction.
|
|
//
|
|
// If the underlying object is a non-escaping memory allocation, any store
|
|
// to it is dead along the unwind edge. Otherwise, we need to preserve
|
|
// the store.
|
|
size_t DepIndex = InstrOrdering.lookup(DepWrite);
|
|
assert(DepIndex && "Unexpected instruction");
|
|
if (DepIndex <= LastThrowingInstIndex) {
|
|
const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
|
|
bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
|
|
if (!IsStoreDeadOnUnwind) {
|
|
// We're looking for a call to an allocation function
|
|
// where the allocation doesn't escape before the last
|
|
// throwing instruction; PointerMayBeCaptured
|
|
// reasonably fast approximation.
|
|
IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
|
|
!PointerMayBeCaptured(Underlying, false, true);
|
|
}
|
|
if (!IsStoreDeadOnUnwind)
|
|
break;
|
|
}
|
|
|
|
// If we find a write that is a) removable (i.e., non-volatile), b) is
|
|
// completely obliterated by the store to 'Loc', and c) which we know that
|
|
// 'Inst' doesn't load from, then we can remove it.
|
|
if (isRemovable(DepWrite) &&
|
|
!isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
|
|
int64_t InstWriteOffset, DepWriteOffset;
|
|
OverwriteResult OR =
|
|
isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset, InstWriteOffset,
|
|
DepWrite, IOL);
|
|
if (OR == OverwriteComplete) {
|
|
DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: "
|
|
<< *DepWrite << "\n KILLER: " << *Inst << '\n');
|
|
|
|
// Delete the store and now-dead instructions that feed it.
|
|
deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, &InstrOrdering);
|
|
++NumFastStores;
|
|
MadeChange = true;
|
|
|
|
// We erased DepWrite; start over.
|
|
InstDep = MD->getDependency(Inst);
|
|
continue;
|
|
} else if ((OR == OverwriteEnd && isShortenableAtTheEnd(DepWrite)) ||
|
|
((OR == OverwriteBegin &&
|
|
isShortenableAtTheBeginning(DepWrite)))) {
|
|
assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
|
|
"when partial-overwrite "
|
|
"tracking is enabled");
|
|
int64_t EarlierSize = DepLoc.Size;
|
|
int64_t LaterSize = Loc.Size;
|
|
bool IsOverwriteEnd = (OR == OverwriteEnd);
|
|
MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
|
|
InstWriteOffset, LaterSize, IsOverwriteEnd);
|
|
}
|
|
}
|
|
|
|
// If this is a may-aliased store that is clobbering the store value, we
|
|
// can keep searching past it for another must-aliased pointer that stores
|
|
// to the same location. For example, in:
|
|
// store -> P
|
|
// store -> Q
|
|
// store -> P
|
|
// we can remove the first store to P even though we don't know if P and Q
|
|
// alias.
|
|
if (DepWrite == &BB.front()) break;
|
|
|
|
// Can't look past this instruction if it might read 'Loc'.
|
|
if (AA->getModRefInfo(DepWrite, Loc) & MRI_Ref)
|
|
break;
|
|
|
|
InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
|
|
DepWrite->getIterator(), &BB,
|
|
/*QueryInst=*/ nullptr, &Limit);
|
|
}
|
|
}
|
|
|
|
if (EnablePartialOverwriteTracking)
|
|
MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
|
|
|
|
// If this block ends in a return, unwind, or unreachable, all allocas are
|
|
// dead at its end, which means stores to them are also dead.
|
|
if (BB.getTerminator()->getNumSuccessors() == 0)
|
|
MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, &InstrOrdering);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
|
|
MemoryDependenceResults *MD, DominatorTree *DT,
|
|
const TargetLibraryInfo *TLI) {
|
|
bool MadeChange = false;
|
|
for (BasicBlock &BB : F)
|
|
// Only check non-dead blocks. Dead blocks may have strange pointer
|
|
// cycles that will confuse alias analysis.
|
|
if (DT->isReachableFromEntry(&BB))
|
|
MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DSE Pass
|
|
//===----------------------------------------------------------------------===//
|
|
PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
AliasAnalysis *AA = &AM.getResult<AAManager>(F);
|
|
DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
|
|
const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
|
|
|
|
if (!eliminateDeadStores(F, AA, MD, DT, TLI))
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<GlobalsAA>();
|
|
PA.preserve<MemoryDependenceAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
/// A legacy pass for the legacy pass manager that wraps \c DSEPass.
|
|
class DSELegacyPass : public FunctionPass {
|
|
public:
|
|
DSELegacyPass() : FunctionPass(ID) {
|
|
initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
MemoryDependenceResults *MD =
|
|
&getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
|
|
const TargetLibraryInfo *TLI =
|
|
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
|
|
return eliminateDeadStores(F, AA, MD, DT, TLI);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<MemoryDependenceWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<MemoryDependenceWrapperPass>();
|
|
}
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char DSELegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
|
|
false)
|
|
|
|
FunctionPass *llvm::createDeadStoreEliminationPass() {
|
|
return new DSELegacyPass();
|
|
}
|