llvm/lib/CodeGen/PHIElimination.cpp

370 lines
14 KiB
C++

//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions. This destroys SSA information, but is the desired input for
// some register allocators.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "phielim"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <map>
using namespace llvm;
STATISTIC(NumAtomic, "Number of atomic phis lowered");
namespace {
class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
MachineRegisterInfo *MRI; // Machine register information
public:
static char ID; // Pass identification, replacement for typeid
PNE() : MachineFunctionPass((intptr_t)&ID) {}
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
///
bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
void LowerAtomicPHINode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt);
/// analyzePHINodes - Gather information about the PHI nodes in
/// here. In particular, we want to map the number of uses of a virtual
/// register which is used in a PHI node. We map that to the BB the
/// vreg is coming from. This is used later to determine when the vreg
/// is killed in the BB.
///
void analyzePHINodes(const MachineFunction& Fn);
typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
VRegPHIUse VRegPHIUseCount;
// Defs of PHI sources which are implicit_def.
SmallPtrSet<MachineInstr*, 4> ImpDefs;
};
char PNE::ID = 0;
RegisterPass<PNE> X("phi-node-elimination",
"Eliminate PHI nodes for register allocation");
}
const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
bool PNE::runOnMachineFunction(MachineFunction &Fn) {
MRI = &Fn.getRegInfo();
analyzePHINodes(Fn);
bool Changed = false;
// Eliminate PHI instructions by inserting copies into predecessor blocks.
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
Changed |= EliminatePHINodes(Fn, *I);
// Remove dead IMPLICIT_DEF instructions.
for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
E = ImpDefs.end(); I != E; ++I) {
MachineInstr *DefMI = *I;
unsigned DefReg = DefMI->getOperand(0).getReg();
if (MRI->use_begin(DefReg) == MRI->use_end())
DefMI->eraseFromParent();
}
ImpDefs.clear();
VRegPHIUseCount.clear();
return Changed;
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
return false; // Quick exit for basic blocks without PHIs.
// Get an iterator to the first instruction after the last PHI node (this may
// also be the end of the basic block).
MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
while (AfterPHIsIt != MBB.end() &&
AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
++AfterPHIsIt; // Skip over all of the PHI nodes...
while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
LowerAtomicPHINode(MBB, AfterPHIsIt);
return true;
}
static bool isSourceDefinedByImplicitDef(MachineInstr *MPhi, unsigned SrcIdx,
MachineRegisterInfo *MRI) {
unsigned SrcReg = MPhi->getOperand(SrcIdx*2+1).getReg();
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
return DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF;
}
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs. This lowering method is always correct all of the
/// time.
void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt) {
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
MachineInstr *MPhi = MBB.remove(MBB.begin());
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
unsigned DestReg = MPhi->getOperand(0).getReg();
// Create a new register for the incoming PHI arguments.
MachineFunction &MF = *MBB.getParent();
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
unsigned IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
// Insert a register to register copy in the top of the current block (but
// after any remaining phi nodes) which copies the new incoming register
// into the phi node destination.
//
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
if (NumSrcs == 1 && isSourceDefinedByImplicitDef(MPhi, 0, MRI))
// If the only source of a PHI node is an implicit_def, just emit an
// implicit_def instead of a copy.
BuildMI(MBB, AfterPHIsIt, TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
else
TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
// Update live variable information if there is any...
LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
if (LV) {
MachineInstr *PHICopy = prior(AfterPHIsIt);
// Increment use count of the newly created virtual register.
LV->getVarInfo(IncomingReg).NumUses++;
// Add information to LiveVariables to know that the incoming value is
// killed. Note that because the value is defined in several places (once
// each for each incoming block), the "def" block and instruction fields
// for the VarInfo is not filled in.
//
LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
// Since we are going to be deleting the PHI node, if it is the last use
// of any registers, or if the value itself is dead, we need to move this
// information over to the new copy we just inserted.
//
LV->removeVirtualRegistersKilled(MPhi);
// If the result is dead, update LV.
if (MPhi->registerDefIsDead(DestReg)) {
LV->addVirtualRegisterDead(DestReg, PHICopy);
LV->removeVirtualRegistersDead(MPhi);
}
LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
}
// Adjust the VRegPHIUseCount map to account for the removal of this PHI
// node.
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
MPhi->getOperand(i).getReg())];
// Now loop over all of the incoming arguments, changing them to copy into
// the IncomingReg register in the corresponding predecessor basic block.
//
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
for (int i = NumSrcs - 1; i >= 0; --i) {
unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
"Machine PHI Operands must all be virtual registers!");
// If source is defined by an implicit def, there is no need to insert
// a copy unless it's the only source.
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
ImpDefs.insert(DefMI);
continue;
}
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
// source path the PHI.
MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the
// same basic block.
if (!MBBsInsertedInto.insert(&opBlock))
continue; // If the copy has already been emitted, we're done.
// Find a safe location to insert the copy, this may be the first
// terminator in the block (or end()).
MachineBasicBlock::iterator InsertPos = opBlock.getFirstTerminator();
// Insert the copy.
TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
// Now update live variable information if we have it. Otherwise we're done
if (!LV) continue;
// We want to be able to insert a kill of the register if this PHI
// (aka, the copy we just inserted) is the last use of the source
// value. Live variable analysis conservatively handles this by
// saying that the value is live until the end of the block the PHI
// entry lives in. If the value really is dead at the PHI copy, there
// will be no successor blocks which have the value live-in.
//
// Check to see if the copy is the last use, and if so, update the
// live variables information so that it knows the copy source
// instruction kills the incoming value.
//
LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
InRegVI.UsedBlocks[opBlock.getNumber()] = true;
// Loop over all of the successors of the basic block, checking to see
// if the value is either live in the block, or if it is killed in the
// block. Also check to see if this register is in use by another PHI
// node which has not yet been eliminated. If so, it will be killed
// at an appropriate point later.
//
// Is it used by any PHI instructions in this block?
bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
std::vector<MachineBasicBlock*> OpSuccBlocks;
// Otherwise, scan successors, including the BB the PHI node lives in.
for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
MachineBasicBlock *SuccMBB = *SI;
// Is it alive in this successor?
unsigned SuccIdx = SuccMBB->getNumber();
if (SuccIdx < InRegVI.AliveBlocks.size() &&
InRegVI.AliveBlocks[SuccIdx]) {
ValueIsLive = true;
break;
}
OpSuccBlocks.push_back(SuccMBB);
}
// Check to see if this value is live because there is a use in a successor
// that kills it.
if (!ValueIsLive) {
switch (OpSuccBlocks.size()) {
case 1: {
MachineBasicBlock *MBB = OpSuccBlocks[0];
for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
if (InRegVI.Kills[i]->getParent() == MBB) {
ValueIsLive = true;
break;
}
break;
}
case 2: {
MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
if (InRegVI.Kills[i]->getParent() == MBB1 ||
InRegVI.Kills[i]->getParent() == MBB2) {
ValueIsLive = true;
break;
}
break;
}
default:
std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
InRegVI.Kills[i]->getParent())) {
ValueIsLive = true;
break;
}
}
}
// Okay, if we now know that the value is not live out of the block,
// we can add a kill marker in this block saying that it kills the incoming
// value!
if (!ValueIsLive) {
// In our final twist, we have to decide which instruction kills the
// register. In most cases this is the copy, however, the first
// terminator instruction at the end of the block may also use the value.
// In this case, we should mark *it* as being the killing block, not the
// copy.
MachineBasicBlock::iterator KillInst = prior(InsertPos);
MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
if (Term != opBlock.end()) {
if (Term->readsRegister(SrcReg))
KillInst = Term;
// Check that no other terminators use values.
#ifndef NDEBUG
for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
++TI) {
assert(!TI->readsRegister(SrcReg) &&
"Terminator instructions cannot use virtual registers unless"
"they are the first terminator in a block!");
}
#endif
}
// Finally, mark it killed.
LV->addVirtualRegisterKilled(SrcReg, KillInst);
// This vreg no longer lives all of the way through opBlock.
unsigned opBlockNum = opBlock.getNumber();
if (opBlockNum < InRegVI.AliveBlocks.size())
InRegVI.AliveBlocks[opBlockNum] = false;
}
}
// Really delete the PHI instruction now!
delete MPhi;
++NumAtomic;
}
/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the number of uses of a virtual register which is
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
///
void PNE::analyzePHINodes(const MachineFunction& Fn) {
for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
I != E; ++I)
for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
BBI->getOperand(i).getReg())];
}