llvm/tools/llvm-upgrade/UpgradeLexer.l
Chris Lattner 4c06e0d8a5 remove attributions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45423 91177308-0d34-0410-b5e6-96231b3b80d8
2007-12-29 20:46:15 +00:00

431 lines
15 KiB
C++

/*===-- UpgradeLexer.l - Scanner for 1.9 assembly files --------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the flex scanner for LLVM 1.9 assembly languages files.
// This doesn't handle long double constants, since LLVM 1.9 did not have them.
//
//===----------------------------------------------------------------------===*/
%option prefix="Upgrade"
%option yylineno
%option nostdinit
%option never-interactive
%option batch
%option noyywrap
%option nodefault
%option 8bit
%option outfile="UpgradeLexer.cpp"
%option ecs
%option noreject
%option noyymore
%{
#include "UpgradeInternals.h"
#include "llvm/Module.h"
#include <list>
#include "UpgradeParser.h"
#include <cctype>
#include <cstdlib>
#define YY_INPUT(buf,result,max_size) \
{ \
if (LexInput->good() && !LexInput->eof()) { \
LexInput->read(buf,max_size); \
result = LexInput->gcount(); \
} else {\
result = YY_NULL; \
} \
}
#define YY_NEVER_INTERACTIVE 1
// Construct a token value for a non-obsolete token
#define RET_TOK(type, Enum, sym) \
Upgradelval.type = Enum; \
return sym
#define RET_TY(sym,NewTY,sign) \
Upgradelval.PrimType.T = NewTY; \
switch (sign) { \
case 0: Upgradelval.PrimType.S.makeSignless(); break; \
case 1: Upgradelval.PrimType.S.makeUnsigned(); break; \
case 2: Upgradelval.PrimType.S.makeSigned(); break; \
default: assert(0 && "Invalid sign kind"); break; \
}\
return sym
namespace llvm {
// TODO: All of the static identifiers are figured out by the lexer,
// these should be hashed to reduce the lexer size
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character. If AllowNull is set to false, a \00 value will cause
// an exception to be thrown.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull) {
char *BOut = Buffer;
for (char *BIn = Buffer; *BIn; ) {
if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
*BOut = (char)strtol(BIn+1, 0, 16); // Convert to number
if (!AllowNull && !*BOut)
error("String literal cannot accept \\00 escape!");
BIn[3] = Tmp; // Restore character
BIn += 3; // Skip over handled chars
++BOut;
} else {
*BOut++ = *BIn++;
}
}
return BOut;
}
// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
static uint64_t atoull(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; Buffer++) {
uint64_t OldRes = Result;
Result *= 10;
Result += *Buffer-'0';
if (Result < OldRes) // Uh, oh, overflow detected!!!
error("constant bigger than 64 bits detected!");
}
return Result;
}
static uint64_t HexIntToVal(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; ++Buffer) {
uint64_t OldRes = Result;
Result *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Result += C-'0';
else if (C >= 'A' && C <= 'F')
Result += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Result += C-'a'+10;
if (Result < OldRes) // Uh, oh, overflow detected!!!
error("constant bigger than 64 bits detected!");
}
return Result;
}
// HexToFP - Convert the ascii string in hexidecimal format to the floating
// point representation of it.
//
static double HexToFP(const char *Buffer) {
// Behave nicely in the face of C TBAA rules... see:
// http://www.nullstone.com/htmls/category/aliastyp.htm
union {
uint64_t UI;
double FP;
} UIntToFP;
UIntToFP.UI = HexIntToVal(Buffer);
assert(sizeof(double) == sizeof(uint64_t) &&
"Data sizes incompatible on this target!");
return UIntToFP.FP; // Cast Hex constant to double
}
} // End llvm namespace
using namespace llvm;
%}
/* Comments start with a ; and go till end of line */
Comment ;.*
/* Variable(Value) identifiers start with a % sign */
VarID [%@][-a-zA-Z$._][-a-zA-Z$._0-9]*
/* Label identifiers end with a colon */
Label [-a-zA-Z$._0-9]+:
QuoteLabel \"[^\"]+\":
/* Quoted names can contain any character except " and \ */
StringConstant @?\"[^\"]*\"
/* [PN]Integer: match positive and negative literal integer values that
* are preceeded by a '%' character. These represent unnamed variable slots.
*/
EPInteger %[0-9]+
ENInteger %-[0-9]+
/* E[PN]Integer: match positive and negative literal integer values */
PInteger [0-9]+
NInteger -[0-9]+
/* FPConstant - A Floating point constant.
*/
FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
/* HexFPConstant - Floating point constant represented in IEEE format as a
* hexadecimal number for when exponential notation is not precise enough.
*/
HexFPConstant 0x[0-9A-Fa-f]+
/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
* it to deal with 64 bit numbers.
*/
HexIntConstant [us]0x[0-9A-Fa-f]+
%%
{Comment} { /* Ignore comments for now */ }
begin { return BEGINTOK; }
end { return ENDTOK; }
true { return TRUETOK; }
false { return FALSETOK; }
declare { return DECLARE; }
global { return GLOBAL; }
constant { return CONSTANT; }
internal { return INTERNAL; }
linkonce { return LINKONCE; }
weak { return WEAK; }
appending { return APPENDING; }
dllimport { return DLLIMPORT; }
dllexport { return DLLEXPORT; }
extern_weak { return EXTERN_WEAK; }
uninitialized { return EXTERNAL; } /* Deprecated, turn into external */
external { return EXTERNAL; }
implementation { return IMPLEMENTATION; }
zeroinitializer { return ZEROINITIALIZER; }
\.\.\. { return DOTDOTDOT; }
undef { return UNDEF; }
null { return NULL_TOK; }
to { return TO; }
except { return EXCEPT; }
not { return NOT; } /* Deprecated, turned into XOR */
tail { return TAIL; }
target { return TARGET; }
triple { return TRIPLE; }
deplibs { return DEPLIBS; }
endian { return ENDIAN; }
pointersize { return POINTERSIZE; }
datalayout { return DATALAYOUT; }
little { return LITTLE; }
big { return BIG; }
volatile { return VOLATILE; }
align { return ALIGN; }
section { return SECTION; }
module { return MODULE; }
asm { return ASM_TOK; }
sideeffect { return SIDEEFFECT; }
cc { return CC_TOK; }
ccc { return CCC_TOK; }
csretcc { return CSRETCC_TOK; }
fastcc { return FASTCC_TOK; }
coldcc { return COLDCC_TOK; }
x86_stdcallcc { return X86_STDCALLCC_TOK; }
x86_fastcallcc { return X86_FASTCALLCC_TOK; }
sbyte { RET_TY(SBYTE, Type::Int8Ty, 2); }
ubyte { RET_TY(UBYTE, Type::Int8Ty, 1); }
i8 { RET_TY(UBYTE, Type::Int8Ty, 1); }
short { RET_TY(SHORT, Type::Int16Ty, 2); }
ushort { RET_TY(USHORT, Type::Int16Ty, 1); }
i16 { RET_TY(USHORT, Type::Int16Ty, 1); }
int { RET_TY(INT, Type::Int32Ty, 2); }
uint { RET_TY(UINT, Type::Int32Ty, 1); }
i32 { RET_TY(UINT, Type::Int32Ty, 1); }
long { RET_TY(LONG, Type::Int64Ty, 2); }
ulong { RET_TY(ULONG, Type::Int64Ty, 1); }
i64 { RET_TY(ULONG, Type::Int64Ty, 1); }
void { RET_TY(VOID, Type::VoidTy, 0); }
bool { RET_TY(BOOL, Type::Int1Ty, 1); }
i1 { RET_TY(BOOL, Type::Int1Ty, 1); }
float { RET_TY(FLOAT, Type::FloatTy, 0); }
double { RET_TY(DOUBLE, Type::DoubleTy,0); }
label { RET_TY(LABEL, Type::LabelTy, 0); }
type { return TYPE; }
opaque { return OPAQUE; }
add { RET_TOK(BinaryOpVal, AddOp, ADD); }
sub { RET_TOK(BinaryOpVal, SubOp, SUB); }
mul { RET_TOK(BinaryOpVal, MulOp, MUL); }
div { RET_TOK(BinaryOpVal, DivOp, DIV); }
udiv { RET_TOK(BinaryOpVal, UDivOp, UDIV); }
sdiv { RET_TOK(BinaryOpVal, SDivOp, SDIV); }
fdiv { RET_TOK(BinaryOpVal, FDivOp, FDIV); }
rem { RET_TOK(BinaryOpVal, RemOp, REM); }
urem { RET_TOK(BinaryOpVal, URemOp, UREM); }
srem { RET_TOK(BinaryOpVal, SRemOp, SREM); }
frem { RET_TOK(BinaryOpVal, FRemOp, FREM); }
and { RET_TOK(BinaryOpVal, AndOp, AND); }
or { RET_TOK(BinaryOpVal, OrOp , OR ); }
xor { RET_TOK(BinaryOpVal, XorOp, XOR); }
setne { RET_TOK(BinaryOpVal, SetNE, SETNE); }
seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); }
setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); }
setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); }
setle { RET_TOK(BinaryOpVal, SetLE, SETLE); }
setge { RET_TOK(BinaryOpVal, SetGE, SETGE); }
shl { RET_TOK(BinaryOpVal, ShlOp, SHL); }
shr { RET_TOK(BinaryOpVal, ShrOp, SHR); }
lshr { RET_TOK(BinaryOpVal, LShrOp, LSHR); }
ashr { RET_TOK(BinaryOpVal, AShrOp, ASHR); }
icmp { RET_TOK(OtherOpVal, ICmpOp, ICMP); }
fcmp { RET_TOK(OtherOpVal, FCmpOp, FCMP); }
eq { return EQ; }
ne { return NE; }
slt { return SLT; }
sgt { return SGT; }
sle { return SLE; }
sge { return SGE; }
ult { return ULT; }
ugt { return UGT; }
ule { return ULE; }
uge { return UGE; }
oeq { return OEQ; }
one { return ONE; }
olt { return OLT; }
ogt { return OGT; }
ole { return OLE; }
oge { return OGE; }
ord { return ORD; }
uno { return UNO; }
ueq { return UEQ; }
une { return UNE; }
phi { RET_TOK(OtherOpVal, PHIOp, PHI_TOK); }
call { RET_TOK(OtherOpVal, CallOp, CALL); }
cast { RET_TOK(CastOpVal, CastOp, CAST); }
trunc { RET_TOK(CastOpVal, TruncOp, TRUNC); }
zext { RET_TOK(CastOpVal, ZExtOp , ZEXT); }
sext { RET_TOK(CastOpVal, SExtOp, SEXT); }
fptrunc { RET_TOK(CastOpVal, FPTruncOp, FPTRUNC); }
fpext { RET_TOK(CastOpVal, FPExtOp, FPEXT); }
fptoui { RET_TOK(CastOpVal, FPToUIOp, FPTOUI); }
fptosi { RET_TOK(CastOpVal, FPToSIOp, FPTOSI); }
uitofp { RET_TOK(CastOpVal, UIToFPOp, UITOFP); }
sitofp { RET_TOK(CastOpVal, SIToFPOp, SITOFP); }
ptrtoint { RET_TOK(CastOpVal, PtrToIntOp, PTRTOINT); }
inttoptr { RET_TOK(CastOpVal, IntToPtrOp, INTTOPTR); }
bitcast { RET_TOK(CastOpVal, BitCastOp, BITCAST); }
select { RET_TOK(OtherOpVal, SelectOp, SELECT); }
vanext { return VANEXT_old; }
vaarg { return VAARG_old; }
va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); }
ret { RET_TOK(TermOpVal, RetOp, RET); }
br { RET_TOK(TermOpVal, BrOp, BR); }
switch { RET_TOK(TermOpVal, SwitchOp, SWITCH); }
invoke { RET_TOK(TermOpVal, InvokeOp, INVOKE); }
unwind { return UNWIND; }
unreachable { RET_TOK(TermOpVal, UnreachableOp, UNREACHABLE); }
malloc { RET_TOK(MemOpVal, MallocOp, MALLOC); }
alloca { RET_TOK(MemOpVal, AllocaOp, ALLOCA); }
free { RET_TOK(MemOpVal, FreeOp, FREE); }
load { RET_TOK(MemOpVal, LoadOp, LOAD); }
store { RET_TOK(MemOpVal, StoreOp, STORE); }
getelementptr { RET_TOK(MemOpVal, GetElementPtrOp, GETELEMENTPTR); }
extractelement { RET_TOK(OtherOpVal, ExtractElementOp, EXTRACTELEMENT); }
insertelement { RET_TOK(OtherOpVal, InsertElementOp, INSERTELEMENT); }
shufflevector { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); }
{VarID} {
UnEscapeLexed(yytext+1);
Upgradelval.StrVal = strdup(yytext+1); // Skip %
return VAR_ID;
}
{Label} {
yytext[strlen(yytext)-1] = 0; // nuke colon
UnEscapeLexed(yytext);
Upgradelval.StrVal = strdup(yytext);
return LABELSTR;
}
{QuoteLabel} {
yytext[strlen(yytext)-2] = 0; // nuke colon, end quote
UnEscapeLexed(yytext+1);
Upgradelval.StrVal = strdup(yytext+1);
return LABELSTR;
}
{StringConstant} { // Note that we cannot unescape a string constant here! The
// string constant might contain a \00 which would not be
// understood by the string stuff. It is valid to make a
// [sbyte] c"Hello World\00" constant, for example.
//
yytext[strlen(yytext)-1] = 0; // nuke end quote
Upgradelval.StrVal = strdup(yytext+1); // Nuke start quote
return STRINGCONSTANT;
}
{PInteger} { Upgradelval.UInt64Val = atoull(yytext); return EUINT64VAL; }
{NInteger} {
uint64_t Val = atoull(yytext+1);
// +1: we have bigger negative range
if (Val > (uint64_t)INT64_MAX+1)
error("Constant too large for signed 64 bits!");
Upgradelval.SInt64Val = -Val;
return ESINT64VAL;
}
{HexIntConstant} {
Upgradelval.UInt64Val = HexIntToVal(yytext+3);
return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL;
}
{EPInteger} {
uint64_t Val = atoull(yytext+1);
if ((unsigned)Val != Val)
error("Invalid value number (too large)!");
Upgradelval.UIntVal = unsigned(Val);
return UINTVAL;
}
{ENInteger} {
uint64_t Val = atoull(yytext+2);
// +1: we have bigger negative range
if (Val > (uint64_t)INT32_MAX+1)
error("Constant too large for signed 32 bits!");
Upgradelval.SIntVal = (int)-Val;
return SINTVAL;
}
{FPConstant} { Upgradelval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
{HexFPConstant} { Upgradelval.FPVal = new APFloat(HexToFP(yytext));
return FPVAL;
}
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are
* done reading our input!
*/
yy_delete_buffer(YY_CURRENT_BUFFER);
return EOF;
}
[ \r\t\n] { /* Ignore whitespace */ }
. { return yytext[0]; }
%%