mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-21 11:48:31 +00:00
a54f2b87f7
This new class in a global context contain arch-specific knowledge in order to provide LLVM libraries, tools and projects with the ability to understand the architectures. For now, only FPU, ARCH and ARCH extensions on ARM are supported. Current behaviour it to parse from free-text to enum values and back, so that all users can share the same parser and codes. This simplifies a lot both the ASM/Obj streamers in the back-end (where this came from), and the front-end parsers for command line arguments (where this is going to be used next). The previous implementation, using .def/.h includes is deprecated due to its inflexibility to be built without the backend support and for being too cumbersome. As more architectures join this scheme, and as more features of such architectures are added (such as hardware features, type sizes, etc) into a full blown TargetDescription class, having a set of classes is the most sane implementation. The ultimate goal of this refactor both LLVM's and Clang's target description classes into one unique interface, so that we can de-duplicate and standardise the descriptions, as well as make it available for other front-ends, tools, etc. The FPU parsing for command line options in Clang has been converted to use this new library and a number of aliases were added for compatibility: * A bogus neon-vfpv3 alias (neon defaults to vfp3) * armv5/v6 * {fp4/fp5}-{sp/dp}-d16 Next steps: * Port Clang's ARCH/EXT parsing to use this library. * Create a TableGen back-end to generate this information. * Run this TableGen process regardless of which back-ends are built. * Expose more information and rename it to TargetDescription. * Continue re-factoring Clang to use as much of it as possible. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236900 91177308-0d34-0410-b5e6-96231b3b80d8
Design Of lib/System ==================== The software in this directory is designed to completely shield LLVM from any and all operating system specific functionality. It is not intended to be a complete operating system wrapper (such as ACE), but only to provide the functionality necessary to support LLVM. The software located here, of necessity, has very specific and stringent design rules. Violation of these rules means that cracks in the shield could form and the primary goal of the library is defeated. By consistently using this library, LLVM becomes more easily ported to new platforms since the only thing requiring porting is this library. Complete documentation for the library can be found in the file: llvm/docs/SystemLibrary.html or at this URL: http://llvm.org/docs/SystemLibrary.html While we recommend that you read the more detailed documentation, for the impatient, here's a high level summary of the library's requirements. 1. No system header files are to be exposed through the interface. 2. Std C++ and Std C header files are okay to be exposed through the interface. 3. No exposed system-specific functions. 4. No exposed system-specific data. 5. Data in lib/System classes must use only simple C++ intrinsic types. 6. Errors are handled by returning "true" and setting an optional std::string 7. Library must not throw any exceptions, period. 8. Interface functions must not have throw() specifications. 9. No duplicate function impementations are permitted within an operating system class. To accomplish these requirements, the library has numerous design criteria that must be satisfied. Here's a high level summary of the library's design criteria: 1. No unused functionality (only what LLVM needs) 2. High-Level Interfaces 3. Use Opaque Classes 4. Common Implementations 5. Multiple Implementations 6. Minimize Memory Allocation 7. No Virtual Methods