mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-28 15:33:14 +00:00
1b369e43d3
Thanks to that information we wouldn't lie on a register being live whereas it is not. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267622 91177308-0d34-0410-b5e6-96231b3b80d8
1276 lines
45 KiB
C++
1276 lines
45 KiB
C++
//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Collect the sequence of machine instructions for a basic block.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/ModuleSlotTracker.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "codegen"
|
|
|
|
MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
|
|
: BB(B), Number(-1), xParent(&MF) {
|
|
Insts.Parent = this;
|
|
}
|
|
|
|
MachineBasicBlock::~MachineBasicBlock() {
|
|
}
|
|
|
|
/// Return the MCSymbol for this basic block.
|
|
MCSymbol *MachineBasicBlock::getSymbol() const {
|
|
if (!CachedMCSymbol) {
|
|
const MachineFunction *MF = getParent();
|
|
MCContext &Ctx = MF->getContext();
|
|
const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
|
|
assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
|
|
CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
|
|
Twine(MF->getFunctionNumber()) +
|
|
"_" + Twine(getNumber()));
|
|
}
|
|
|
|
return CachedMCSymbol;
|
|
}
|
|
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
|
|
MBB.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
/// When an MBB is added to an MF, we need to update the parent pointer of the
|
|
/// MBB, the MBB numbering, and any instructions in the MBB to be on the right
|
|
/// operand list for registers.
|
|
///
|
|
/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
|
|
/// gets the next available unique MBB number. If it is removed from a
|
|
/// MachineFunction, it goes back to being #-1.
|
|
void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
|
|
MachineFunction &MF = *N->getParent();
|
|
N->Number = MF.addToMBBNumbering(N);
|
|
|
|
// Make sure the instructions have their operands in the reginfo lists.
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
for (MachineBasicBlock::instr_iterator
|
|
I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
|
|
I->AddRegOperandsToUseLists(RegInfo);
|
|
}
|
|
|
|
void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
|
|
N->getParent()->removeFromMBBNumbering(N->Number);
|
|
N->Number = -1;
|
|
}
|
|
|
|
/// When we add an instruction to a basic block list, we update its parent
|
|
/// pointer and add its operands from reg use/def lists if appropriate.
|
|
void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
|
|
assert(!N->getParent() && "machine instruction already in a basic block");
|
|
N->setParent(Parent);
|
|
|
|
// Add the instruction's register operands to their corresponding
|
|
// use/def lists.
|
|
MachineFunction *MF = Parent->getParent();
|
|
N->AddRegOperandsToUseLists(MF->getRegInfo());
|
|
}
|
|
|
|
/// When we remove an instruction from a basic block list, we update its parent
|
|
/// pointer and remove its operands from reg use/def lists if appropriate.
|
|
void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
|
|
assert(N->getParent() && "machine instruction not in a basic block");
|
|
|
|
// Remove from the use/def lists.
|
|
if (MachineFunction *MF = N->getParent()->getParent())
|
|
N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
|
|
|
|
N->setParent(nullptr);
|
|
}
|
|
|
|
/// When moving a range of instructions from one MBB list to another, we need to
|
|
/// update the parent pointers and the use/def lists.
|
|
void ilist_traits<MachineInstr>::
|
|
transferNodesFromList(ilist_traits<MachineInstr> &FromList,
|
|
ilist_iterator<MachineInstr> First,
|
|
ilist_iterator<MachineInstr> Last) {
|
|
assert(Parent->getParent() == FromList.Parent->getParent() &&
|
|
"MachineInstr parent mismatch!");
|
|
|
|
// Splice within the same MBB -> no change.
|
|
if (Parent == FromList.Parent) return;
|
|
|
|
// If splicing between two blocks within the same function, just update the
|
|
// parent pointers.
|
|
for (; First != Last; ++First)
|
|
First->setParent(Parent);
|
|
}
|
|
|
|
void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
|
|
assert(!MI->getParent() && "MI is still in a block!");
|
|
Parent->getParent()->DeleteMachineInstr(MI);
|
|
}
|
|
|
|
MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
|
|
instr_iterator I = instr_begin(), E = instr_end();
|
|
while (I != E && I->isPHI())
|
|
++I;
|
|
assert((I == E || !I->isInsideBundle()) &&
|
|
"First non-phi MI cannot be inside a bundle!");
|
|
return I;
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
|
|
iterator E = end();
|
|
while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
|
|
++I;
|
|
// FIXME: This needs to change if we wish to bundle labels / dbg_values
|
|
// inside the bundle.
|
|
assert((I == E || !I->isInsideBundle()) &&
|
|
"First non-phi / non-label instruction is inside a bundle!");
|
|
return I;
|
|
}
|
|
|
|
MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
|
|
iterator B = begin(), E = end(), I = E;
|
|
while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
|
|
; /*noop */
|
|
while (I != E && !I->isTerminator())
|
|
++I;
|
|
return I;
|
|
}
|
|
|
|
MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
|
|
instr_iterator B = instr_begin(), E = instr_end(), I = E;
|
|
while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
|
|
; /*noop */
|
|
while (I != E && !I->isTerminator())
|
|
++I;
|
|
return I;
|
|
}
|
|
|
|
MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
|
|
// Skip over begin-of-block dbg_value instructions.
|
|
iterator I = begin(), E = end();
|
|
while (I != E && I->isDebugValue())
|
|
++I;
|
|
return I;
|
|
}
|
|
|
|
MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
|
|
// Skip over end-of-block dbg_value instructions.
|
|
instr_iterator B = instr_begin(), I = instr_end();
|
|
while (I != B) {
|
|
--I;
|
|
// Return instruction that starts a bundle.
|
|
if (I->isDebugValue() || I->isInsideBundle())
|
|
continue;
|
|
return I;
|
|
}
|
|
// The block is all debug values.
|
|
return end();
|
|
}
|
|
|
|
bool MachineBasicBlock::hasEHPadSuccessor() const {
|
|
for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
|
|
if ((*I)->isEHPad())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
|
|
print(dbgs());
|
|
}
|
|
#endif
|
|
|
|
StringRef MachineBasicBlock::getName() const {
|
|
if (const BasicBlock *LBB = getBasicBlock())
|
|
return LBB->getName();
|
|
else
|
|
return "(null)";
|
|
}
|
|
|
|
/// Return a hopefully unique identifier for this block.
|
|
std::string MachineBasicBlock::getFullName() const {
|
|
std::string Name;
|
|
if (getParent())
|
|
Name = (getParent()->getName() + ":").str();
|
|
if (getBasicBlock())
|
|
Name += getBasicBlock()->getName();
|
|
else
|
|
Name += ("BB" + Twine(getNumber())).str();
|
|
return Name;
|
|
}
|
|
|
|
void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
|
|
const MachineFunction *MF = getParent();
|
|
if (!MF) {
|
|
OS << "Can't print out MachineBasicBlock because parent MachineFunction"
|
|
<< " is null\n";
|
|
return;
|
|
}
|
|
const Function *F = MF->getFunction();
|
|
const Module *M = F ? F->getParent() : nullptr;
|
|
ModuleSlotTracker MST(M);
|
|
print(OS, MST, Indexes);
|
|
}
|
|
|
|
void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
SlotIndexes *Indexes) const {
|
|
const MachineFunction *MF = getParent();
|
|
if (!MF) {
|
|
OS << "Can't print out MachineBasicBlock because parent MachineFunction"
|
|
<< " is null\n";
|
|
return;
|
|
}
|
|
|
|
if (Indexes)
|
|
OS << Indexes->getMBBStartIdx(this) << '\t';
|
|
|
|
OS << "BB#" << getNumber() << ": ";
|
|
|
|
const char *Comma = "";
|
|
if (const BasicBlock *LBB = getBasicBlock()) {
|
|
OS << Comma << "derived from LLVM BB ";
|
|
LBB->printAsOperand(OS, /*PrintType=*/false, MST);
|
|
Comma = ", ";
|
|
}
|
|
if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
|
|
if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
|
|
if (Alignment)
|
|
OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
|
|
<< " bytes)";
|
|
|
|
OS << '\n';
|
|
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
if (!livein_empty()) {
|
|
if (Indexes) OS << '\t';
|
|
OS << " Live Ins:";
|
|
for (const auto &LI : make_range(livein_begin(), livein_end())) {
|
|
OS << ' ' << PrintReg(LI.PhysReg, TRI);
|
|
if (LI.LaneMask != ~0u)
|
|
OS << ':' << PrintLaneMask(LI.LaneMask);
|
|
}
|
|
OS << '\n';
|
|
}
|
|
// Print the preds of this block according to the CFG.
|
|
if (!pred_empty()) {
|
|
if (Indexes) OS << '\t';
|
|
OS << " Predecessors according to CFG:";
|
|
for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
|
|
OS << " BB#" << (*PI)->getNumber();
|
|
OS << '\n';
|
|
}
|
|
|
|
for (auto &I : instrs()) {
|
|
if (Indexes) {
|
|
if (Indexes->hasIndex(I))
|
|
OS << Indexes->getInstructionIndex(I);
|
|
OS << '\t';
|
|
}
|
|
OS << '\t';
|
|
if (I.isInsideBundle())
|
|
OS << " * ";
|
|
I.print(OS, MST);
|
|
}
|
|
|
|
// Print the successors of this block according to the CFG.
|
|
if (!succ_empty()) {
|
|
if (Indexes) OS << '\t';
|
|
OS << " Successors according to CFG:";
|
|
for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
|
|
OS << " BB#" << (*SI)->getNumber();
|
|
if (!Probs.empty())
|
|
OS << '(' << *getProbabilityIterator(SI) << ')';
|
|
}
|
|
OS << '\n';
|
|
}
|
|
}
|
|
|
|
void MachineBasicBlock::printAsOperand(raw_ostream &OS,
|
|
bool /*PrintType*/) const {
|
|
OS << "BB#" << getNumber();
|
|
}
|
|
|
|
void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
|
|
LiveInVector::iterator I = std::find_if(
|
|
LiveIns.begin(), LiveIns.end(),
|
|
[Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
|
|
if (I == LiveIns.end())
|
|
return;
|
|
|
|
I->LaneMask &= ~LaneMask;
|
|
if (I->LaneMask == 0)
|
|
LiveIns.erase(I);
|
|
}
|
|
|
|
bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
|
|
livein_iterator I = std::find_if(
|
|
LiveIns.begin(), LiveIns.end(),
|
|
[Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
|
|
return I != livein_end() && (I->LaneMask & LaneMask) != 0;
|
|
}
|
|
|
|
void MachineBasicBlock::sortUniqueLiveIns() {
|
|
std::sort(LiveIns.begin(), LiveIns.end(),
|
|
[](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
|
|
return LI0.PhysReg < LI1.PhysReg;
|
|
});
|
|
// Liveins are sorted by physreg now we can merge their lanemasks.
|
|
LiveInVector::const_iterator I = LiveIns.begin();
|
|
LiveInVector::const_iterator J;
|
|
LiveInVector::iterator Out = LiveIns.begin();
|
|
for (; I != LiveIns.end(); ++Out, I = J) {
|
|
unsigned PhysReg = I->PhysReg;
|
|
LaneBitmask LaneMask = I->LaneMask;
|
|
for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
|
|
LaneMask |= J->LaneMask;
|
|
Out->PhysReg = PhysReg;
|
|
Out->LaneMask = LaneMask;
|
|
}
|
|
LiveIns.erase(Out, LiveIns.end());
|
|
}
|
|
|
|
unsigned
|
|
MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
|
|
assert(getParent() && "MBB must be inserted in function");
|
|
assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
|
|
assert(RC && "Register class is required");
|
|
assert((isEHPad() || this == &getParent()->front()) &&
|
|
"Only the entry block and landing pads can have physreg live ins");
|
|
|
|
bool LiveIn = isLiveIn(PhysReg);
|
|
iterator I = SkipPHIsAndLabels(begin()), E = end();
|
|
MachineRegisterInfo &MRI = getParent()->getRegInfo();
|
|
const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
|
|
|
|
// Look for an existing copy.
|
|
if (LiveIn)
|
|
for (;I != E && I->isCopy(); ++I)
|
|
if (I->getOperand(1).getReg() == PhysReg) {
|
|
unsigned VirtReg = I->getOperand(0).getReg();
|
|
if (!MRI.constrainRegClass(VirtReg, RC))
|
|
llvm_unreachable("Incompatible live-in register class.");
|
|
return VirtReg;
|
|
}
|
|
|
|
// No luck, create a virtual register.
|
|
unsigned VirtReg = MRI.createVirtualRegister(RC);
|
|
BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
|
|
.addReg(PhysReg, RegState::Kill);
|
|
if (!LiveIn)
|
|
addLiveIn(PhysReg);
|
|
return VirtReg;
|
|
}
|
|
|
|
void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
|
|
getParent()->splice(NewAfter->getIterator(), getIterator());
|
|
}
|
|
|
|
void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
|
|
getParent()->splice(++NewBefore->getIterator(), getIterator());
|
|
}
|
|
|
|
void MachineBasicBlock::updateTerminator() {
|
|
const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
|
|
// A block with no successors has no concerns with fall-through edges.
|
|
if (this->succ_empty()) return;
|
|
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
DebugLoc DL; // FIXME: this is nowhere
|
|
bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
|
|
(void) B;
|
|
assert(!B && "UpdateTerminators requires analyzable predecessors!");
|
|
if (Cond.empty()) {
|
|
if (TBB) {
|
|
// The block has an unconditional branch. If its successor is now
|
|
// its layout successor, delete the branch.
|
|
if (isLayoutSuccessor(TBB))
|
|
TII->RemoveBranch(*this);
|
|
} else {
|
|
// The block has an unconditional fallthrough. If its successor is not
|
|
// its layout successor, insert a branch. First we have to locate the
|
|
// only non-landing-pad successor, as that is the fallthrough block.
|
|
for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
|
|
if ((*SI)->isEHPad())
|
|
continue;
|
|
assert(!TBB && "Found more than one non-landing-pad successor!");
|
|
TBB = *SI;
|
|
}
|
|
|
|
// If there is no non-landing-pad successor, the block has no
|
|
// fall-through edges to be concerned with.
|
|
if (!TBB)
|
|
return;
|
|
|
|
// Finally update the unconditional successor to be reached via a branch
|
|
// if it would not be reached by fallthrough.
|
|
if (!isLayoutSuccessor(TBB))
|
|
TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
|
|
}
|
|
} else {
|
|
if (FBB) {
|
|
// The block has a non-fallthrough conditional branch. If one of its
|
|
// successors is its layout successor, rewrite it to a fallthrough
|
|
// conditional branch.
|
|
if (isLayoutSuccessor(TBB)) {
|
|
if (TII->ReverseBranchCondition(Cond))
|
|
return;
|
|
TII->RemoveBranch(*this);
|
|
TII->InsertBranch(*this, FBB, nullptr, Cond, DL);
|
|
} else if (isLayoutSuccessor(FBB)) {
|
|
TII->RemoveBranch(*this);
|
|
TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
|
|
}
|
|
} else {
|
|
// Walk through the successors and find the successor which is not
|
|
// a landing pad and is not the conditional branch destination (in TBB)
|
|
// as the fallthrough successor.
|
|
MachineBasicBlock *FallthroughBB = nullptr;
|
|
for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
|
|
if ((*SI)->isEHPad() || *SI == TBB)
|
|
continue;
|
|
assert(!FallthroughBB && "Found more than one fallthrough successor.");
|
|
FallthroughBB = *SI;
|
|
}
|
|
if (!FallthroughBB && canFallThrough()) {
|
|
// We fallthrough to the same basic block as the conditional jump
|
|
// targets. Remove the conditional jump, leaving unconditional
|
|
// fallthrough.
|
|
// FIXME: This does not seem like a reasonable pattern to support, but
|
|
// it has been seen in the wild coming out of degenerate ARM test cases.
|
|
TII->RemoveBranch(*this);
|
|
|
|
// Finally update the unconditional successor to be reached via a branch
|
|
// if it would not be reached by fallthrough.
|
|
if (!isLayoutSuccessor(TBB))
|
|
TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
|
|
return;
|
|
}
|
|
|
|
// The block has a fallthrough conditional branch.
|
|
if (isLayoutSuccessor(TBB)) {
|
|
if (TII->ReverseBranchCondition(Cond)) {
|
|
// We can't reverse the condition, add an unconditional branch.
|
|
Cond.clear();
|
|
TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
|
|
return;
|
|
}
|
|
TII->RemoveBranch(*this);
|
|
TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
|
|
} else if (!isLayoutSuccessor(FallthroughBB)) {
|
|
TII->RemoveBranch(*this);
|
|
TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineBasicBlock::validateSuccProbs() const {
|
|
#ifndef NDEBUG
|
|
int64_t Sum = 0;
|
|
for (auto Prob : Probs)
|
|
Sum += Prob.getNumerator();
|
|
// Due to precision issue, we assume that the sum of probabilities is one if
|
|
// the difference between the sum of their numerators and the denominator is
|
|
// no greater than the number of successors.
|
|
assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
|
|
Probs.size() &&
|
|
"The sum of successors's probabilities exceeds one.");
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
|
|
BranchProbability Prob) {
|
|
// Probability list is either empty (if successor list isn't empty, this means
|
|
// disabled optimization) or has the same size as successor list.
|
|
if (!(Probs.empty() && !Successors.empty()))
|
|
Probs.push_back(Prob);
|
|
Successors.push_back(Succ);
|
|
Succ->addPredecessor(this);
|
|
}
|
|
|
|
void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
|
|
// We need to make sure probability list is either empty or has the same size
|
|
// of successor list. When this function is called, we can safely delete all
|
|
// probability in the list.
|
|
Probs.clear();
|
|
Successors.push_back(Succ);
|
|
Succ->addPredecessor(this);
|
|
}
|
|
|
|
void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
|
|
bool NormalizeSuccProbs) {
|
|
succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ);
|
|
removeSuccessor(I, NormalizeSuccProbs);
|
|
}
|
|
|
|
MachineBasicBlock::succ_iterator
|
|
MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
|
|
assert(I != Successors.end() && "Not a current successor!");
|
|
|
|
// If probability list is empty it means we don't use it (disabled
|
|
// optimization).
|
|
if (!Probs.empty()) {
|
|
probability_iterator WI = getProbabilityIterator(I);
|
|
Probs.erase(WI);
|
|
if (NormalizeSuccProbs)
|
|
normalizeSuccProbs();
|
|
}
|
|
|
|
(*I)->removePredecessor(this);
|
|
return Successors.erase(I);
|
|
}
|
|
|
|
void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
|
|
MachineBasicBlock *New) {
|
|
if (Old == New)
|
|
return;
|
|
|
|
succ_iterator E = succ_end();
|
|
succ_iterator NewI = E;
|
|
succ_iterator OldI = E;
|
|
for (succ_iterator I = succ_begin(); I != E; ++I) {
|
|
if (*I == Old) {
|
|
OldI = I;
|
|
if (NewI != E)
|
|
break;
|
|
}
|
|
if (*I == New) {
|
|
NewI = I;
|
|
if (OldI != E)
|
|
break;
|
|
}
|
|
}
|
|
assert(OldI != E && "Old is not a successor of this block");
|
|
|
|
// If New isn't already a successor, let it take Old's place.
|
|
if (NewI == E) {
|
|
Old->removePredecessor(this);
|
|
New->addPredecessor(this);
|
|
*OldI = New;
|
|
return;
|
|
}
|
|
|
|
// New is already a successor.
|
|
// Update its probability instead of adding a duplicate edge.
|
|
if (!Probs.empty()) {
|
|
auto ProbIter = getProbabilityIterator(NewI);
|
|
if (!ProbIter->isUnknown())
|
|
*ProbIter += *getProbabilityIterator(OldI);
|
|
}
|
|
removeSuccessor(OldI);
|
|
}
|
|
|
|
void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
|
|
Predecessors.push_back(Pred);
|
|
}
|
|
|
|
void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
|
|
pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred);
|
|
assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
|
|
Predecessors.erase(I);
|
|
}
|
|
|
|
void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
|
|
if (this == FromMBB)
|
|
return;
|
|
|
|
while (!FromMBB->succ_empty()) {
|
|
MachineBasicBlock *Succ = *FromMBB->succ_begin();
|
|
|
|
// If probability list is empty it means we don't use it (disabled optimization).
|
|
if (!FromMBB->Probs.empty()) {
|
|
auto Prob = *FromMBB->Probs.begin();
|
|
addSuccessor(Succ, Prob);
|
|
} else
|
|
addSuccessorWithoutProb(Succ);
|
|
|
|
FromMBB->removeSuccessor(Succ);
|
|
}
|
|
}
|
|
|
|
void
|
|
MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
|
|
if (this == FromMBB)
|
|
return;
|
|
|
|
while (!FromMBB->succ_empty()) {
|
|
MachineBasicBlock *Succ = *FromMBB->succ_begin();
|
|
if (!FromMBB->Probs.empty()) {
|
|
auto Prob = *FromMBB->Probs.begin();
|
|
addSuccessor(Succ, Prob);
|
|
} else
|
|
addSuccessorWithoutProb(Succ);
|
|
FromMBB->removeSuccessor(Succ);
|
|
|
|
// Fix up any PHI nodes in the successor.
|
|
for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
|
|
ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
|
|
for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.getMBB() == FromMBB)
|
|
MO.setMBB(this);
|
|
}
|
|
}
|
|
normalizeSuccProbs();
|
|
}
|
|
|
|
bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
|
|
return std::find(pred_begin(), pred_end(), MBB) != pred_end();
|
|
}
|
|
|
|
bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
|
|
return std::find(succ_begin(), succ_end(), MBB) != succ_end();
|
|
}
|
|
|
|
bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
|
|
MachineFunction::const_iterator I(this);
|
|
return std::next(I) == MachineFunction::const_iterator(MBB);
|
|
}
|
|
|
|
bool MachineBasicBlock::canFallThrough() {
|
|
MachineFunction::iterator Fallthrough = getIterator();
|
|
++Fallthrough;
|
|
// If FallthroughBlock is off the end of the function, it can't fall through.
|
|
if (Fallthrough == getParent()->end())
|
|
return false;
|
|
|
|
// If FallthroughBlock isn't a successor, no fallthrough is possible.
|
|
if (!isSuccessor(&*Fallthrough))
|
|
return false;
|
|
|
|
// Analyze the branches, if any, at the end of the block.
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
|
|
if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
|
|
// If we couldn't analyze the branch, examine the last instruction.
|
|
// If the block doesn't end in a known control barrier, assume fallthrough
|
|
// is possible. The isPredicated check is needed because this code can be
|
|
// called during IfConversion, where an instruction which is normally a
|
|
// Barrier is predicated and thus no longer an actual control barrier.
|
|
return empty() || !back().isBarrier() || TII->isPredicated(back());
|
|
}
|
|
|
|
// If there is no branch, control always falls through.
|
|
if (!TBB) return true;
|
|
|
|
// If there is some explicit branch to the fallthrough block, it can obviously
|
|
// reach, even though the branch should get folded to fall through implicitly.
|
|
if (MachineFunction::iterator(TBB) == Fallthrough ||
|
|
MachineFunction::iterator(FBB) == Fallthrough)
|
|
return true;
|
|
|
|
// If it's an unconditional branch to some block not the fall through, it
|
|
// doesn't fall through.
|
|
if (Cond.empty()) return false;
|
|
|
|
// Otherwise, if it is conditional and has no explicit false block, it falls
|
|
// through.
|
|
return FBB == nullptr;
|
|
}
|
|
|
|
MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
|
|
Pass &P) {
|
|
if (!canSplitCriticalEdge(Succ))
|
|
return nullptr;
|
|
|
|
MachineFunction *MF = getParent();
|
|
DebugLoc DL; // FIXME: this is nowhere
|
|
|
|
MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
|
|
MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
|
|
DEBUG(dbgs() << "Splitting critical edge:"
|
|
" BB#" << getNumber()
|
|
<< " -- BB#" << NMBB->getNumber()
|
|
<< " -- BB#" << Succ->getNumber() << '\n');
|
|
|
|
LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
|
|
SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
|
|
if (LIS)
|
|
LIS->insertMBBInMaps(NMBB);
|
|
else if (Indexes)
|
|
Indexes->insertMBBInMaps(NMBB);
|
|
|
|
// On some targets like Mips, branches may kill virtual registers. Make sure
|
|
// that LiveVariables is properly updated after updateTerminator replaces the
|
|
// terminators.
|
|
LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
|
|
|
|
// Collect a list of virtual registers killed by the terminators.
|
|
SmallVector<unsigned, 4> KilledRegs;
|
|
if (LV)
|
|
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
|
|
I != E; ++I) {
|
|
MachineInstr *MI = &*I;
|
|
for (MachineInstr::mop_iterator OI = MI->operands_begin(),
|
|
OE = MI->operands_end(); OI != OE; ++OI) {
|
|
if (!OI->isReg() || OI->getReg() == 0 ||
|
|
!OI->isUse() || !OI->isKill() || OI->isUndef())
|
|
continue;
|
|
unsigned Reg = OI->getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
|
|
LV->getVarInfo(Reg).removeKill(MI)) {
|
|
KilledRegs.push_back(Reg);
|
|
DEBUG(dbgs() << "Removing terminator kill: " << *MI);
|
|
OI->setIsKill(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
SmallVector<unsigned, 4> UsedRegs;
|
|
if (LIS) {
|
|
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
|
|
I != E; ++I) {
|
|
MachineInstr *MI = &*I;
|
|
|
|
for (MachineInstr::mop_iterator OI = MI->operands_begin(),
|
|
OE = MI->operands_end(); OI != OE; ++OI) {
|
|
if (!OI->isReg() || OI->getReg() == 0)
|
|
continue;
|
|
|
|
unsigned Reg = OI->getReg();
|
|
if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
|
|
UsedRegs.push_back(Reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
ReplaceUsesOfBlockWith(Succ, NMBB);
|
|
|
|
// If updateTerminator() removes instructions, we need to remove them from
|
|
// SlotIndexes.
|
|
SmallVector<MachineInstr*, 4> Terminators;
|
|
if (Indexes) {
|
|
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
|
|
I != E; ++I)
|
|
Terminators.push_back(&*I);
|
|
}
|
|
|
|
updateTerminator();
|
|
|
|
if (Indexes) {
|
|
SmallVector<MachineInstr*, 4> NewTerminators;
|
|
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
|
|
I != E; ++I)
|
|
NewTerminators.push_back(&*I);
|
|
|
|
for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
|
|
E = Terminators.end(); I != E; ++I) {
|
|
if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
|
|
NewTerminators.end())
|
|
Indexes->removeMachineInstrFromMaps(**I);
|
|
}
|
|
}
|
|
|
|
// Insert unconditional "jump Succ" instruction in NMBB if necessary.
|
|
NMBB->addSuccessor(Succ);
|
|
if (!NMBB->isLayoutSuccessor(Succ)) {
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
|
|
TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL);
|
|
|
|
if (Indexes) {
|
|
for (MachineInstr &MI : NMBB->instrs()) {
|
|
// Some instructions may have been moved to NMBB by updateTerminator(),
|
|
// so we first remove any instruction that already has an index.
|
|
if (Indexes->hasIndex(MI))
|
|
Indexes->removeMachineInstrFromMaps(MI);
|
|
Indexes->insertMachineInstrInMaps(MI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fix PHI nodes in Succ so they refer to NMBB instead of this
|
|
for (MachineBasicBlock::instr_iterator
|
|
i = Succ->instr_begin(),e = Succ->instr_end();
|
|
i != e && i->isPHI(); ++i)
|
|
for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
|
|
if (i->getOperand(ni+1).getMBB() == this)
|
|
i->getOperand(ni+1).setMBB(NMBB);
|
|
|
|
// Inherit live-ins from the successor
|
|
for (const auto &LI : Succ->liveins())
|
|
NMBB->addLiveIn(LI);
|
|
|
|
// Update LiveVariables.
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
if (LV) {
|
|
// Restore kills of virtual registers that were killed by the terminators.
|
|
while (!KilledRegs.empty()) {
|
|
unsigned Reg = KilledRegs.pop_back_val();
|
|
for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
|
|
if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
|
|
continue;
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
LV->getVarInfo(Reg).Kills.push_back(&*I);
|
|
DEBUG(dbgs() << "Restored terminator kill: " << *I);
|
|
break;
|
|
}
|
|
}
|
|
// Update relevant live-through information.
|
|
LV->addNewBlock(NMBB, this, Succ);
|
|
}
|
|
|
|
if (LIS) {
|
|
// After splitting the edge and updating SlotIndexes, live intervals may be
|
|
// in one of two situations, depending on whether this block was the last in
|
|
// the function. If the original block was the last in the function, all
|
|
// live intervals will end prior to the beginning of the new split block. If
|
|
// the original block was not at the end of the function, all live intervals
|
|
// will extend to the end of the new split block.
|
|
|
|
bool isLastMBB =
|
|
std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
|
|
|
|
SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
|
|
SlotIndex PrevIndex = StartIndex.getPrevSlot();
|
|
SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
|
|
|
|
// Find the registers used from NMBB in PHIs in Succ.
|
|
SmallSet<unsigned, 8> PHISrcRegs;
|
|
for (MachineBasicBlock::instr_iterator
|
|
I = Succ->instr_begin(), E = Succ->instr_end();
|
|
I != E && I->isPHI(); ++I) {
|
|
for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
|
|
if (I->getOperand(ni+1).getMBB() == NMBB) {
|
|
MachineOperand &MO = I->getOperand(ni);
|
|
unsigned Reg = MO.getReg();
|
|
PHISrcRegs.insert(Reg);
|
|
if (MO.isUndef())
|
|
continue;
|
|
|
|
LiveInterval &LI = LIS->getInterval(Reg);
|
|
VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
|
|
assert(VNI &&
|
|
"PHI sources should be live out of their predecessors.");
|
|
LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
|
|
}
|
|
}
|
|
}
|
|
|
|
MachineRegisterInfo *MRI = &getParent()->getRegInfo();
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
|
|
if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
|
|
continue;
|
|
|
|
LiveInterval &LI = LIS->getInterval(Reg);
|
|
if (!LI.liveAt(PrevIndex))
|
|
continue;
|
|
|
|
bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
|
|
if (isLiveOut && isLastMBB) {
|
|
VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
|
|
assert(VNI && "LiveInterval should have VNInfo where it is live.");
|
|
LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
|
|
} else if (!isLiveOut && !isLastMBB) {
|
|
LI.removeSegment(StartIndex, EndIndex);
|
|
}
|
|
}
|
|
|
|
// Update all intervals for registers whose uses may have been modified by
|
|
// updateTerminator().
|
|
LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
|
|
}
|
|
|
|
if (MachineDominatorTree *MDT =
|
|
P.getAnalysisIfAvailable<MachineDominatorTree>())
|
|
MDT->recordSplitCriticalEdge(this, Succ, NMBB);
|
|
|
|
if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
|
|
if (MachineLoop *TIL = MLI->getLoopFor(this)) {
|
|
// If one or the other blocks were not in a loop, the new block is not
|
|
// either, and thus LI doesn't need to be updated.
|
|
if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
|
|
if (TIL == DestLoop) {
|
|
// Both in the same loop, the NMBB joins loop.
|
|
DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
|
|
} else if (TIL->contains(DestLoop)) {
|
|
// Edge from an outer loop to an inner loop. Add to the outer loop.
|
|
TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
|
|
} else if (DestLoop->contains(TIL)) {
|
|
// Edge from an inner loop to an outer loop. Add to the outer loop.
|
|
DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
|
|
} else {
|
|
// Edge from two loops with no containment relation. Because these
|
|
// are natural loops, we know that the destination block must be the
|
|
// header of its loop (adding a branch into a loop elsewhere would
|
|
// create an irreducible loop).
|
|
assert(DestLoop->getHeader() == Succ &&
|
|
"Should not create irreducible loops!");
|
|
if (MachineLoop *P = DestLoop->getParentLoop())
|
|
P->addBasicBlockToLoop(NMBB, MLI->getBase());
|
|
}
|
|
}
|
|
}
|
|
|
|
return NMBB;
|
|
}
|
|
|
|
bool MachineBasicBlock::canSplitCriticalEdge(
|
|
const MachineBasicBlock *Succ) const {
|
|
// Splitting the critical edge to a landing pad block is non-trivial. Don't do
|
|
// it in this generic function.
|
|
if (Succ->isEHPad())
|
|
return false;
|
|
|
|
const MachineFunction *MF = getParent();
|
|
|
|
// Performance might be harmed on HW that implements branching using exec mask
|
|
// where both sides of the branches are always executed.
|
|
if (MF->getTarget().requiresStructuredCFG())
|
|
return false;
|
|
|
|
// We may need to update this's terminator, but we can't do that if
|
|
// AnalyzeBranch fails. If this uses a jump table, we won't touch it.
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
// AnalyzeBanch should modify this, since we did not allow modification.
|
|
if (TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
|
|
/*AllowModify*/ false))
|
|
return false;
|
|
|
|
// Avoid bugpoint weirdness: A block may end with a conditional branch but
|
|
// jumps to the same MBB is either case. We have duplicate CFG edges in that
|
|
// case that we can't handle. Since this never happens in properly optimized
|
|
// code, just skip those edges.
|
|
if (TBB && TBB == FBB) {
|
|
DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
|
|
<< getNumber() << '\n');
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
|
|
/// neighboring instructions so the bundle won't be broken by removing MI.
|
|
static void unbundleSingleMI(MachineInstr *MI) {
|
|
// Removing the first instruction in a bundle.
|
|
if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
|
|
MI->unbundleFromSucc();
|
|
// Removing the last instruction in a bundle.
|
|
if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
|
|
MI->unbundleFromPred();
|
|
// If MI is not bundled, or if it is internal to a bundle, the neighbor flags
|
|
// are already fine.
|
|
}
|
|
|
|
MachineBasicBlock::instr_iterator
|
|
MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
|
|
unbundleSingleMI(&*I);
|
|
return Insts.erase(I);
|
|
}
|
|
|
|
MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
|
|
unbundleSingleMI(MI);
|
|
MI->clearFlag(MachineInstr::BundledPred);
|
|
MI->clearFlag(MachineInstr::BundledSucc);
|
|
return Insts.remove(MI);
|
|
}
|
|
|
|
MachineBasicBlock::instr_iterator
|
|
MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
|
|
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
|
|
"Cannot insert instruction with bundle flags");
|
|
// Set the bundle flags when inserting inside a bundle.
|
|
if (I != instr_end() && I->isBundledWithPred()) {
|
|
MI->setFlag(MachineInstr::BundledPred);
|
|
MI->setFlag(MachineInstr::BundledSucc);
|
|
}
|
|
return Insts.insert(I, MI);
|
|
}
|
|
|
|
/// This method unlinks 'this' from the containing function, and returns it, but
|
|
/// does not delete it.
|
|
MachineBasicBlock *MachineBasicBlock::removeFromParent() {
|
|
assert(getParent() && "Not embedded in a function!");
|
|
getParent()->remove(this);
|
|
return this;
|
|
}
|
|
|
|
/// This method unlinks 'this' from the containing function, and deletes it.
|
|
void MachineBasicBlock::eraseFromParent() {
|
|
assert(getParent() && "Not embedded in a function!");
|
|
getParent()->erase(this);
|
|
}
|
|
|
|
/// Given a machine basic block that branched to 'Old', change the code and CFG
|
|
/// so that it branches to 'New' instead.
|
|
void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
|
|
MachineBasicBlock *New) {
|
|
assert(Old != New && "Cannot replace self with self!");
|
|
|
|
MachineBasicBlock::instr_iterator I = instr_end();
|
|
while (I != instr_begin()) {
|
|
--I;
|
|
if (!I->isTerminator()) break;
|
|
|
|
// Scan the operands of this machine instruction, replacing any uses of Old
|
|
// with New.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
if (I->getOperand(i).isMBB() &&
|
|
I->getOperand(i).getMBB() == Old)
|
|
I->getOperand(i).setMBB(New);
|
|
}
|
|
|
|
// Update the successor information.
|
|
replaceSuccessor(Old, New);
|
|
}
|
|
|
|
/// Various pieces of code can cause excess edges in the CFG to be inserted. If
|
|
/// we have proven that MBB can only branch to DestA and DestB, remove any other
|
|
/// MBB successors from the CFG. DestA and DestB can be null.
|
|
///
|
|
/// Besides DestA and DestB, retain other edges leading to LandingPads
|
|
/// (currently there can be only one; we don't check or require that here).
|
|
/// Note it is possible that DestA and/or DestB are LandingPads.
|
|
bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
|
|
MachineBasicBlock *DestB,
|
|
bool IsCond) {
|
|
// The values of DestA and DestB frequently come from a call to the
|
|
// 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
|
|
// values from there.
|
|
//
|
|
// 1. If both DestA and DestB are null, then the block ends with no branches
|
|
// (it falls through to its successor).
|
|
// 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
|
|
// with only an unconditional branch.
|
|
// 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
|
|
// with a conditional branch that falls through to a successor (DestB).
|
|
// 4. If DestA and DestB is set and IsCond is true, then the block ends with a
|
|
// conditional branch followed by an unconditional branch. DestA is the
|
|
// 'true' destination and DestB is the 'false' destination.
|
|
|
|
bool Changed = false;
|
|
|
|
MachineFunction::iterator FallThru = std::next(getIterator());
|
|
|
|
if (!DestA && !DestB) {
|
|
// Block falls through to successor.
|
|
DestA = &*FallThru;
|
|
DestB = &*FallThru;
|
|
} else if (DestA && !DestB) {
|
|
if (IsCond)
|
|
// Block ends in conditional jump that falls through to successor.
|
|
DestB = &*FallThru;
|
|
} else {
|
|
assert(DestA && DestB && IsCond &&
|
|
"CFG in a bad state. Cannot correct CFG edges");
|
|
}
|
|
|
|
// Remove superfluous edges. I.e., those which aren't destinations of this
|
|
// basic block, duplicate edges, or landing pads.
|
|
SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
|
|
MachineBasicBlock::succ_iterator SI = succ_begin();
|
|
while (SI != succ_end()) {
|
|
const MachineBasicBlock *MBB = *SI;
|
|
if (!SeenMBBs.insert(MBB).second ||
|
|
(MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
|
|
// This is a superfluous edge, remove it.
|
|
SI = removeSuccessor(SI);
|
|
Changed = true;
|
|
} else {
|
|
++SI;
|
|
}
|
|
}
|
|
|
|
if (Changed)
|
|
normalizeSuccProbs();
|
|
return Changed;
|
|
}
|
|
|
|
/// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
|
|
/// instructions. Return UnknownLoc if there is none.
|
|
DebugLoc
|
|
MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
|
|
DebugLoc DL;
|
|
instr_iterator E = instr_end();
|
|
if (MBBI == E)
|
|
return DL;
|
|
|
|
// Skip debug declarations, we don't want a DebugLoc from them.
|
|
while (MBBI != E && MBBI->isDebugValue())
|
|
MBBI++;
|
|
if (MBBI != E)
|
|
DL = MBBI->getDebugLoc();
|
|
return DL;
|
|
}
|
|
|
|
/// Return probability of the edge from this block to MBB.
|
|
BranchProbability
|
|
MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
|
|
if (Probs.empty())
|
|
return BranchProbability(1, succ_size());
|
|
|
|
const auto &Prob = *getProbabilityIterator(Succ);
|
|
if (Prob.isUnknown()) {
|
|
// For unknown probabilities, collect the sum of all known ones, and evenly
|
|
// ditribute the complemental of the sum to each unknown probability.
|
|
unsigned KnownProbNum = 0;
|
|
auto Sum = BranchProbability::getZero();
|
|
for (auto &P : Probs) {
|
|
if (!P.isUnknown()) {
|
|
Sum += P;
|
|
KnownProbNum++;
|
|
}
|
|
}
|
|
return Sum.getCompl() / (Probs.size() - KnownProbNum);
|
|
} else
|
|
return Prob;
|
|
}
|
|
|
|
/// Set successor probability of a given iterator.
|
|
void MachineBasicBlock::setSuccProbability(succ_iterator I,
|
|
BranchProbability Prob) {
|
|
assert(!Prob.isUnknown());
|
|
if (Probs.empty())
|
|
return;
|
|
*getProbabilityIterator(I) = Prob;
|
|
}
|
|
|
|
/// Return probability iterator corresonding to the I successor iterator
|
|
MachineBasicBlock::const_probability_iterator
|
|
MachineBasicBlock::getProbabilityIterator(
|
|
MachineBasicBlock::const_succ_iterator I) const {
|
|
assert(Probs.size() == Successors.size() && "Async probability list!");
|
|
const size_t index = std::distance(Successors.begin(), I);
|
|
assert(index < Probs.size() && "Not a current successor!");
|
|
return Probs.begin() + index;
|
|
}
|
|
|
|
/// Return probability iterator corresonding to the I successor iterator.
|
|
MachineBasicBlock::probability_iterator
|
|
MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
|
|
assert(Probs.size() == Successors.size() && "Async probability list!");
|
|
const size_t index = std::distance(Successors.begin(), I);
|
|
assert(index < Probs.size() && "Not a current successor!");
|
|
return Probs.begin() + index;
|
|
}
|
|
|
|
/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
|
|
/// as of just before "MI".
|
|
///
|
|
/// Search is localised to a neighborhood of
|
|
/// Neighborhood instructions before (searching for defs or kills) and N
|
|
/// instructions after (searching just for defs) MI.
|
|
MachineBasicBlock::LivenessQueryResult
|
|
MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
|
|
unsigned Reg, const_iterator Before,
|
|
unsigned Neighborhood) const {
|
|
unsigned N = Neighborhood;
|
|
|
|
// Start by searching backwards from Before, looking for kills, reads or defs.
|
|
const_iterator I(Before);
|
|
// If this is the first insn in the block, don't search backwards.
|
|
if (I != begin()) {
|
|
do {
|
|
--I;
|
|
|
|
MachineOperandIteratorBase::PhysRegInfo Info =
|
|
ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
|
|
|
|
// Defs happen after uses so they take precedence if both are present.
|
|
|
|
// Register is dead after a dead def of the full register.
|
|
if (Info.DeadDef)
|
|
return LQR_Dead;
|
|
// Register is (at least partially) live after a def.
|
|
if (Info.Defined) {
|
|
if (!Info.PartialDeadDef)
|
|
return LQR_Live;
|
|
// As soon as we saw a partial definition (dead or not),
|
|
// we cannot tell if the value is partial live without
|
|
// tracking the lanemasks. We are not going to do this,
|
|
// so fall back on the remaining of the analysis.
|
|
break;
|
|
}
|
|
// Register is dead after a full kill or clobber and no def.
|
|
if (Info.Killed || Info.Clobbered)
|
|
return LQR_Dead;
|
|
// Register must be live if we read it.
|
|
if (Info.Read)
|
|
return LQR_Live;
|
|
} while (I != begin() && --N > 0);
|
|
}
|
|
|
|
// Did we get to the start of the block?
|
|
if (I == begin()) {
|
|
// If so, the register's state is definitely defined by the live-in state.
|
|
for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
|
|
++RAI)
|
|
if (isLiveIn(*RAI))
|
|
return LQR_Live;
|
|
|
|
return LQR_Dead;
|
|
}
|
|
|
|
N = Neighborhood;
|
|
|
|
// Try searching forwards from Before, looking for reads or defs.
|
|
I = const_iterator(Before);
|
|
// If this is the last insn in the block, don't search forwards.
|
|
if (I != end()) {
|
|
for (++I; I != end() && N > 0; ++I, --N) {
|
|
MachineOperandIteratorBase::PhysRegInfo Info =
|
|
ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
|
|
|
|
// Register is live when we read it here.
|
|
if (Info.Read)
|
|
return LQR_Live;
|
|
// Register is dead if we can fully overwrite or clobber it here.
|
|
if (Info.FullyDefined || Info.Clobbered)
|
|
return LQR_Dead;
|
|
}
|
|
}
|
|
|
|
// At this point we have no idea of the liveness of the register.
|
|
return LQR_Unknown;
|
|
}
|
|
|
|
const uint32_t *
|
|
MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
|
|
// EH funclet entry does not preserve any registers.
|
|
return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
|
|
}
|
|
|
|
const uint32_t *
|
|
MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
|
|
// If we see a return block with successors, this must be a funclet return,
|
|
// which does not preserve any registers. If there are no successors, we don't
|
|
// care what kind of return it is, putting a mask after it is a no-op.
|
|
return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
|
|
}
|