mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-10 06:00:30 +00:00
9561506e34
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241284 91177308-0d34-0410-b5e6-96231b3b80d8
1358 lines
46 KiB
C++
1358 lines
46 KiB
C++
//===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements ELF object file writer information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MC/MCELFObjectWriter.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/MC/MCAsmBackend.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAsmLayout.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCFixupKindInfo.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCSymbolELF.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/MC/StringTableBuilder.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "reloc-info"
|
|
|
|
namespace {
|
|
|
|
typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
|
|
|
|
class ELFObjectWriter;
|
|
|
|
class SymbolTableWriter {
|
|
ELFObjectWriter &EWriter;
|
|
bool Is64Bit;
|
|
|
|
// indexes we are going to write to .symtab_shndx.
|
|
std::vector<uint32_t> ShndxIndexes;
|
|
|
|
// The numbel of symbols written so far.
|
|
unsigned NumWritten;
|
|
|
|
void createSymtabShndx();
|
|
|
|
template <typename T> void write(T Value);
|
|
|
|
public:
|
|
SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
|
|
|
|
void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
|
|
uint8_t other, uint32_t shndx, bool Reserved);
|
|
|
|
ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
|
|
};
|
|
|
|
class ELFObjectWriter : public MCObjectWriter {
|
|
static bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind);
|
|
static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
|
|
static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
|
|
bool Used, bool Renamed);
|
|
|
|
/// Helper struct for containing some precomputed information on symbols.
|
|
struct ELFSymbolData {
|
|
const MCSymbolELF *Symbol;
|
|
uint32_t SectionIndex;
|
|
StringRef Name;
|
|
|
|
// Support lexicographic sorting.
|
|
bool operator<(const ELFSymbolData &RHS) const {
|
|
unsigned LHSType = Symbol->getType();
|
|
unsigned RHSType = RHS.Symbol->getType();
|
|
if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
|
|
return false;
|
|
if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
|
|
return true;
|
|
if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
|
|
return SectionIndex < RHS.SectionIndex;
|
|
return Name < RHS.Name;
|
|
}
|
|
};
|
|
|
|
/// The target specific ELF writer instance.
|
|
std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
|
|
|
|
DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
|
|
|
|
llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>>
|
|
Relocations;
|
|
|
|
/// @}
|
|
/// @name Symbol Table Data
|
|
/// @{
|
|
|
|
StringTableBuilder StrTabBuilder;
|
|
|
|
/// @}
|
|
|
|
// This holds the symbol table index of the last local symbol.
|
|
unsigned LastLocalSymbolIndex;
|
|
// This holds the .strtab section index.
|
|
unsigned StringTableIndex;
|
|
// This holds the .symtab section index.
|
|
unsigned SymbolTableIndex;
|
|
|
|
// Sections in the order they are to be output in the section table.
|
|
std::vector<const MCSectionELF *> SectionTable;
|
|
unsigned addToSectionTable(const MCSectionELF *Sec);
|
|
|
|
// TargetObjectWriter wrappers.
|
|
bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
|
|
bool hasRelocationAddend() const {
|
|
return TargetObjectWriter->hasRelocationAddend();
|
|
}
|
|
unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
|
|
bool IsPCRel) const {
|
|
return TargetObjectWriter->GetRelocType(Target, Fixup, IsPCRel);
|
|
}
|
|
|
|
void align(unsigned Alignment);
|
|
|
|
public:
|
|
ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
|
|
bool IsLittleEndian)
|
|
: MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
|
|
|
|
void reset() override {
|
|
Renames.clear();
|
|
Relocations.clear();
|
|
StrTabBuilder.clear();
|
|
SectionTable.clear();
|
|
MCObjectWriter::reset();
|
|
}
|
|
|
|
~ELFObjectWriter() override;
|
|
|
|
void WriteWord(uint64_t W) {
|
|
if (is64Bit())
|
|
write64(W);
|
|
else
|
|
write32(W);
|
|
}
|
|
|
|
template <typename T> void write(T Val) {
|
|
if (IsLittleEndian)
|
|
support::endian::Writer<support::little>(OS).write(Val);
|
|
else
|
|
support::endian::Writer<support::big>(OS).write(Val);
|
|
}
|
|
|
|
void writeHeader(const MCAssembler &Asm);
|
|
|
|
void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
|
|
ELFSymbolData &MSD, const MCAsmLayout &Layout);
|
|
|
|
// Start and end offset of each section
|
|
typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>
|
|
SectionOffsetsTy;
|
|
|
|
bool shouldRelocateWithSymbol(const MCAssembler &Asm,
|
|
const MCSymbolRefExpr *RefA,
|
|
const MCSymbol *Sym, uint64_t C,
|
|
unsigned Type) const;
|
|
|
|
void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
|
|
const MCFragment *Fragment, const MCFixup &Fixup,
|
|
MCValue Target, bool &IsPCRel,
|
|
uint64_t &FixedValue) override;
|
|
|
|
// Map from a signature symbol to the group section index
|
|
typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy;
|
|
|
|
/// Compute the symbol table data
|
|
///
|
|
/// \param Asm - The assembler.
|
|
/// \param SectionIndexMap - Maps a section to its index.
|
|
/// \param RevGroupMap - Maps a signature symbol to the group section.
|
|
void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
|
|
const SectionIndexMapTy &SectionIndexMap,
|
|
const RevGroupMapTy &RevGroupMap,
|
|
SectionOffsetsTy &SectionOffsets);
|
|
|
|
MCSectionELF *createRelocationSection(MCContext &Ctx,
|
|
const MCSectionELF &Sec);
|
|
|
|
const MCSectionELF *createStringTable(MCContext &Ctx);
|
|
|
|
void executePostLayoutBinding(MCAssembler &Asm,
|
|
const MCAsmLayout &Layout) override;
|
|
|
|
void writeSectionHeader(const MCAsmLayout &Layout,
|
|
const SectionIndexMapTy &SectionIndexMap,
|
|
const SectionOffsetsTy &SectionOffsets);
|
|
|
|
void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
|
|
const MCAsmLayout &Layout);
|
|
|
|
void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
|
|
uint64_t Address, uint64_t Offset, uint64_t Size,
|
|
uint32_t Link, uint32_t Info, uint64_t Alignment,
|
|
uint64_t EntrySize);
|
|
|
|
void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
|
|
|
|
bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
|
|
const MCSymbol &SymA,
|
|
const MCFragment &FB,
|
|
bool InSet,
|
|
bool IsPCRel) const override;
|
|
|
|
bool isWeak(const MCSymbol &Sym) const override;
|
|
|
|
void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
|
|
void writeSection(const SectionIndexMapTy &SectionIndexMap,
|
|
uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
|
|
const MCSectionELF &Section);
|
|
};
|
|
}
|
|
|
|
void ELFObjectWriter::align(unsigned Alignment) {
|
|
uint64_t Padding = OffsetToAlignment(OS.tell(), Alignment);
|
|
WriteZeros(Padding);
|
|
}
|
|
|
|
unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
|
|
SectionTable.push_back(Sec);
|
|
StrTabBuilder.add(Sec->getSectionName());
|
|
return SectionTable.size();
|
|
}
|
|
|
|
void SymbolTableWriter::createSymtabShndx() {
|
|
if (!ShndxIndexes.empty())
|
|
return;
|
|
|
|
ShndxIndexes.resize(NumWritten);
|
|
}
|
|
|
|
template <typename T> void SymbolTableWriter::write(T Value) {
|
|
EWriter.write(Value);
|
|
}
|
|
|
|
SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
|
|
: EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
|
|
|
|
void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
|
|
uint64_t size, uint8_t other,
|
|
uint32_t shndx, bool Reserved) {
|
|
bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
|
|
|
|
if (LargeIndex)
|
|
createSymtabShndx();
|
|
|
|
if (!ShndxIndexes.empty()) {
|
|
if (LargeIndex)
|
|
ShndxIndexes.push_back(shndx);
|
|
else
|
|
ShndxIndexes.push_back(0);
|
|
}
|
|
|
|
uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
|
|
|
|
if (Is64Bit) {
|
|
write(name); // st_name
|
|
write(info); // st_info
|
|
write(other); // st_other
|
|
write(Index); // st_shndx
|
|
write(value); // st_value
|
|
write(size); // st_size
|
|
} else {
|
|
write(name); // st_name
|
|
write(uint32_t(value)); // st_value
|
|
write(uint32_t(size)); // st_size
|
|
write(info); // st_info
|
|
write(other); // st_other
|
|
write(Index); // st_shndx
|
|
}
|
|
|
|
++NumWritten;
|
|
}
|
|
|
|
bool ELFObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) {
|
|
const MCFixupKindInfo &FKI =
|
|
Asm.getBackend().getFixupKindInfo((MCFixupKind) Kind);
|
|
|
|
return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel;
|
|
}
|
|
|
|
ELFObjectWriter::~ELFObjectWriter()
|
|
{}
|
|
|
|
// Emit the ELF header.
|
|
void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
|
|
// ELF Header
|
|
// ----------
|
|
//
|
|
// Note
|
|
// ----
|
|
// emitWord method behaves differently for ELF32 and ELF64, writing
|
|
// 4 bytes in the former and 8 in the latter.
|
|
|
|
writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
|
|
|
|
write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
|
|
|
|
// e_ident[EI_DATA]
|
|
write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
|
|
|
|
write8(ELF::EV_CURRENT); // e_ident[EI_VERSION]
|
|
// e_ident[EI_OSABI]
|
|
write8(TargetObjectWriter->getOSABI());
|
|
write8(0); // e_ident[EI_ABIVERSION]
|
|
|
|
WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
|
|
|
|
write16(ELF::ET_REL); // e_type
|
|
|
|
write16(TargetObjectWriter->getEMachine()); // e_machine = target
|
|
|
|
write32(ELF::EV_CURRENT); // e_version
|
|
WriteWord(0); // e_entry, no entry point in .o file
|
|
WriteWord(0); // e_phoff, no program header for .o
|
|
WriteWord(0); // e_shoff = sec hdr table off in bytes
|
|
|
|
// e_flags = whatever the target wants
|
|
write32(Asm.getELFHeaderEFlags());
|
|
|
|
// e_ehsize = ELF header size
|
|
write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
|
|
|
|
write16(0); // e_phentsize = prog header entry size
|
|
write16(0); // e_phnum = # prog header entries = 0
|
|
|
|
// e_shentsize = Section header entry size
|
|
write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
|
|
|
|
// e_shnum = # of section header ents
|
|
write16(0);
|
|
|
|
// e_shstrndx = Section # of '.shstrtab'
|
|
assert(StringTableIndex < ELF::SHN_LORESERVE);
|
|
write16(StringTableIndex);
|
|
}
|
|
|
|
uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
|
|
const MCAsmLayout &Layout) {
|
|
if (Sym.isCommon() && Sym.isExternal())
|
|
return Sym.getCommonAlignment();
|
|
|
|
uint64_t Res;
|
|
if (!Layout.getSymbolOffset(Sym, Res))
|
|
return 0;
|
|
|
|
if (Layout.getAssembler().isThumbFunc(&Sym))
|
|
Res |= 1;
|
|
|
|
return Res;
|
|
}
|
|
|
|
void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
|
|
const MCAsmLayout &Layout) {
|
|
// The presence of symbol versions causes undefined symbols and
|
|
// versions declared with @@@ to be renamed.
|
|
|
|
for (const MCSymbol &A : Asm.symbols()) {
|
|
const auto &Alias = cast<MCSymbolELF>(A);
|
|
// Not an alias.
|
|
if (!Alias.isVariable())
|
|
continue;
|
|
auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
|
|
if (!Ref)
|
|
continue;
|
|
const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
|
|
|
|
StringRef AliasName = Alias.getName();
|
|
size_t Pos = AliasName.find('@');
|
|
if (Pos == StringRef::npos)
|
|
continue;
|
|
|
|
// Aliases defined with .symvar copy the binding from the symbol they alias.
|
|
// This is the first place we are able to copy this information.
|
|
Alias.setExternal(Symbol.isExternal());
|
|
Alias.setBinding(Symbol.getBinding());
|
|
|
|
StringRef Rest = AliasName.substr(Pos);
|
|
if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
|
|
continue;
|
|
|
|
// FIXME: produce a better error message.
|
|
if (Symbol.isUndefined() && Rest.startswith("@@") &&
|
|
!Rest.startswith("@@@"))
|
|
report_fatal_error("A @@ version cannot be undefined");
|
|
|
|
Renames.insert(std::make_pair(&Symbol, &Alias));
|
|
}
|
|
}
|
|
|
|
static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
|
|
uint8_t Type = newType;
|
|
|
|
// Propagation rules:
|
|
// IFUNC > FUNC > OBJECT > NOTYPE
|
|
// TLS_OBJECT > OBJECT > NOTYPE
|
|
//
|
|
// dont let the new type degrade the old type
|
|
switch (origType) {
|
|
default:
|
|
break;
|
|
case ELF::STT_GNU_IFUNC:
|
|
if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
|
|
Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
|
|
Type = ELF::STT_GNU_IFUNC;
|
|
break;
|
|
case ELF::STT_FUNC:
|
|
if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
|
|
Type == ELF::STT_TLS)
|
|
Type = ELF::STT_FUNC;
|
|
break;
|
|
case ELF::STT_OBJECT:
|
|
if (Type == ELF::STT_NOTYPE)
|
|
Type = ELF::STT_OBJECT;
|
|
break;
|
|
case ELF::STT_TLS:
|
|
if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
|
|
Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
|
|
Type = ELF::STT_TLS;
|
|
break;
|
|
}
|
|
|
|
return Type;
|
|
}
|
|
|
|
void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
|
|
uint32_t StringIndex, ELFSymbolData &MSD,
|
|
const MCAsmLayout &Layout) {
|
|
const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
|
|
assert((!Symbol.getFragment() ||
|
|
(Symbol.getFragment()->getParent() == &Symbol.getSection())) &&
|
|
"The symbol's section doesn't match the fragment's symbol");
|
|
const MCSymbolELF *Base =
|
|
cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
|
|
|
|
// This has to be in sync with when computeSymbolTable uses SHN_ABS or
|
|
// SHN_COMMON.
|
|
bool IsReserved = !Base || Symbol.isCommon();
|
|
|
|
// Binding and Type share the same byte as upper and lower nibbles
|
|
uint8_t Binding = Symbol.getBinding();
|
|
uint8_t Type = Symbol.getType();
|
|
if (Base) {
|
|
Type = mergeTypeForSet(Type, Base->getType());
|
|
}
|
|
uint8_t Info = (Binding << 4) | Type;
|
|
|
|
// Other and Visibility share the same byte with Visibility using the lower
|
|
// 2 bits
|
|
uint8_t Visibility = Symbol.getVisibility();
|
|
uint8_t Other = Symbol.getOther() | Visibility;
|
|
|
|
uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
|
|
uint64_t Size = 0;
|
|
|
|
const MCExpr *ESize = MSD.Symbol->getSize();
|
|
if (!ESize && Base)
|
|
ESize = Base->getSize();
|
|
|
|
if (ESize) {
|
|
int64_t Res;
|
|
if (!ESize->evaluateKnownAbsolute(Res, Layout))
|
|
report_fatal_error("Size expression must be absolute.");
|
|
Size = Res;
|
|
}
|
|
|
|
// Write out the symbol table entry
|
|
Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
|
|
IsReserved);
|
|
}
|
|
|
|
// It is always valid to create a relocation with a symbol. It is preferable
|
|
// to use a relocation with a section if that is possible. Using the section
|
|
// allows us to omit some local symbols from the symbol table.
|
|
bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
|
|
const MCSymbolRefExpr *RefA,
|
|
const MCSymbol *S, uint64_t C,
|
|
unsigned Type) const {
|
|
const auto *Sym = cast_or_null<MCSymbolELF>(S);
|
|
// A PCRel relocation to an absolute value has no symbol (or section). We
|
|
// represent that with a relocation to a null section.
|
|
if (!RefA)
|
|
return false;
|
|
|
|
MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
|
|
switch (Kind) {
|
|
default:
|
|
break;
|
|
// The .odp creation emits a relocation against the symbol ".TOC." which
|
|
// create a R_PPC64_TOC relocation. However the relocation symbol name
|
|
// in final object creation should be NULL, since the symbol does not
|
|
// really exist, it is just the reference to TOC base for the current
|
|
// object file. Since the symbol is undefined, returning false results
|
|
// in a relocation with a null section which is the desired result.
|
|
case MCSymbolRefExpr::VK_PPC_TOCBASE:
|
|
return false;
|
|
|
|
// These VariantKind cause the relocation to refer to something other than
|
|
// the symbol itself, like a linker generated table. Since the address of
|
|
// symbol is not relevant, we cannot replace the symbol with the
|
|
// section and patch the difference in the addend.
|
|
case MCSymbolRefExpr::VK_GOT:
|
|
case MCSymbolRefExpr::VK_PLT:
|
|
case MCSymbolRefExpr::VK_GOTPCREL:
|
|
case MCSymbolRefExpr::VK_Mips_GOT:
|
|
case MCSymbolRefExpr::VK_PPC_GOT_LO:
|
|
case MCSymbolRefExpr::VK_PPC_GOT_HI:
|
|
case MCSymbolRefExpr::VK_PPC_GOT_HA:
|
|
return true;
|
|
}
|
|
|
|
// An undefined symbol is not in any section, so the relocation has to point
|
|
// to the symbol itself.
|
|
assert(Sym && "Expected a symbol");
|
|
if (Sym->isUndefined())
|
|
return true;
|
|
|
|
unsigned Binding = Sym->getBinding();
|
|
switch(Binding) {
|
|
default:
|
|
llvm_unreachable("Invalid Binding");
|
|
case ELF::STB_LOCAL:
|
|
break;
|
|
case ELF::STB_WEAK:
|
|
// If the symbol is weak, it might be overridden by a symbol in another
|
|
// file. The relocation has to point to the symbol so that the linker
|
|
// can update it.
|
|
return true;
|
|
case ELF::STB_GLOBAL:
|
|
// Global ELF symbols can be preempted by the dynamic linker. The relocation
|
|
// has to point to the symbol for a reason analogous to the STB_WEAK case.
|
|
return true;
|
|
}
|
|
|
|
// If a relocation points to a mergeable section, we have to be careful.
|
|
// If the offset is zero, a relocation with the section will encode the
|
|
// same information. With a non-zero offset, the situation is different.
|
|
// For example, a relocation can point 42 bytes past the end of a string.
|
|
// If we change such a relocation to use the section, the linker would think
|
|
// that it pointed to another string and subtracting 42 at runtime will
|
|
// produce the wrong value.
|
|
auto &Sec = cast<MCSectionELF>(Sym->getSection());
|
|
unsigned Flags = Sec.getFlags();
|
|
if (Flags & ELF::SHF_MERGE) {
|
|
if (C != 0)
|
|
return true;
|
|
|
|
// It looks like gold has a bug (http://sourceware.org/PR16794) and can
|
|
// only handle section relocations to mergeable sections if using RELA.
|
|
if (!hasRelocationAddend())
|
|
return true;
|
|
}
|
|
|
|
// Most TLS relocations use a got, so they need the symbol. Even those that
|
|
// are just an offset (@tpoff), require a symbol in gold versions before
|
|
// 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
|
|
// http://sourceware.org/PR16773.
|
|
if (Flags & ELF::SHF_TLS)
|
|
return true;
|
|
|
|
// If the symbol is a thumb function the final relocation must set the lowest
|
|
// bit. With a symbol that is done by just having the symbol have that bit
|
|
// set, so we would lose the bit if we relocated with the section.
|
|
// FIXME: We could use the section but add the bit to the relocation value.
|
|
if (Asm.isThumbFunc(Sym))
|
|
return true;
|
|
|
|
if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// True if the assembler knows nothing about the final value of the symbol.
|
|
// This doesn't cover the comdat issues, since in those cases the assembler
|
|
// can at least know that all symbols in the section will move together.
|
|
static bool isWeak(const MCSymbolELF &Sym) {
|
|
if (Sym.getType() == ELF::STT_GNU_IFUNC)
|
|
return true;
|
|
|
|
switch (Sym.getBinding()) {
|
|
default:
|
|
llvm_unreachable("Unknown binding");
|
|
case ELF::STB_LOCAL:
|
|
return false;
|
|
case ELF::STB_GLOBAL:
|
|
return false;
|
|
case ELF::STB_WEAK:
|
|
case ELF::STB_GNU_UNIQUE:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
|
|
const MCAsmLayout &Layout,
|
|
const MCFragment *Fragment,
|
|
const MCFixup &Fixup, MCValue Target,
|
|
bool &IsPCRel, uint64_t &FixedValue) {
|
|
const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
|
|
uint64_t C = Target.getConstant();
|
|
uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
|
|
|
|
if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
|
|
assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
|
|
"Should not have constructed this");
|
|
|
|
// Let A, B and C being the components of Target and R be the location of
|
|
// the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
|
|
// If it is pcrel, we want to compute (A - B + C - R).
|
|
|
|
// In general, ELF has no relocations for -B. It can only represent (A + C)
|
|
// or (A + C - R). If B = R + K and the relocation is not pcrel, we can
|
|
// replace B to implement it: (A - R - K + C)
|
|
if (IsPCRel)
|
|
Asm.getContext().reportFatalError(
|
|
Fixup.getLoc(),
|
|
"No relocation available to represent this relative expression");
|
|
|
|
const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
|
|
|
|
if (SymB.isUndefined())
|
|
Asm.getContext().reportFatalError(
|
|
Fixup.getLoc(),
|
|
Twine("symbol '") + SymB.getName() +
|
|
"' can not be undefined in a subtraction expression");
|
|
|
|
assert(!SymB.isAbsolute() && "Should have been folded");
|
|
const MCSection &SecB = SymB.getSection();
|
|
if (&SecB != &FixupSection)
|
|
Asm.getContext().reportFatalError(
|
|
Fixup.getLoc(), "Cannot represent a difference across sections");
|
|
|
|
if (::isWeak(SymB))
|
|
Asm.getContext().reportFatalError(
|
|
Fixup.getLoc(), "Cannot represent a subtraction with a weak symbol");
|
|
|
|
uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
|
|
uint64_t K = SymBOffset - FixupOffset;
|
|
IsPCRel = true;
|
|
C -= K;
|
|
}
|
|
|
|
// We either rejected the fixup or folded B into C at this point.
|
|
const MCSymbolRefExpr *RefA = Target.getSymA();
|
|
const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
|
|
|
|
bool ViaWeakRef = false;
|
|
if (SymA && SymA->isVariable()) {
|
|
const MCExpr *Expr = SymA->getVariableValue();
|
|
if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
|
|
if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
|
|
SymA = cast<MCSymbolELF>(&Inner->getSymbol());
|
|
ViaWeakRef = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned Type = GetRelocType(Target, Fixup, IsPCRel);
|
|
bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
|
|
if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
|
|
C += Layout.getSymbolOffset(*SymA);
|
|
|
|
uint64_t Addend = 0;
|
|
if (hasRelocationAddend()) {
|
|
Addend = C;
|
|
C = 0;
|
|
}
|
|
|
|
FixedValue = C;
|
|
|
|
if (!RelocateWithSymbol) {
|
|
const MCSection *SecA =
|
|
(SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
|
|
auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
|
|
const auto *SectionSymbol =
|
|
ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
|
|
if (SectionSymbol)
|
|
SectionSymbol->setUsedInReloc();
|
|
ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend);
|
|
Relocations[&FixupSection].push_back(Rec);
|
|
return;
|
|
}
|
|
|
|
if (SymA) {
|
|
if (const MCSymbolELF *R = Renames.lookup(SymA))
|
|
SymA = R;
|
|
|
|
if (ViaWeakRef)
|
|
SymA->setIsWeakrefUsedInReloc();
|
|
else
|
|
SymA->setUsedInReloc();
|
|
}
|
|
ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend);
|
|
Relocations[&FixupSection].push_back(Rec);
|
|
return;
|
|
}
|
|
|
|
bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
|
|
const MCSymbolELF &Symbol, bool Used,
|
|
bool Renamed) {
|
|
if (Symbol.isVariable()) {
|
|
const MCExpr *Expr = Symbol.getVariableValue();
|
|
if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
|
|
if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (Used)
|
|
return true;
|
|
|
|
if (Renamed)
|
|
return false;
|
|
|
|
if (Symbol.isVariable() && Symbol.isUndefined()) {
|
|
// FIXME: this is here just to diagnose the case of a var = commmon_sym.
|
|
Layout.getBaseSymbol(Symbol);
|
|
return false;
|
|
}
|
|
|
|
if (Symbol.isUndefined() && !Symbol.isBindingSet())
|
|
return false;
|
|
|
|
if (Symbol.isTemporary())
|
|
return false;
|
|
|
|
if (Symbol.getType() == ELF::STT_SECTION)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void ELFObjectWriter::computeSymbolTable(
|
|
MCAssembler &Asm, const MCAsmLayout &Layout,
|
|
const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
|
|
SectionOffsetsTy &SectionOffsets) {
|
|
MCContext &Ctx = Asm.getContext();
|
|
SymbolTableWriter Writer(*this, is64Bit());
|
|
|
|
// Symbol table
|
|
unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
|
|
MCSectionELF *SymtabSection =
|
|
Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
|
|
SymtabSection->setAlignment(is64Bit() ? 8 : 4);
|
|
SymbolTableIndex = addToSectionTable(SymtabSection);
|
|
|
|
align(SymtabSection->getAlignment());
|
|
uint64_t SecStart = OS.tell();
|
|
|
|
// The first entry is the undefined symbol entry.
|
|
Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
|
|
|
|
std::vector<ELFSymbolData> LocalSymbolData;
|
|
std::vector<ELFSymbolData> ExternalSymbolData;
|
|
|
|
// Add the data for the symbols.
|
|
bool HasLargeSectionIndex = false;
|
|
for (const MCSymbol &S : Asm.symbols()) {
|
|
const auto &Symbol = cast<MCSymbolELF>(S);
|
|
bool Used = Symbol.isUsedInReloc();
|
|
bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
|
|
bool isSignature = Symbol.isSignature();
|
|
|
|
if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
|
|
Renames.count(&Symbol)))
|
|
continue;
|
|
|
|
if (Symbol.isTemporary() && Symbol.isUndefined())
|
|
Ctx.reportFatalError(SMLoc(), "Undefined temporary");
|
|
|
|
ELFSymbolData MSD;
|
|
MSD.Symbol = cast<MCSymbolELF>(&Symbol);
|
|
|
|
bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
|
|
assert(Local || !Symbol.isTemporary());
|
|
|
|
if (Symbol.isAbsolute()) {
|
|
MSD.SectionIndex = ELF::SHN_ABS;
|
|
} else if (Symbol.isCommon()) {
|
|
assert(!Local);
|
|
MSD.SectionIndex = ELF::SHN_COMMON;
|
|
} else if (Symbol.isUndefined()) {
|
|
if (isSignature && !Used) {
|
|
MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
|
|
if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
|
|
HasLargeSectionIndex = true;
|
|
} else {
|
|
MSD.SectionIndex = ELF::SHN_UNDEF;
|
|
}
|
|
} else {
|
|
const MCSectionELF &Section =
|
|
static_cast<const MCSectionELF &>(Symbol.getSection());
|
|
MSD.SectionIndex = SectionIndexMap.lookup(&Section);
|
|
assert(MSD.SectionIndex && "Invalid section index!");
|
|
if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
|
|
HasLargeSectionIndex = true;
|
|
}
|
|
|
|
// The @@@ in symbol version is replaced with @ in undefined symbols and @@
|
|
// in defined ones.
|
|
//
|
|
// FIXME: All name handling should be done before we get to the writer,
|
|
// including dealing with GNU-style version suffixes. Fixing this isn't
|
|
// trivial.
|
|
//
|
|
// We thus have to be careful to not perform the symbol version replacement
|
|
// blindly:
|
|
//
|
|
// The ELF format is used on Windows by the MCJIT engine. Thus, on
|
|
// Windows, the ELFObjectWriter can encounter symbols mangled using the MS
|
|
// Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
|
|
// C++ name mangling can legally have "@@@" as a sub-string. In that case,
|
|
// the EFLObjectWriter should not interpret the "@@@" sub-string as
|
|
// specifying GNU-style symbol versioning. The ELFObjectWriter therefore
|
|
// checks for the MSVC C++ name mangling prefix which is either "?", "@?",
|
|
// "__imp_?" or "__imp_@?".
|
|
//
|
|
// It would have been interesting to perform the MS mangling prefix check
|
|
// only when the target triple is of the form *-pc-windows-elf. But, it
|
|
// seems that this information is not easily accessible from the
|
|
// ELFObjectWriter.
|
|
StringRef Name = Symbol.getName();
|
|
SmallString<32> Buf;
|
|
if (!Name.startswith("?") && !Name.startswith("@?") &&
|
|
!Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
|
|
// This symbol isn't following the MSVC C++ name mangling convention. We
|
|
// can thus safely interpret the @@@ in symbol names as specifying symbol
|
|
// versioning.
|
|
size_t Pos = Name.find("@@@");
|
|
if (Pos != StringRef::npos) {
|
|
Buf += Name.substr(0, Pos);
|
|
unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
|
|
Buf += Name.substr(Pos + Skip);
|
|
Name = Buf;
|
|
}
|
|
}
|
|
|
|
// Sections have their own string table
|
|
if (Symbol.getType() != ELF::STT_SECTION)
|
|
MSD.Name = StrTabBuilder.add(Name);
|
|
|
|
if (Local)
|
|
LocalSymbolData.push_back(MSD);
|
|
else
|
|
ExternalSymbolData.push_back(MSD);
|
|
}
|
|
|
|
// This holds the .symtab_shndx section index.
|
|
unsigned SymtabShndxSectionIndex = 0;
|
|
|
|
if (HasLargeSectionIndex) {
|
|
MCSectionELF *SymtabShndxSection =
|
|
Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
|
|
SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
|
|
SymtabShndxSection->setAlignment(4);
|
|
}
|
|
|
|
ArrayRef<std::string> FileNames = Asm.getFileNames();
|
|
for (const std::string &Name : FileNames)
|
|
StrTabBuilder.add(Name);
|
|
|
|
StrTabBuilder.finalize(StringTableBuilder::ELF);
|
|
|
|
for (const std::string &Name : FileNames)
|
|
Writer.writeSymbol(StrTabBuilder.getOffset(Name),
|
|
ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
|
|
ELF::SHN_ABS, true);
|
|
|
|
// Symbols are required to be in lexicographic order.
|
|
array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
|
|
array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
|
|
|
|
// Set the symbol indices. Local symbols must come before all other
|
|
// symbols with non-local bindings.
|
|
unsigned Index = FileNames.size() + 1;
|
|
|
|
for (ELFSymbolData &MSD : LocalSymbolData) {
|
|
unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
|
|
? 0
|
|
: StrTabBuilder.getOffset(MSD.Name);
|
|
MSD.Symbol->setIndex(Index++);
|
|
writeSymbol(Writer, StringIndex, MSD, Layout);
|
|
}
|
|
|
|
// Write the symbol table entries.
|
|
LastLocalSymbolIndex = Index;
|
|
|
|
for (ELFSymbolData &MSD : ExternalSymbolData) {
|
|
unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
|
|
MSD.Symbol->setIndex(Index++);
|
|
writeSymbol(Writer, StringIndex, MSD, Layout);
|
|
assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
|
|
}
|
|
|
|
uint64_t SecEnd = OS.tell();
|
|
SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
|
|
|
|
ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
|
|
if (ShndxIndexes.empty()) {
|
|
assert(SymtabShndxSectionIndex == 0);
|
|
return;
|
|
}
|
|
assert(SymtabShndxSectionIndex != 0);
|
|
|
|
SecStart = OS.tell();
|
|
const MCSectionELF *SymtabShndxSection =
|
|
SectionTable[SymtabShndxSectionIndex - 1];
|
|
for (uint32_t Index : ShndxIndexes)
|
|
write(Index);
|
|
SecEnd = OS.tell();
|
|
SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
|
|
}
|
|
|
|
MCSectionELF *
|
|
ELFObjectWriter::createRelocationSection(MCContext &Ctx,
|
|
const MCSectionELF &Sec) {
|
|
if (Relocations[&Sec].empty())
|
|
return nullptr;
|
|
|
|
const StringRef SectionName = Sec.getSectionName();
|
|
std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
|
|
RelaSectionName += SectionName;
|
|
|
|
unsigned EntrySize;
|
|
if (hasRelocationAddend())
|
|
EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
|
|
else
|
|
EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
|
|
|
|
unsigned Flags = 0;
|
|
if (Sec.getFlags() & ELF::SHF_GROUP)
|
|
Flags = ELF::SHF_GROUP;
|
|
|
|
MCSectionELF *RelaSection = Ctx.createELFRelSection(
|
|
RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
|
|
Flags, EntrySize, Sec.getGroup(), &Sec);
|
|
RelaSection->setAlignment(is64Bit() ? 8 : 4);
|
|
return RelaSection;
|
|
}
|
|
|
|
static SmallVector<char, 128>
|
|
getUncompressedData(const MCAsmLayout &Layout,
|
|
const MCSection::FragmentListType &Fragments) {
|
|
SmallVector<char, 128> UncompressedData;
|
|
for (const MCFragment &F : Fragments) {
|
|
const SmallVectorImpl<char> *Contents;
|
|
switch (F.getKind()) {
|
|
case MCFragment::FT_Data:
|
|
Contents = &cast<MCDataFragment>(F).getContents();
|
|
break;
|
|
case MCFragment::FT_Dwarf:
|
|
Contents = &cast<MCDwarfLineAddrFragment>(F).getContents();
|
|
break;
|
|
case MCFragment::FT_DwarfFrame:
|
|
Contents = &cast<MCDwarfCallFrameFragment>(F).getContents();
|
|
break;
|
|
default:
|
|
llvm_unreachable(
|
|
"Not expecting any other fragment types in a debug_* section");
|
|
}
|
|
UncompressedData.append(Contents->begin(), Contents->end());
|
|
}
|
|
return UncompressedData;
|
|
}
|
|
|
|
// Include the debug info compression header:
|
|
// "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
|
|
// useful for consumers to preallocate a buffer to decompress into.
|
|
static bool
|
|
prependCompressionHeader(uint64_t Size,
|
|
SmallVectorImpl<char> &CompressedContents) {
|
|
const StringRef Magic = "ZLIB";
|
|
if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
|
|
return false;
|
|
if (sys::IsLittleEndianHost)
|
|
sys::swapByteOrder(Size);
|
|
CompressedContents.insert(CompressedContents.begin(),
|
|
Magic.size() + sizeof(Size), 0);
|
|
std::copy(Magic.begin(), Magic.end(), CompressedContents.begin());
|
|
std::copy(reinterpret_cast<char *>(&Size),
|
|
reinterpret_cast<char *>(&Size + 1),
|
|
CompressedContents.begin() + Magic.size());
|
|
return true;
|
|
}
|
|
|
|
void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
|
|
const MCAsmLayout &Layout) {
|
|
MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
|
|
StringRef SectionName = Section.getSectionName();
|
|
|
|
// Compressing debug_frame requires handling alignment fragments which is
|
|
// more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
|
|
// for writing to arbitrary buffers) for little benefit.
|
|
if (!Asm.getContext().getAsmInfo()->compressDebugSections() ||
|
|
!SectionName.startswith(".debug_") || SectionName == ".debug_frame") {
|
|
Asm.writeSectionData(&Section, Layout);
|
|
return;
|
|
}
|
|
|
|
// Gather the uncompressed data from all the fragments.
|
|
const MCSection::FragmentListType &Fragments = Section.getFragmentList();
|
|
SmallVector<char, 128> UncompressedData =
|
|
getUncompressedData(Layout, Fragments);
|
|
|
|
SmallVector<char, 128> CompressedContents;
|
|
zlib::Status Success = zlib::compress(
|
|
StringRef(UncompressedData.data(), UncompressedData.size()),
|
|
CompressedContents);
|
|
if (Success != zlib::StatusOK) {
|
|
Asm.writeSectionData(&Section, Layout);
|
|
return;
|
|
}
|
|
|
|
if (!prependCompressionHeader(UncompressedData.size(), CompressedContents)) {
|
|
Asm.writeSectionData(&Section, Layout);
|
|
return;
|
|
}
|
|
Asm.getContext().renameELFSection(&Section,
|
|
(".z" + SectionName.drop_front(1)).str());
|
|
OS << CompressedContents;
|
|
}
|
|
|
|
void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
|
|
uint64_t Flags, uint64_t Address,
|
|
uint64_t Offset, uint64_t Size,
|
|
uint32_t Link, uint32_t Info,
|
|
uint64_t Alignment,
|
|
uint64_t EntrySize) {
|
|
write32(Name); // sh_name: index into string table
|
|
write32(Type); // sh_type
|
|
WriteWord(Flags); // sh_flags
|
|
WriteWord(Address); // sh_addr
|
|
WriteWord(Offset); // sh_offset
|
|
WriteWord(Size); // sh_size
|
|
write32(Link); // sh_link
|
|
write32(Info); // sh_info
|
|
WriteWord(Alignment); // sh_addralign
|
|
WriteWord(EntrySize); // sh_entsize
|
|
}
|
|
|
|
void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
|
|
const MCSectionELF &Sec) {
|
|
std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
|
|
|
|
// Sort the relocation entries. Most targets just sort by Offset, but some
|
|
// (e.g., MIPS) have additional constraints.
|
|
TargetObjectWriter->sortRelocs(Asm, Relocs);
|
|
|
|
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
|
|
const ELFRelocationEntry &Entry = Relocs[e - i - 1];
|
|
unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
|
|
|
|
if (is64Bit()) {
|
|
write(Entry.Offset);
|
|
if (TargetObjectWriter->isN64()) {
|
|
write(uint32_t(Index));
|
|
|
|
write(TargetObjectWriter->getRSsym(Entry.Type));
|
|
write(TargetObjectWriter->getRType3(Entry.Type));
|
|
write(TargetObjectWriter->getRType2(Entry.Type));
|
|
write(TargetObjectWriter->getRType(Entry.Type));
|
|
} else {
|
|
struct ELF::Elf64_Rela ERE64;
|
|
ERE64.setSymbolAndType(Index, Entry.Type);
|
|
write(ERE64.r_info);
|
|
}
|
|
if (hasRelocationAddend())
|
|
write(Entry.Addend);
|
|
} else {
|
|
write(uint32_t(Entry.Offset));
|
|
|
|
struct ELF::Elf32_Rela ERE32;
|
|
ERE32.setSymbolAndType(Index, Entry.Type);
|
|
write(ERE32.r_info);
|
|
|
|
if (hasRelocationAddend())
|
|
write(uint32_t(Entry.Addend));
|
|
}
|
|
}
|
|
}
|
|
|
|
const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
|
|
const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
|
|
OS << StrTabBuilder.data();
|
|
return StrtabSection;
|
|
}
|
|
|
|
void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
|
|
uint32_t GroupSymbolIndex, uint64_t Offset,
|
|
uint64_t Size, const MCSectionELF &Section) {
|
|
uint64_t sh_link = 0;
|
|
uint64_t sh_info = 0;
|
|
|
|
switch(Section.getType()) {
|
|
default:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
case ELF::SHT_DYNAMIC:
|
|
llvm_unreachable("SHT_DYNAMIC in a relocatable object");
|
|
|
|
case ELF::SHT_REL:
|
|
case ELF::SHT_RELA: {
|
|
sh_link = SymbolTableIndex;
|
|
assert(sh_link && ".symtab not found");
|
|
const MCSectionELF *InfoSection = Section.getAssociatedSection();
|
|
sh_info = SectionIndexMap.lookup(InfoSection);
|
|
break;
|
|
}
|
|
|
|
case ELF::SHT_SYMTAB:
|
|
case ELF::SHT_DYNSYM:
|
|
sh_link = StringTableIndex;
|
|
sh_info = LastLocalSymbolIndex;
|
|
break;
|
|
|
|
case ELF::SHT_SYMTAB_SHNDX:
|
|
sh_link = SymbolTableIndex;
|
|
break;
|
|
|
|
case ELF::SHT_GROUP:
|
|
sh_link = SymbolTableIndex;
|
|
sh_info = GroupSymbolIndex;
|
|
break;
|
|
}
|
|
|
|
if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
|
|
Section.getType() == ELF::SHT_ARM_EXIDX)
|
|
sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
|
|
|
|
WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
|
|
Section.getType(), Section.getFlags(), 0, Offset, Size,
|
|
sh_link, sh_info, Section.getAlignment(),
|
|
Section.getEntrySize());
|
|
}
|
|
|
|
void ELFObjectWriter::writeSectionHeader(
|
|
const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
|
|
const SectionOffsetsTy &SectionOffsets) {
|
|
const unsigned NumSections = SectionTable.size();
|
|
|
|
// Null section first.
|
|
uint64_t FirstSectionSize =
|
|
(NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
|
|
WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
|
|
|
|
for (const MCSectionELF *Section : SectionTable) {
|
|
uint32_t GroupSymbolIndex;
|
|
unsigned Type = Section->getType();
|
|
if (Type != ELF::SHT_GROUP)
|
|
GroupSymbolIndex = 0;
|
|
else
|
|
GroupSymbolIndex = Section->getGroup()->getIndex();
|
|
|
|
const std::pair<uint64_t, uint64_t> &Offsets =
|
|
SectionOffsets.find(Section)->second;
|
|
uint64_t Size;
|
|
if (Type == ELF::SHT_NOBITS)
|
|
Size = Layout.getSectionAddressSize(Section);
|
|
else
|
|
Size = Offsets.second - Offsets.first;
|
|
|
|
writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
|
|
*Section);
|
|
}
|
|
}
|
|
|
|
void ELFObjectWriter::writeObject(MCAssembler &Asm,
|
|
const MCAsmLayout &Layout) {
|
|
MCContext &Ctx = Asm.getContext();
|
|
MCSectionELF *StrtabSection =
|
|
Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
|
|
StringTableIndex = addToSectionTable(StrtabSection);
|
|
|
|
RevGroupMapTy RevGroupMap;
|
|
SectionIndexMapTy SectionIndexMap;
|
|
|
|
std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
|
|
|
|
// Write out the ELF header ...
|
|
writeHeader(Asm);
|
|
|
|
// ... then the sections ...
|
|
SectionOffsetsTy SectionOffsets;
|
|
std::vector<MCSectionELF *> Groups;
|
|
std::vector<MCSectionELF *> Relocations;
|
|
for (MCSection &Sec : Asm) {
|
|
MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
|
|
|
|
align(Section.getAlignment());
|
|
|
|
// Remember the offset into the file for this section.
|
|
uint64_t SecStart = OS.tell();
|
|
|
|
const MCSymbolELF *SignatureSymbol = Section.getGroup();
|
|
writeSectionData(Asm, Section, Layout);
|
|
|
|
uint64_t SecEnd = OS.tell();
|
|
SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
|
|
|
|
MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
|
|
|
|
if (SignatureSymbol) {
|
|
Asm.registerSymbol(*SignatureSymbol);
|
|
unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
|
|
if (!GroupIdx) {
|
|
MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
|
|
GroupIdx = addToSectionTable(Group);
|
|
Group->setAlignment(4);
|
|
Groups.push_back(Group);
|
|
}
|
|
std::vector<const MCSectionELF *> &Members =
|
|
GroupMembers[SignatureSymbol];
|
|
Members.push_back(&Section);
|
|
if (RelSection)
|
|
Members.push_back(RelSection);
|
|
}
|
|
|
|
SectionIndexMap[&Section] = addToSectionTable(&Section);
|
|
if (RelSection) {
|
|
SectionIndexMap[RelSection] = addToSectionTable(RelSection);
|
|
Relocations.push_back(RelSection);
|
|
}
|
|
}
|
|
|
|
for (MCSectionELF *Group : Groups) {
|
|
align(Group->getAlignment());
|
|
|
|
// Remember the offset into the file for this section.
|
|
uint64_t SecStart = OS.tell();
|
|
|
|
const MCSymbol *SignatureSymbol = Group->getGroup();
|
|
assert(SignatureSymbol);
|
|
write(uint32_t(ELF::GRP_COMDAT));
|
|
for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
|
|
uint32_t SecIndex = SectionIndexMap.lookup(Member);
|
|
write(SecIndex);
|
|
}
|
|
|
|
uint64_t SecEnd = OS.tell();
|
|
SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
|
|
}
|
|
|
|
// Compute symbol table information.
|
|
computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
|
|
|
|
for (MCSectionELF *RelSection : Relocations) {
|
|
align(RelSection->getAlignment());
|
|
|
|
// Remember the offset into the file for this section.
|
|
uint64_t SecStart = OS.tell();
|
|
|
|
writeRelocations(Asm, *RelSection->getAssociatedSection());
|
|
|
|
uint64_t SecEnd = OS.tell();
|
|
SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
|
|
}
|
|
|
|
{
|
|
uint64_t SecStart = OS.tell();
|
|
const MCSectionELF *Sec = createStringTable(Ctx);
|
|
uint64_t SecEnd = OS.tell();
|
|
SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
|
|
}
|
|
|
|
uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
|
|
align(NaturalAlignment);
|
|
|
|
const unsigned SectionHeaderOffset = OS.tell();
|
|
|
|
// ... then the section header table ...
|
|
writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
|
|
|
|
uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
|
|
? (uint16_t)ELF::SHN_UNDEF
|
|
: SectionTable.size() + 1;
|
|
if (sys::IsLittleEndianHost != IsLittleEndian)
|
|
sys::swapByteOrder(NumSections);
|
|
unsigned NumSectionsOffset;
|
|
|
|
if (is64Bit()) {
|
|
uint64_t Val = SectionHeaderOffset;
|
|
if (sys::IsLittleEndianHost != IsLittleEndian)
|
|
sys::swapByteOrder(Val);
|
|
OS.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
|
|
offsetof(ELF::Elf64_Ehdr, e_shoff));
|
|
NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
|
|
} else {
|
|
uint32_t Val = SectionHeaderOffset;
|
|
if (sys::IsLittleEndianHost != IsLittleEndian)
|
|
sys::swapByteOrder(Val);
|
|
OS.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
|
|
offsetof(ELF::Elf32_Ehdr, e_shoff));
|
|
NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
|
|
}
|
|
OS.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
|
|
NumSectionsOffset);
|
|
}
|
|
|
|
bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
|
|
const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
|
|
bool InSet, bool IsPCRel) const {
|
|
const auto &SymA = cast<MCSymbolELF>(SA);
|
|
if (IsPCRel) {
|
|
assert(!InSet);
|
|
if (::isWeak(SymA))
|
|
return false;
|
|
}
|
|
return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
|
|
InSet, IsPCRel);
|
|
}
|
|
|
|
bool ELFObjectWriter::isWeak(const MCSymbol &S) const {
|
|
const auto &Sym = cast<MCSymbolELF>(S);
|
|
if (::isWeak(Sym))
|
|
return true;
|
|
|
|
// It is invalid to replace a reference to a global in a comdat
|
|
// with a reference to a local since out of comdat references
|
|
// to a local are forbidden.
|
|
// We could try to return false for more cases, like the reference
|
|
// being in the same comdat or Sym being an alias to another global,
|
|
// but it is not clear if it is worth the effort.
|
|
if (Sym.getBinding() != ELF::STB_GLOBAL)
|
|
return false;
|
|
|
|
if (!Sym.isInSection())
|
|
return false;
|
|
|
|
const auto &Sec = cast<MCSectionELF>(Sym.getSection());
|
|
return Sec.getGroup();
|
|
}
|
|
|
|
MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
|
|
raw_pwrite_stream &OS,
|
|
bool IsLittleEndian) {
|
|
return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
|
|
}
|