llvm/lib/Analysis/PostDominators.cpp
Chris Lattner 4c9df7c619 Split dominance calculation and post dominance calculation stuff
Dominance calculation goes to VMCore library to be used by Verifier.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3210 91177308-0d34-0410-b5e6-96231b3b80d8
2002-08-02 16:43:03 +00:00

190 lines
7.2 KiB
C++

//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
//
// This file implements the post-dominator construction algorithms.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/Support/CFG.h"
#include "Support/DepthFirstIterator.h"
#include "Support/SetOperations.h"
using std::set;
//===----------------------------------------------------------------------===//
// PostDominatorSet Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<PostDominatorSet>
B("postdomset", "Post-Dominator Set Construction", true);
AnalysisID PostDominatorSet::ID = B;
// Postdominator set construction. This converts the specified function to only
// have a single exit node (return stmt), then calculates the post dominance
// sets for the function.
//
bool PostDominatorSet::runOnFunction(Function &F) {
Doms.clear(); // Reset from the last time we were run...
// Since we require that the unify all exit nodes pass has been run, we know
// that there can be at most one return instruction in the function left.
// Get it.
//
Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
if (Root == 0) { // No exit node for the function? Postdomsets are all empty
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Doms[FI] = DomSetType();
return false;
}
bool Changed;
do {
Changed = false;
set<const BasicBlock*> Visited;
DomSetType WorkingSet;
idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
for ( ; It != End; ++It) {
BasicBlock *BB = *It;
succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
if (PI != PEnd) { // Is there SOME predecessor?
// Loop until we get to a successor that has had it's dom set filled
// in at least once. We are guaranteed to have this because we are
// traversing the graph in DFO and have handled start nodes specially.
//
while (Doms[*PI].size() == 0) ++PI;
WorkingSet = Doms[*PI];
for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets
DomSetType &PredSet = Doms[*PI];
if (PredSet.size())
set_intersect(WorkingSet, PredSet);
}
}
WorkingSet.insert(BB); // A block always dominates itself
DomSetType &BBSet = Doms[BB];
if (BBSet != WorkingSet) {
BBSet.swap(WorkingSet); // Constant time operation!
Changed = true; // The sets changed.
}
WorkingSet.clear(); // Clear out the set for next iteration
}
} while (Changed);
return false;
}
// getAnalysisUsage - This obviously provides a post-dominator set, but it also
// requires the UnifyFunctionExitNodes pass.
//
void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired(UnifyFunctionExitNodes::ID);
}
//===----------------------------------------------------------------------===//
// ImmediatePostDominators Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<ImmediatePostDominators>
D("postidom", "Immediate Post-Dominators Construction", true);
AnalysisID ImmediatePostDominators::ID = D;
//===----------------------------------------------------------------------===//
// PostDominatorTree Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<PostDominatorTree>
F("postdomtree", "Post-Dominator Tree Construction", true);
AnalysisID PostDominatorTree::ID = F;
void PostDominatorTree::calculate(const PostDominatorSet &DS) {
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
if (Root) {
// Iterate over all nodes in depth first order...
for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
I != E; ++I) {
BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Loop over all dominators of this node. This corresponds to looping
// over nodes in the dominator chain, looking for a node whose dominator
// set is equal to the current nodes, except that the current node does
// not exist in it. This means that it is one level higher in the dom
// chain than the current node, and it is our idom! We know that we have
// already added a DominatorTree node for our idom, because the idom must
// be a predecessor in the depth first order that we are iterating through
// the function.
//
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
DominatorSet::DomSetType::const_iterator End = Dominators.end();
for (; I != End; ++I) { // Iterate over dominators...
// All of our dominators should form a chain, where the number
// of elements in the dominator set indicates what level the
// node is at in the chain. We want the node immediately
// above us, so it will have an identical dominator set,
// except that BB will not dominate it... therefore it's
// dominator set size will be one less than BB's...
//
if (DS.getDominators(*I).size() == DomSetSize - 1) {
// We know that the immediate dominator should already have a node,
// because we are traversing the CFG in depth first order!
//
Node *IDomNode = Nodes[*I];
assert(IDomNode && "No node for IDOM?");
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
break;
}
}
}
}
}
//===----------------------------------------------------------------------===//
// PostDominanceFrontier Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<PostDominanceFrontier>
H("postdomfrontier", "Post-Dominance Frontier Construction", true);
AnalysisID PostDominanceFrontier::ID = H;
const DominanceFrontier::DomSetType &
PostDominanceFrontier::calculate(const PostDominatorTree &DT,
const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
BasicBlock *BB = Node->getNode();
DomSetType &S = Frontiers[BB]; // The new set to fill in...
if (!Root) return S;
for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
SI != SE; ++SI) {
// Does Node immediately dominate this predeccessor?
if (DT[*SI]->getIDom() != Node)
S.insert(*SI);
}
// At this point, S is DFlocal. Now we union in DFup's of our children...
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
//
for (PostDominatorTree::Node::const_iterator
NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
DominatorTree::Node *IDominee = *NI;
const DomSetType &ChildDF = calculate(DT, IDominee);
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
for (; CDFI != CDFE; ++CDFI) {
if (!Node->dominates(DT[*CDFI]))
S.insert(*CDFI);
}
}
return S;
}