llvm/unittests/DebugInfo/PDB/BinaryStreamTest.cpp
Zachary Turner 5433d115a4 [PDB] General improvements to Stream library.
This adds various new functionality and cleanup surrounding the
use of the Stream library.  Major changes include:

* Renaming of all classes for more consistency / meaningfulness
* Addition of some new methods for reading multiple values at once.
* Full suite of unit tests for reader / writer functionality.
* Full set of doxygen comments for all classes.
* Streams now store their own endianness.
* Fixed some bugs in a few of the classes that were discovered
  by the unit tests.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296215 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-25 00:44:30 +00:00

765 lines
24 KiB
C++

//===- llvm/unittest/Support/BinaryStreamTest.cpp -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/MSF/BinaryByteStream.h"
#include "llvm/DebugInfo/MSF/BinaryItemStream.h"
#include "llvm/DebugInfo/MSF/BinaryStreamArray.h"
#include "llvm/DebugInfo/MSF/BinaryStreamReader.h"
#include "llvm/DebugInfo/MSF/BinaryStreamRef.h"
#include "llvm/DebugInfo/MSF/BinaryStreamWriter.h"
#include "gtest/gtest.h"
#include <unordered_map>
using namespace llvm;
using namespace llvm::support;
#define EXPECT_NO_ERROR(Err) \
{ \
auto E = Err; \
EXPECT_FALSE(static_cast<bool>(E)); \
if (E) \
consumeError(std::move(E)); \
}
#define ASSERT_NO_ERROR(Err) \
{ \
auto E = Err; \
ASSERT_FALSE(static_cast<bool>(E)); \
if (E) \
consumeError(std::move(E)); \
}
#define EXPECT_ERROR(Err) \
{ \
auto E = Err; \
EXPECT_TRUE(static_cast<bool>(E)); \
if (E) \
consumeError(std::move(E)); \
}
namespace {
class DiscontiguousStream : public WritableBinaryStream {
public:
explicit DiscontiguousStream(uint32_t Size = 0) : PartitionIndex(Size / 2) {
Data.resize(Size);
}
endianness getEndian() const override { return little; }
Error readBytes(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) override {
if (Offset + Size > Data.size())
return errorCodeToError(make_error_code(std::errc::no_buffer_space));
uint32_t S = startIndex(Offset);
auto Ref = makeArrayRef(Data).drop_front(S);
if (Ref.size() >= Size) {
Buffer = Ref.take_front(Size);
return Error::success();
}
uint32_t BytesLeft = Size - Ref.size();
uint8_t *Ptr = Allocator.Allocate<uint8_t>(Size);
::memcpy(Ptr, Ref.data(), Ref.size());
::memcpy(Ptr + Ref.size(), Data.data(), BytesLeft);
Buffer = makeArrayRef<uint8_t>(Ptr, Size);
return Error::success();
}
Error readLongestContiguousChunk(uint32_t Offset,
ArrayRef<uint8_t> &Buffer) override {
if (Offset >= Data.size())
return errorCodeToError(make_error_code(std::errc::no_buffer_space));
uint32_t S = startIndex(Offset);
Buffer = makeArrayRef(Data).drop_front(S);
return Error::success();
}
uint32_t getLength() override { return Data.size(); }
Error writeBytes(uint32_t Offset, ArrayRef<uint8_t> SrcData) override {
if (Offset + SrcData.size() > Data.size())
return errorCodeToError(make_error_code(std::errc::no_buffer_space));
if (SrcData.empty())
return Error::success();
uint32_t S = startIndex(Offset);
MutableArrayRef<uint8_t> Ref(Data);
Ref = Ref.drop_front(S);
if (Ref.size() >= SrcData.size()) {
::memcpy(Ref.data(), SrcData.data(), SrcData.size());
return Error::success();
}
uint32_t BytesLeft = SrcData.size() - Ref.size();
::memcpy(Ref.data(), SrcData.data(), Ref.size());
::memcpy(&Data[0], SrcData.data() + Ref.size(), BytesLeft);
return Error::success();
}
Error commit() override { return Error::success(); }
private:
uint32_t startIndex(uint32_t Offset) const {
return (Offset + PartitionIndex) % Data.size();
}
uint32_t endIndex(uint32_t Offset, uint32_t Size) const {
return (startIndex(Offset) + Size - 1) % Data.size();
}
uint32_t PartitionIndex = 0;
// Buffer is organized like this:
// -------------------------------------------------
// | N/2 | N/2+1 | ... | N-1 | 0 | 1 | ... | N-2-1 |
// -------------------------------------------------
// So reads from the beginning actually come from the middle.
std::vector<uint8_t> Data;
BumpPtrAllocator Allocator;
};
class BinaryStreamTest : public testing::Test {
public:
BinaryStreamTest() {}
void SetUp() override {
InputData.clear();
OutputData.clear();
InputByteStream = BinaryByteStream();
InputBrokenStream = DiscontiguousStream();
OutputByteStream = MutableBinaryByteStream();
OutputBrokenStream = DiscontiguousStream();
}
protected:
void initialize(ArrayRef<uint8_t> Input, uint32_t OutputSize) {
InputData = Input;
InputByteStream = BinaryByteStream(InputData, little);
InputBrokenStream = DiscontiguousStream(InputData.size());
consumeError(InputBrokenStream.writeBytes(0, Input));
OutputData.resize(OutputSize);
OutputByteStream = MutableBinaryByteStream(OutputData, little);
OutputBrokenStream = DiscontiguousStream(OutputSize);
InputStreams.push_back(&InputByteStream);
InputStreams.push_back(&InputBrokenStream);
OutputStreams.push_back(&OutputByteStream);
OutputStreams.push_back(&OutputBrokenStream);
}
void initialize(uint32_t OutputSize) {
OutputData.resize(OutputSize);
OutputByteStream = MutableBinaryByteStream(OutputData, little);
OutputBrokenStream = DiscontiguousStream(OutputSize);
OutputStreams.push_back(&OutputByteStream);
OutputStreams.push_back(&OutputBrokenStream);
InputByteStream = BinaryByteStream(OutputData, little);
InputBrokenStream = DiscontiguousStream(OutputData.size());
}
std::vector<uint8_t> InputData;
std::vector<uint8_t> OutputData;
BinaryByteStream InputByteStream;
DiscontiguousStream InputBrokenStream;
MutableBinaryByteStream OutputByteStream;
DiscontiguousStream OutputBrokenStream;
std::vector<BinaryStream *> InputStreams;
std::vector<WritableBinaryStream *> OutputStreams;
};
// Tests that a we can read from a BinaryByteStream without a StreamReader.
TEST_F(BinaryStreamTest, BinaryByteStreamProperties) {
std::vector<uint8_t> InputData = {1, 2, 3, 4, 5};
initialize(InputData, InputData.size());
for (auto Stream : InputStreams) {
ArrayRef<uint8_t> Buffer;
// 1. If the read fits it should work.
ASSERT_EQ(InputData.size(), Stream->getLength());
ASSERT_NO_ERROR(Stream->readBytes(2, 1, Buffer));
EXPECT_EQ(makeArrayRef(InputData).slice(2, 1), Buffer);
ASSERT_NO_ERROR(Stream->readBytes(0, 4, Buffer));
EXPECT_EQ(makeArrayRef(InputData).slice(0, 4), Buffer);
// 2. Reading past the bounds of the input should fail.
EXPECT_ERROR(Stream->readBytes(4, 2, Buffer));
}
}
// Test that we can write to a BinaryStream without a StreamWriter.
TEST_F(BinaryStreamTest, MutableBinaryByteStreamProperties) {
std::vector<uint8_t> InputData = {'T', 'e', 's', 't', '\0'};
initialize(InputData, InputData.size());
ASSERT_EQ(2U, InputStreams.size());
ASSERT_EQ(2U, OutputStreams.size());
// For every combination of input stream and output stream.
for (auto IS : InputStreams) {
MutableArrayRef<uint8_t> Buffer;
ASSERT_EQ(InputData.size(), IS->getLength());
for (auto OS : OutputStreams) {
// 1. Try two reads that are supposed to work. One from offset 0, and one
// from the middle.
uint32_t Offsets[] = {0, 3};
for (auto Offset : Offsets) {
uint32_t ExpectedSize = IS->getLength() - Offset;
// Read everything from Offset until the end of the input data.
ArrayRef<uint8_t> Data;
ASSERT_NO_ERROR(IS->readBytes(Offset, ExpectedSize, Data));
ASSERT_EQ(ExpectedSize, Data.size());
// Then write it to the destination.
ASSERT_NO_ERROR(OS->writeBytes(0, Data));
// Then we read back what we wrote, it should match the corresponding
// slice
// of the original input data.
ArrayRef<uint8_t> Data2;
ASSERT_NO_ERROR(OS->readBytes(Offset, ExpectedSize, Data2));
EXPECT_EQ(makeArrayRef(InputData).drop_front(Offset), Data2);
}
std::vector<uint8_t> BigData = {0, 1, 2, 3, 4};
// 2. If the write is too big, it should fail.
EXPECT_ERROR(OS->writeBytes(3, BigData));
}
}
}
// Test that FixedStreamArray works correctly.
TEST_F(BinaryStreamTest, FixedStreamArray) {
std::vector<uint32_t> Ints = {90823, 12908, 109823, 209823};
ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(Ints.data()),
Ints.size() * sizeof(uint32_t));
initialize(IntBytes, 0);
ASSERT_EQ(2U, InputStreams.size());
for (auto IS : InputStreams) {
MutableArrayRef<uint8_t> Buffer;
ASSERT_EQ(InputData.size(), IS->getLength());
FixedStreamArray<uint32_t> Array(*IS);
auto Iter = Array.begin();
ASSERT_EQ(Ints[0], *Iter++);
ASSERT_EQ(Ints[1], *Iter++);
ASSERT_EQ(Ints[2], *Iter++);
ASSERT_EQ(Ints[3], *Iter++);
ASSERT_EQ(Array.end(), Iter);
}
}
// Test that VarStreamArray works correctly.
TEST_F(BinaryStreamTest, VarStreamArray) {
StringLiteral Strings("1. Test2. Longer Test3. Really Long Test4. Super "
"Extra Longest Test Of All");
ArrayRef<uint8_t> StringBytes(
reinterpret_cast<const uint8_t *>(Strings.data()), Strings.size());
initialize(StringBytes, 0);
struct StringExtractor {
public:
Error operator()(BinaryStreamRef Stream, uint32_t &Len, StringRef &Item) {
if (Index == 0)
Len = strlen("1. Test");
else if (Index == 1)
Len = strlen("2. Longer Test");
else if (Index == 2)
Len = strlen("3. Really Long Test");
else
Len = strlen("4. Super Extra Longest Test Of All");
ArrayRef<uint8_t> Bytes;
if (auto EC = Stream.readBytes(0, Len, Bytes))
return EC;
Item =
StringRef(reinterpret_cast<const char *>(Bytes.data()), Bytes.size());
++Index;
return Error::success();
}
private:
uint32_t Index = 0;
};
for (auto IS : InputStreams) {
VarStreamArray<StringRef, StringExtractor> Array(*IS);
auto Iter = Array.begin();
ASSERT_EQ("1. Test", *Iter++);
ASSERT_EQ("2. Longer Test", *Iter++);
ASSERT_EQ("3. Really Long Test", *Iter++);
ASSERT_EQ("4. Super Extra Longest Test Of All", *Iter++);
ASSERT_EQ(Array.end(), Iter);
}
}
TEST_F(BinaryStreamTest, StreamReaderBounds) {
std::vector<uint8_t> Bytes;
initialize(Bytes, 0);
for (auto IS : InputStreams) {
StringRef S;
BinaryStreamReader Reader(*IS);
EXPECT_EQ(0U, Reader.bytesRemaining());
EXPECT_ERROR(Reader.readFixedString(S, 1));
}
Bytes.resize(5);
initialize(Bytes, 0);
for (auto IS : InputStreams) {
StringRef S;
BinaryStreamReader Reader(*IS);
EXPECT_EQ(Bytes.size(), Reader.bytesRemaining());
EXPECT_NO_ERROR(Reader.readFixedString(S, 5));
EXPECT_ERROR(Reader.readFixedString(S, 6));
}
}
TEST_F(BinaryStreamTest, StreamReaderIntegers) {
support::ulittle64_t Little{908234};
support::ubig32_t Big{28907823};
short NS = 2897;
int NI = -89723;
unsigned long NUL = 902309023UL;
constexpr uint32_t Size =
sizeof(Little) + sizeof(Big) + sizeof(NS) + sizeof(NI) + sizeof(NUL);
std::vector<uint8_t> Bytes(Size);
uint8_t *Ptr = &Bytes[0];
memcpy(Ptr, &Little, sizeof(Little));
Ptr += sizeof(Little);
memcpy(Ptr, &Big, sizeof(Big));
Ptr += sizeof(Big);
memcpy(Ptr, &NS, sizeof(NS));
Ptr += sizeof(NS);
memcpy(Ptr, &NI, sizeof(NI));
Ptr += sizeof(NI);
memcpy(Ptr, &NUL, sizeof(NUL));
Ptr += sizeof(NUL);
initialize(Bytes, 0);
for (auto IS : InputStreams) {
const support::ulittle64_t *Little2;
const support::ubig32_t *Big2;
short NS2;
int NI2;
unsigned long NUL2;
// 1. Reading fields individually.
BinaryStreamReader Reader(*IS);
ASSERT_NO_ERROR(Reader.readObject(Little2));
ASSERT_NO_ERROR(Reader.readObject(Big2));
ASSERT_NO_ERROR(Reader.readInteger(NS2));
ASSERT_NO_ERROR(Reader.readInteger(NI2));
ASSERT_NO_ERROR(Reader.readInteger(NUL2));
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(Little, *Little2);
EXPECT_EQ(Big, *Big2);
EXPECT_EQ(NS, NS2);
EXPECT_EQ(NI, NI2);
EXPECT_EQ(NUL, NUL2);
// 2. Reading with explicit endianness.
Reader.setOffset(0);
const ulittle64_t *Little3;
const ubig32_t *Big3;
ASSERT_NO_ERROR(Reader.readObject(Little3));
ASSERT_NO_ERROR(Reader.readObject(Big3));
EXPECT_EQ(Little, *Little3);
EXPECT_EQ(Big, *Big3);
}
}
TEST_F(BinaryStreamTest, StreamReaderIntegerArray) {
// 1. Arrays of integers
std::vector<int> Ints = {1, 2, 3, 4, 5};
ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(&Ints[0]),
Ints.size() * sizeof(int));
initialize(IntBytes, 0);
for (auto IS : InputStreams) {
BinaryStreamReader Reader(*IS);
ArrayRef<int> IntsRef;
ASSERT_NO_ERROR(Reader.readArray(IntsRef, Ints.size()));
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(makeArrayRef(Ints), IntsRef);
Reader.setOffset(0);
FixedStreamArray<int> FixedIntsRef;
ASSERT_NO_ERROR(Reader.readArray(FixedIntsRef, Ints.size()));
ASSERT_EQ(0U, Reader.bytesRemaining());
ASSERT_EQ(Ints, std::vector<int>(FixedIntsRef.begin(), FixedIntsRef.end()));
}
}
TEST_F(BinaryStreamTest, StreamReaderEnum) {
enum class MyEnum : int64_t { Foo = -10, Bar = 0, Baz = 10 };
std::vector<MyEnum> Enums = {MyEnum::Bar, MyEnum::Baz, MyEnum::Foo};
ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(&Enums[0]),
sizeof(MyEnum) * Enums.size());
initialize(Bytes, 0);
for (auto IS : InputStreams) {
BinaryStreamReader Reader(*IS);
MyEnum V1;
MyEnum V2;
MyEnum V3;
ArrayRef<MyEnum> Array;
FixedStreamArray<MyEnum> FSA;
ASSERT_NO_ERROR(Reader.readEnum(V1));
ASSERT_NO_ERROR(Reader.readEnum(V2));
ASSERT_NO_ERROR(Reader.readEnum(V3));
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(MyEnum::Bar, V1);
EXPECT_EQ(MyEnum::Baz, V2);
EXPECT_EQ(MyEnum::Foo, V3);
Reader.setOffset(0);
ASSERT_NO_ERROR(Reader.readArray(Array, 3));
EXPECT_EQ(makeArrayRef(Enums), Array);
Reader.setOffset(0);
ASSERT_NO_ERROR(Reader.readArray(FSA, 3));
EXPECT_EQ(Enums, std::vector<MyEnum>(FSA.begin(), FSA.end()));
}
}
TEST_F(BinaryStreamTest, StreamReaderObject) {
struct Foo {
int X;
double Y;
char Z;
};
std::vector<Foo> Foos;
Foos.push_back({-42, 42.42, 42});
Foos.push_back({100, 3.1415, -89});
std::vector<uint8_t> Bytes;
Bytes.resize(2 * sizeof(Foo));
Foo *FPtr = reinterpret_cast<Foo *>(&Bytes[0]);
Foo *GPtr = FPtr + 1;
::memcpy(FPtr, &Foos[0], sizeof(Foo));
::memcpy(GPtr + sizeof(Foo), &Foos[1], sizeof(Foo));
initialize(Bytes, 0);
for (auto IS : InputStreams) {
// 1. Reading object pointers.
BinaryStreamReader Reader(*IS);
const Foo *FPtrOut = nullptr;
const Foo *GPtrOut = nullptr;
ASSERT_NO_ERROR(Reader.readObject(FPtrOut));
ASSERT_NO_ERROR(Reader.readObject(GPtrOut));
EXPECT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(0, ::memcmp(FPtr, FPtrOut, sizeof(Foo)));
EXPECT_EQ(0, ::memcmp(GPtr, GPtrOut, sizeof(Foo)));
}
}
TEST_F(BinaryStreamTest, StreamReaderStrings) {
std::vector<uint8_t> Bytes = {'O', 'n', 'e', '\0', 'T', 'w', 'o',
'\0', 'T', 'h', 'r', 'e', 'e', '\0',
'F', 'o', 'u', 'r', '\0'};
initialize(Bytes, 0);
for (auto IS : InputStreams) {
BinaryStreamReader Reader(*IS);
StringRef S1;
StringRef S2;
StringRef S3;
StringRef S4;
ASSERT_NO_ERROR(Reader.readCString(S1));
ASSERT_NO_ERROR(Reader.readCString(S2));
ASSERT_NO_ERROR(Reader.readCString(S3));
ASSERT_NO_ERROR(Reader.readCString(S4));
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ("One", S1);
EXPECT_EQ("Two", S2);
EXPECT_EQ("Three", S3);
EXPECT_EQ("Four", S4);
S1 = S2 = S3 = S4 = "";
Reader.setOffset(0);
ASSERT_NO_ERROR(Reader.readFixedString(S1, 3));
ASSERT_NO_ERROR(Reader.skip(1));
ASSERT_NO_ERROR(Reader.readFixedString(S2, 3));
ASSERT_NO_ERROR(Reader.skip(1));
ASSERT_NO_ERROR(Reader.readFixedString(S3, 5));
ASSERT_NO_ERROR(Reader.skip(1));
ASSERT_NO_ERROR(Reader.readFixedString(S4, 4));
ASSERT_NO_ERROR(Reader.skip(1));
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ("One", S1);
EXPECT_EQ("Two", S2);
EXPECT_EQ("Three", S3);
EXPECT_EQ("Four", S4);
}
}
TEST_F(BinaryStreamTest, StreamWriterBounds) {
initialize(5);
for (auto OS : OutputStreams) {
BinaryStreamWriter Writer(*OS);
// 1. Can write a string that exactly fills the buffer.
EXPECT_EQ(5U, Writer.bytesRemaining());
EXPECT_NO_ERROR(Writer.writeFixedString("abcde"));
EXPECT_EQ(0U, Writer.bytesRemaining());
// 2. Can write an empty string even when you're full
EXPECT_NO_ERROR(Writer.writeFixedString(""));
EXPECT_ERROR(Writer.writeFixedString("a"));
// 3. Can't write a string that is one character too long.
Writer.setOffset(0);
EXPECT_ERROR(Writer.writeFixedString("abcdef"));
}
}
TEST_F(BinaryStreamTest, StreamWriterIntegers) {
support::ulittle64_t Little{908234};
support::ubig32_t Big{28907823};
short NS = 2897;
int NI = -89723;
unsigned long NUL = 902309023UL;
constexpr uint32_t Size =
sizeof(Little) + sizeof(Big) + sizeof(NS) + sizeof(NI) + sizeof(NUL);
initialize(Size);
for (auto OS : OutputStreams) {
BinaryStreamWriter Writer(*OS);
// 1. Writing fields individually.
ASSERT_NO_ERROR(Writer.writeObject(Little));
ASSERT_NO_ERROR(Writer.writeObject(Big));
ASSERT_NO_ERROR(Writer.writeInteger(NS));
ASSERT_NO_ERROR(Writer.writeInteger(NI));
ASSERT_NO_ERROR(Writer.writeInteger(NUL));
ASSERT_EQ(0U, Writer.bytesRemaining());
// Read them back in and confirm they're correct.
const ulittle64_t *Little2;
const ubig32_t *Big2;
short NS2;
int NI2;
unsigned long NUL2;
BinaryStreamReader Reader(*OS);
ASSERT_NO_ERROR(Reader.readObject(Little2));
ASSERT_NO_ERROR(Reader.readObject(Big2));
ASSERT_NO_ERROR(Reader.readInteger(NS2));
ASSERT_NO_ERROR(Reader.readInteger(NI2));
ASSERT_NO_ERROR(Reader.readInteger(NUL2));
EXPECT_EQ(Little, *Little2);
EXPECT_EQ(Big, *Big2);
EXPECT_EQ(NS, NS2);
EXPECT_EQ(NI, NI2);
EXPECT_EQ(NUL, NUL2);
}
}
TEST_F(BinaryStreamTest, StreamWriterIntegerArrays) {
// 3. Arrays of integers
std::vector<int> SourceInts = {1, 2, 3, 4, 5};
ArrayRef<uint8_t> SourceBytes(reinterpret_cast<uint8_t *>(&SourceInts[0]),
SourceInts.size() * sizeof(int));
initialize(SourceBytes, SourceBytes.size());
for (auto IS : InputStreams) {
for (auto OS : OutputStreams) {
BinaryStreamReader Reader(*IS);
BinaryStreamWriter Writer(*OS);
ArrayRef<int> Ints;
ArrayRef<int> Ints2;
// First read them, then write them, then read them back.
ASSERT_NO_ERROR(Reader.readArray(Ints, SourceInts.size()));
ASSERT_NO_ERROR(Writer.writeArray(Ints));
BinaryStreamReader ReaderBacker(*OS);
ASSERT_NO_ERROR(ReaderBacker.readArray(Ints2, SourceInts.size()));
EXPECT_EQ(makeArrayRef(SourceInts), Ints2);
}
}
}
TEST_F(BinaryStreamTest, StreamWriterEnum) {
enum class MyEnum : int64_t { Foo = -10, Bar = 0, Baz = 10 };
std::vector<MyEnum> Expected = {MyEnum::Bar, MyEnum::Foo, MyEnum::Baz};
initialize(Expected.size() * sizeof(MyEnum));
for (auto OS : OutputStreams) {
BinaryStreamWriter Writer(*OS);
ArrayRef<MyEnum> Enums;
ArrayRef<MyEnum> Enums2;
// First read them, then write them, then read them back.
for (auto ME : Expected)
ASSERT_NO_ERROR(Writer.writeEnum(ME));
ArrayRef<MyEnum> Array;
BinaryStreamReader Reader(*OS);
ASSERT_NO_ERROR(Reader.readArray(Array, Expected.size()));
EXPECT_EQ(makeArrayRef(Expected), Array);
}
}
TEST_F(BinaryStreamTest, StringWriterStrings) {
StringRef Strings[] = {"First", "Second", "Third", "Fourth"};
size_t Length = 0;
for (auto S : Strings)
Length += S.size() + 1;
initialize(Length);
for (auto OS : OutputStreams) {
BinaryStreamWriter Writer(*OS);
for (auto S : Strings)
ASSERT_NO_ERROR(Writer.writeCString(S));
for (auto IS : InputStreams) {
std::vector<StringRef> InStrings;
BinaryStreamReader Reader(*IS);
while (!Reader.empty()) {
StringRef S;
ASSERT_NO_ERROR(Reader.readCString(S));
InStrings.push_back(S);
}
EXPECT_EQ(makeArrayRef(Strings), makeArrayRef(InStrings));
}
}
}
TEST_F(BinaryStreamTest, StreamReaderIntegersVariadic) {
uint8_t A = 201;
int8_t A2 = -92;
uint16_t B = 20823;
int16_t B2 = -20823;
uint32_t C = 8978251;
int32_t C2 = -8978251;
uint64_t D = 90278410232ULL;
int64_t D2 = -90278410232LL;
initialize(2 * (sizeof(A) + sizeof(B) + sizeof(C) + sizeof(D)));
for (auto OS : OutputStreams) {
BinaryStreamWriter Writer(*OS);
ASSERT_NO_ERROR(Writer.writeIntegers(A, A2, B, B2, C, C2, D, D2));
for (auto IS : InputStreams) {
BinaryStreamReader Reader(*IS);
uint8_t AX;
int8_t AX2;
uint16_t BX;
int16_t BX2;
uint32_t CX;
int32_t CX2;
uint64_t DX;
int64_t DX2;
ASSERT_NO_ERROR(Reader.readIntegers(AX, AX2, BX, BX2, CX, CX2, DX, DX2));
EXPECT_EQ(A, AX);
EXPECT_EQ(A2, AX2);
EXPECT_EQ(B, BX);
EXPECT_EQ(B2, BX2);
EXPECT_EQ(C, CX);
EXPECT_EQ(C2, CX2);
EXPECT_EQ(D, DX);
EXPECT_EQ(D2, DX2);
}
}
}
}
namespace {
struct BinaryItemStreamObject {
BinaryItemStreamObject(int X, float Y) : X(X), Y(Y) {}
int X;
float Y;
};
}
namespace llvm {
template <> struct BinaryItemTraits<std::unique_ptr<BinaryItemStreamObject>> {
size_t length(const std::unique_ptr<BinaryItemStreamObject> &Item) {
size_t S = sizeof(Item->X);
S += sizeof(Item->Y);
return S;
}
ArrayRef<uint8_t> bytes(const std::unique_ptr<BinaryItemStreamObject> &Item) {
// In practice we probably would use a more cheaply serializable type,
// or at the very least not allocate every single time. This is just
// for illustration and testing though.
size_t Size = length(Item);
uint8_t *Buffer = Alloc.Allocate<uint8_t>(Size);
MutableBinaryByteStream Stream(MutableArrayRef<uint8_t>(Buffer, Size),
little);
BinaryStreamWriter Writer(Stream);
consumeError(Writer.writeInteger(Item->X));
consumeError(Writer.writeObject(Item->Y));
return makeArrayRef(Buffer, Size);
}
private:
BumpPtrAllocator Alloc;
};
}
namespace {
TEST_F(BinaryStreamTest, BinaryItemStream) {
// Note that this is a vector of pointers, so individual records do not live
// contiguously in memory.
std::vector<std::unique_ptr<BinaryItemStreamObject>> Objects;
Objects.push_back(llvm::make_unique<BinaryItemStreamObject>(1, 1.0));
Objects.push_back(llvm::make_unique<BinaryItemStreamObject>(2, 2.0));
Objects.push_back(llvm::make_unique<BinaryItemStreamObject>(3, 3.0));
BinaryItemStream<std::unique_ptr<BinaryItemStreamObject>> ItemStream(little);
ItemStream.setItems(Objects);
BinaryStreamReader Reader(ItemStream);
for (int I = 0; I < 3; ++I) {
int X;
const float *Y;
ASSERT_NO_ERROR(Reader.readInteger(X));
ASSERT_NO_ERROR(Reader.readObject(Y));
EXPECT_EQ(Objects[I]->X, X);
EXPECT_DOUBLE_EQ(Objects[I]->Y, *Y);
}
}
} // end anonymous namespace