mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-11 13:46:13 +00:00
5480c0469e
promote from i1 all the way up to the canonical SetCC type. In order to discover an appropriate type to use, pass MVT::Other to getSetCCResultType. In order to be able to do this, change getSetCCResultType to take a type as an argument, not a value (this is also more logical). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61542 91177308-0d34-0410-b5e6-96231b3b80d8
3026 lines
106 KiB
C++
3026 lines
106 KiB
C++
//===-- SPUISelLowering.cpp - Cell SPU DAG Lowering Implementation --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SPUTargetLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SPURegisterNames.h"
|
|
#include "SPUISelLowering.h"
|
|
#include "SPUTargetMachine.h"
|
|
#include "SPUFrameInfo.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/VectorExtras.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
#include <map>
|
|
|
|
using namespace llvm;
|
|
|
|
// Used in getTargetNodeName() below
|
|
namespace {
|
|
std::map<unsigned, const char *> node_names;
|
|
|
|
//! MVT mapping to useful data for Cell SPU
|
|
struct valtype_map_s {
|
|
const MVT valtype;
|
|
const int prefslot_byte;
|
|
};
|
|
|
|
const valtype_map_s valtype_map[] = {
|
|
{ MVT::i1, 3 },
|
|
{ MVT::i8, 3 },
|
|
{ MVT::i16, 2 },
|
|
{ MVT::i32, 0 },
|
|
{ MVT::f32, 0 },
|
|
{ MVT::i64, 0 },
|
|
{ MVT::f64, 0 },
|
|
{ MVT::i128, 0 }
|
|
};
|
|
|
|
const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
|
|
|
|
const valtype_map_s *getValueTypeMapEntry(MVT VT) {
|
|
const valtype_map_s *retval = 0;
|
|
|
|
for (size_t i = 0; i < n_valtype_map; ++i) {
|
|
if (valtype_map[i].valtype == VT) {
|
|
retval = valtype_map + i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
if (retval == 0) {
|
|
cerr << "getValueTypeMapEntry returns NULL for "
|
|
<< VT.getMVTString()
|
|
<< "\n";
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
|
|
: TargetLowering(TM),
|
|
SPUTM(TM)
|
|
{
|
|
// Fold away setcc operations if possible.
|
|
setPow2DivIsCheap();
|
|
|
|
// Use _setjmp/_longjmp instead of setjmp/longjmp.
|
|
setUseUnderscoreSetJmp(true);
|
|
setUseUnderscoreLongJmp(true);
|
|
|
|
// Set up the SPU's register classes:
|
|
addRegisterClass(MVT::i8, SPU::R8CRegisterClass);
|
|
addRegisterClass(MVT::i16, SPU::R16CRegisterClass);
|
|
addRegisterClass(MVT::i32, SPU::R32CRegisterClass);
|
|
addRegisterClass(MVT::i64, SPU::R64CRegisterClass);
|
|
addRegisterClass(MVT::f32, SPU::R32FPRegisterClass);
|
|
addRegisterClass(MVT::f64, SPU::R64FPRegisterClass);
|
|
addRegisterClass(MVT::i128, SPU::GPRCRegisterClass);
|
|
|
|
// SPU has no sign or zero extended loads for i1, i8, i16:
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
|
|
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
|
|
|
|
// SPU constant load actions are custom lowered:
|
|
setOperationAction(ISD::Constant, MVT::i64, Custom);
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
|
|
|
|
// SPU's loads and stores have to be custom lowered:
|
|
for (unsigned sctype = (unsigned) MVT::i8; sctype < (unsigned) MVT::f128;
|
|
++sctype) {
|
|
MVT VT = (MVT::SimpleValueType)sctype;
|
|
|
|
setOperationAction(ISD::LOAD, VT, Custom);
|
|
setOperationAction(ISD::STORE, VT, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, Custom);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, Custom);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, Custom);
|
|
|
|
// SMUL_LOHI, UMUL_LOHI are not legal for Cell:
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
|
|
for (unsigned stype = sctype - 1; stype >= (unsigned) MVT::i8; --stype) {
|
|
MVT StoreVT = (MVT::SimpleValueType) stype;
|
|
setTruncStoreAction(VT, StoreVT, Expand);
|
|
}
|
|
}
|
|
|
|
for (unsigned sctype = (unsigned) MVT::f32; sctype < (unsigned) MVT::f64;
|
|
++sctype) {
|
|
MVT VT = (MVT::SimpleValueType) sctype;
|
|
|
|
setOperationAction(ISD::LOAD, VT, Custom);
|
|
setOperationAction(ISD::STORE, VT, Custom);
|
|
|
|
for (unsigned stype = sctype - 1; stype >= (unsigned) MVT::f32; --stype) {
|
|
MVT StoreVT = (MVT::SimpleValueType) stype;
|
|
setTruncStoreAction(VT, StoreVT, Expand);
|
|
}
|
|
}
|
|
|
|
// Custom lower BRCOND for i8 to "promote" the result to whatever the result
|
|
// operand happens to be:
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
|
|
// Expand the jumptable branches
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
|
|
|
|
// Custom lower SELECT_CC for most cases, but expand by default
|
|
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
|
|
|
|
// SPU has no intrinsics for these particular operations:
|
|
setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
|
|
|
|
// SPU has no SREM/UREM instructions
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
|
|
// We don't support sin/cos/sqrt/fmod
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f32, Expand);
|
|
|
|
// If we're enabling GP optimizations, use hardware square root
|
|
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
|
|
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
|
|
// SPU can do rotate right and left, so legalize it... but customize for i8
|
|
// because instructions don't exist.
|
|
|
|
// FIXME: Change from "expand" to appropriate type once ROTR is supported in
|
|
// .td files.
|
|
setOperationAction(ISD::ROTR, MVT::i32, Expand /*Legal*/);
|
|
setOperationAction(ISD::ROTR, MVT::i16, Expand /*Legal*/);
|
|
setOperationAction(ISD::ROTR, MVT::i8, Expand /*Custom*/);
|
|
|
|
setOperationAction(ISD::ROTL, MVT::i32, Legal);
|
|
setOperationAction(ISD::ROTL, MVT::i16, Legal);
|
|
setOperationAction(ISD::ROTL, MVT::i8, Custom);
|
|
|
|
// SPU has no native version of shift left/right for i8
|
|
setOperationAction(ISD::SHL, MVT::i8, Custom);
|
|
setOperationAction(ISD::SRL, MVT::i8, Custom);
|
|
setOperationAction(ISD::SRA, MVT::i8, Custom);
|
|
|
|
// Make these operations legal and handle them during instruction selection:
|
|
setOperationAction(ISD::SHL, MVT::i64, Legal);
|
|
setOperationAction(ISD::SRL, MVT::i64, Legal);
|
|
setOperationAction(ISD::SRA, MVT::i64, Legal);
|
|
|
|
// Custom lower i8, i32 and i64 multiplications
|
|
setOperationAction(ISD::MUL, MVT::i8, Custom);
|
|
setOperationAction(ISD::MUL, MVT::i32, Legal);
|
|
setOperationAction(ISD::MUL, MVT::i64, Expand); // libcall
|
|
|
|
// Need to custom handle (some) common i8, i64 math ops
|
|
setOperationAction(ISD::ADD, MVT::i8, Custom);
|
|
setOperationAction(ISD::ADD, MVT::i64, Custom);
|
|
setOperationAction(ISD::SUB, MVT::i8, Custom);
|
|
setOperationAction(ISD::SUB, MVT::i64, Custom);
|
|
|
|
// SPU does not have BSWAP. It does have i32 support CTLZ.
|
|
// CTPOP has to be custom lowered.
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::CTPOP, MVT::i8, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::i16, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::CTLZ , MVT::i32, Legal);
|
|
|
|
// SPU has a version of select that implements (a&~c)|(b&c), just like
|
|
// select ought to work:
|
|
setOperationAction(ISD::SELECT, MVT::i8, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::i16, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Legal);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::i8, Legal);
|
|
setOperationAction(ISD::SETCC, MVT::i16, Legal);
|
|
setOperationAction(ISD::SETCC, MVT::i32, Legal);
|
|
setOperationAction(ISD::SETCC, MVT::i64, Legal);
|
|
|
|
// Zero extension and sign extension for i64 have to be
|
|
// custom legalized
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::i64, Custom);
|
|
setOperationAction(ISD::ANY_EXTEND, MVT::i64, Custom);
|
|
|
|
// Custom lower i128 -> i64 truncates
|
|
setOperationAction(ISD::TRUNCATE, MVT::i64, Custom);
|
|
|
|
// SPU has a legal FP -> signed INT instruction
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
|
|
|
|
// FDIV on SPU requires custom lowering
|
|
setOperationAction(ISD::FDIV, MVT::f64, Expand); // libcall
|
|
|
|
// SPU has [U|S]INT_TO_FP
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::i32, Legal);
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::f32, Legal);
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::i64, Legal);
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::f64, Legal);
|
|
|
|
// We cannot sextinreg(i1). Expand to shifts.
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
// Support label based line numbers.
|
|
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
|
|
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
|
|
|
|
// We want to legalize GlobalAddress and ConstantPool nodes into the
|
|
// appropriate instructions to materialize the address.
|
|
for (unsigned sctype = (unsigned) MVT::i8; sctype < (unsigned) MVT::f128;
|
|
++sctype) {
|
|
MVT VT = (MVT::SimpleValueType)sctype;
|
|
|
|
setOperationAction(ISD::GlobalAddress, VT, Custom);
|
|
setOperationAction(ISD::ConstantPool, VT, Custom);
|
|
setOperationAction(ISD::JumpTable, VT, Custom);
|
|
}
|
|
|
|
// RET must be custom lowered, to meet ABI requirements
|
|
setOperationAction(ISD::RET, MVT::Other, Custom);
|
|
|
|
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
|
|
setOperationAction(ISD::VASTART , MVT::Other, Custom);
|
|
|
|
// Use the default implementation.
|
|
setOperationAction(ISD::VAARG , MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Expand);
|
|
|
|
// Cell SPU has instructions for converting between i64 and fp.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
|
|
|
// To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
|
|
|
|
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
|
|
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
|
|
|
|
// First set operation action for all vector types to expand. Then we
|
|
// will selectively turn on ones that can be effectively codegen'd.
|
|
addRegisterClass(MVT::v16i8, SPU::VECREGRegisterClass);
|
|
addRegisterClass(MVT::v8i16, SPU::VECREGRegisterClass);
|
|
addRegisterClass(MVT::v4i32, SPU::VECREGRegisterClass);
|
|
addRegisterClass(MVT::v2i64, SPU::VECREGRegisterClass);
|
|
addRegisterClass(MVT::v4f32, SPU::VECREGRegisterClass);
|
|
addRegisterClass(MVT::v2f64, SPU::VECREGRegisterClass);
|
|
|
|
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
|
|
MVT VT = (MVT::SimpleValueType)i;
|
|
|
|
// add/sub are legal for all supported vector VT's.
|
|
setOperationAction(ISD::ADD , VT, Legal);
|
|
setOperationAction(ISD::SUB , VT, Legal);
|
|
// mul has to be custom lowered.
|
|
// TODO: v2i64 vector multiply
|
|
setOperationAction(ISD::MUL , VT, Legal);
|
|
|
|
setOperationAction(ISD::AND , VT, Legal);
|
|
setOperationAction(ISD::OR , VT, Legal);
|
|
setOperationAction(ISD::XOR , VT, Legal);
|
|
setOperationAction(ISD::LOAD , VT, Legal);
|
|
setOperationAction(ISD::SELECT, VT, Legal);
|
|
setOperationAction(ISD::STORE, VT, Legal);
|
|
|
|
// These operations need to be expanded:
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
|
|
// Custom lower build_vector, constant pool spills, insert and
|
|
// extract vector elements:
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::ConstantPool, VT, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::AND, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::OR, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::XOR, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
|
|
|
|
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
|
|
|
|
setShiftAmountType(MVT::i32);
|
|
setBooleanContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
setStackPointerRegisterToSaveRestore(SPU::R1);
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
setTargetDAGCombine(ISD::ANY_EXTEND);
|
|
|
|
computeRegisterProperties();
|
|
|
|
// Set pre-RA register scheduler default to BURR, which produces slightly
|
|
// better code than the default (could also be TDRR, but TargetLowering.h
|
|
// needs a mod to support that model):
|
|
setSchedulingPreference(SchedulingForRegPressure);
|
|
}
|
|
|
|
const char *
|
|
SPUTargetLowering::getTargetNodeName(unsigned Opcode) const
|
|
{
|
|
if (node_names.empty()) {
|
|
node_names[(unsigned) SPUISD::RET_FLAG] = "SPUISD::RET_FLAG";
|
|
node_names[(unsigned) SPUISD::Hi] = "SPUISD::Hi";
|
|
node_names[(unsigned) SPUISD::Lo] = "SPUISD::Lo";
|
|
node_names[(unsigned) SPUISD::PCRelAddr] = "SPUISD::PCRelAddr";
|
|
node_names[(unsigned) SPUISD::AFormAddr] = "SPUISD::AFormAddr";
|
|
node_names[(unsigned) SPUISD::IndirectAddr] = "SPUISD::IndirectAddr";
|
|
node_names[(unsigned) SPUISD::LDRESULT] = "SPUISD::LDRESULT";
|
|
node_names[(unsigned) SPUISD::CALL] = "SPUISD::CALL";
|
|
node_names[(unsigned) SPUISD::SHUFB] = "SPUISD::SHUFB";
|
|
node_names[(unsigned) SPUISD::SHUFFLE_MASK] = "SPUISD::SHUFFLE_MASK";
|
|
node_names[(unsigned) SPUISD::CNTB] = "SPUISD::CNTB";
|
|
node_names[(unsigned) SPUISD::PREFSLOT2VEC] = "SPUISD::PREFSLOT2VEC";
|
|
node_names[(unsigned) SPUISD::VEC2PREFSLOT] = "SPUISD::VEC2PREFSLOT";
|
|
node_names[(unsigned) SPUISD::SHLQUAD_L_BITS] = "SPUISD::SHLQUAD_L_BITS";
|
|
node_names[(unsigned) SPUISD::SHLQUAD_L_BYTES] = "SPUISD::SHLQUAD_L_BYTES";
|
|
node_names[(unsigned) SPUISD::VEC_SHL] = "SPUISD::VEC_SHL";
|
|
node_names[(unsigned) SPUISD::VEC_SRL] = "SPUISD::VEC_SRL";
|
|
node_names[(unsigned) SPUISD::VEC_SRA] = "SPUISD::VEC_SRA";
|
|
node_names[(unsigned) SPUISD::VEC_ROTL] = "SPUISD::VEC_ROTL";
|
|
node_names[(unsigned) SPUISD::VEC_ROTR] = "SPUISD::VEC_ROTR";
|
|
node_names[(unsigned) SPUISD::SELECT_MASK] = "SPUISD::SELECT_MASK";
|
|
node_names[(unsigned) SPUISD::SELB] = "SPUISD::SELB";
|
|
node_names[(unsigned) SPUISD::ADD_EXTENDED] = "SPUISD::ADD_EXTENDED";
|
|
node_names[(unsigned) SPUISD::CARRY_GENERATE] = "SPUISD::CARRY_GENERATE";
|
|
node_names[(unsigned) SPUISD::SUB_EXTENDED] = "SPUISD::SUB_EXTENDED";
|
|
node_names[(unsigned) SPUISD::BORROW_GENERATE] = "SPUISD::BORROW_GENERATE";
|
|
node_names[(unsigned) SPUISD::SEXT32TO64] = "SPUISD::SEXT32TO64";
|
|
}
|
|
|
|
std::map<unsigned, const char *>::iterator i = node_names.find(Opcode);
|
|
|
|
return ((i != node_names.end()) ? i->second : 0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return the Cell SPU's SETCC result type
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MVT SPUTargetLowering::getSetCCResultType(MVT VT) const {
|
|
// i16 and i32 are valid SETCC result types
|
|
return ((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) ? VT : MVT::i32);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling convention code:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SPUGenCallingConv.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LowerOperation implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Custom lower loads for CellSPU
|
|
/*!
|
|
All CellSPU loads and stores are aligned to 16-byte boundaries, so for elements
|
|
within a 16-byte block, we have to rotate to extract the requested element.
|
|
|
|
For extending loads, we also want to ensure that the following sequence is
|
|
emitted, e.g. for MVT::f32 extending load to MVT::f64:
|
|
|
|
\verbatim
|
|
%1 v16i8,ch = load
|
|
%2 v16i8,ch = rotate %1
|
|
%3 v4f8, ch = bitconvert %2
|
|
%4 f32 = vec2perfslot %3
|
|
%5 f64 = fp_extend %4
|
|
\endverbatim
|
|
*/
|
|
static SDValue
|
|
LowerLOAD(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
|
|
LoadSDNode *LN = cast<LoadSDNode>(Op);
|
|
SDValue the_chain = LN->getChain();
|
|
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
MVT InVT = LN->getMemoryVT();
|
|
MVT OutVT = Op.getValueType();
|
|
ISD::LoadExtType ExtType = LN->getExtensionType();
|
|
unsigned alignment = LN->getAlignment();
|
|
const valtype_map_s *vtm = getValueTypeMapEntry(InVT);
|
|
|
|
switch (LN->getAddressingMode()) {
|
|
case ISD::UNINDEXED: {
|
|
SDValue result;
|
|
SDValue basePtr = LN->getBasePtr();
|
|
SDValue rotate;
|
|
|
|
if (alignment == 16) {
|
|
ConstantSDNode *CN;
|
|
|
|
// Special cases for a known aligned load to simplify the base pointer
|
|
// and the rotation amount:
|
|
if (basePtr.getOpcode() == ISD::ADD
|
|
&& (CN = dyn_cast<ConstantSDNode > (basePtr.getOperand(1))) != 0) {
|
|
// Known offset into basePtr
|
|
int64_t offset = CN->getSExtValue();
|
|
int64_t rotamt = int64_t((offset & 0xf) - vtm->prefslot_byte);
|
|
|
|
if (rotamt < 0)
|
|
rotamt += 16;
|
|
|
|
rotate = DAG.getConstant(rotamt, MVT::i16);
|
|
|
|
// Simplify the base pointer for this case:
|
|
basePtr = basePtr.getOperand(0);
|
|
if ((offset & ~0xf) > 0) {
|
|
basePtr = DAG.getNode(SPUISD::IndirectAddr, PtrVT,
|
|
basePtr,
|
|
DAG.getConstant((offset & ~0xf), PtrVT));
|
|
}
|
|
} else if ((basePtr.getOpcode() == SPUISD::AFormAddr)
|
|
|| (basePtr.getOpcode() == SPUISD::IndirectAddr
|
|
&& basePtr.getOperand(0).getOpcode() == SPUISD::Hi
|
|
&& basePtr.getOperand(1).getOpcode() == SPUISD::Lo)) {
|
|
// Plain aligned a-form address: rotate into preferred slot
|
|
// Same for (SPUindirect (SPUhi ...), (SPUlo ...))
|
|
int64_t rotamt = -vtm->prefslot_byte;
|
|
if (rotamt < 0)
|
|
rotamt += 16;
|
|
rotate = DAG.getConstant(rotamt, MVT::i16);
|
|
} else {
|
|
// Offset the rotate amount by the basePtr and the preferred slot
|
|
// byte offset
|
|
int64_t rotamt = -vtm->prefslot_byte;
|
|
if (rotamt < 0)
|
|
rotamt += 16;
|
|
rotate = DAG.getNode(ISD::ADD, PtrVT,
|
|
basePtr,
|
|
DAG.getConstant(rotamt, PtrVT));
|
|
}
|
|
} else {
|
|
// Unaligned load: must be more pessimistic about addressing modes:
|
|
if (basePtr.getOpcode() == ISD::ADD) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
unsigned VReg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
|
|
SDValue Flag;
|
|
|
|
SDValue Op0 = basePtr.getOperand(0);
|
|
SDValue Op1 = basePtr.getOperand(1);
|
|
|
|
if (isa<ConstantSDNode>(Op1)) {
|
|
// Convert the (add <ptr>, <const>) to an indirect address contained
|
|
// in a register. Note that this is done because we need to avoid
|
|
// creating a 0(reg) d-form address due to the SPU's block loads.
|
|
basePtr = DAG.getNode(SPUISD::IndirectAddr, PtrVT, Op0, Op1);
|
|
the_chain = DAG.getCopyToReg(the_chain, VReg, basePtr, Flag);
|
|
basePtr = DAG.getCopyFromReg(the_chain, VReg, PtrVT);
|
|
} else {
|
|
// Convert the (add <arg1>, <arg2>) to an indirect address, which
|
|
// will likely be lowered as a reg(reg) x-form address.
|
|
basePtr = DAG.getNode(SPUISD::IndirectAddr, PtrVT, Op0, Op1);
|
|
}
|
|
} else {
|
|
basePtr = DAG.getNode(SPUISD::IndirectAddr, PtrVT,
|
|
basePtr,
|
|
DAG.getConstant(0, PtrVT));
|
|
}
|
|
|
|
// Offset the rotate amount by the basePtr and the preferred slot
|
|
// byte offset
|
|
rotate = DAG.getNode(ISD::ADD, PtrVT,
|
|
basePtr,
|
|
DAG.getConstant(-vtm->prefslot_byte, PtrVT));
|
|
}
|
|
|
|
// Re-emit as a v16i8 vector load
|
|
result = DAG.getLoad(MVT::v16i8, the_chain, basePtr,
|
|
LN->getSrcValue(), LN->getSrcValueOffset(),
|
|
LN->isVolatile(), 16);
|
|
|
|
// Update the chain
|
|
the_chain = result.getValue(1);
|
|
|
|
// Rotate into the preferred slot:
|
|
result = DAG.getNode(SPUISD::ROTBYTES_LEFT, MVT::v16i8,
|
|
result.getValue(0), rotate);
|
|
|
|
// Convert the loaded v16i8 vector to the appropriate vector type
|
|
// specified by the operand:
|
|
MVT vecVT = MVT::getVectorVT(InVT, (128 / InVT.getSizeInBits()));
|
|
result = DAG.getNode(SPUISD::VEC2PREFSLOT, InVT,
|
|
DAG.getNode(ISD::BIT_CONVERT, vecVT, result));
|
|
|
|
// Handle extending loads by extending the scalar result:
|
|
if (ExtType == ISD::SEXTLOAD) {
|
|
result = DAG.getNode(ISD::SIGN_EXTEND, OutVT, result);
|
|
} else if (ExtType == ISD::ZEXTLOAD) {
|
|
result = DAG.getNode(ISD::ZERO_EXTEND, OutVT, result);
|
|
} else if (ExtType == ISD::EXTLOAD) {
|
|
unsigned NewOpc = ISD::ANY_EXTEND;
|
|
|
|
if (OutVT.isFloatingPoint())
|
|
NewOpc = ISD::FP_EXTEND;
|
|
|
|
result = DAG.getNode(NewOpc, OutVT, result);
|
|
}
|
|
|
|
SDVTList retvts = DAG.getVTList(OutVT, MVT::Other);
|
|
SDValue retops[2] = {
|
|
result,
|
|
the_chain
|
|
};
|
|
|
|
result = DAG.getNode(SPUISD::LDRESULT, retvts,
|
|
retops, sizeof(retops) / sizeof(retops[0]));
|
|
return result;
|
|
}
|
|
case ISD::PRE_INC:
|
|
case ISD::PRE_DEC:
|
|
case ISD::POST_INC:
|
|
case ISD::POST_DEC:
|
|
case ISD::LAST_INDEXED_MODE:
|
|
cerr << "LowerLOAD: Got a LoadSDNode with an addr mode other than "
|
|
"UNINDEXED\n";
|
|
cerr << (unsigned) LN->getAddressingMode() << "\n";
|
|
abort();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Custom lower stores for CellSPU
|
|
/*!
|
|
All CellSPU stores are aligned to 16-byte boundaries, so for elements
|
|
within a 16-byte block, we have to generate a shuffle to insert the
|
|
requested element into its place, then store the resulting block.
|
|
*/
|
|
static SDValue
|
|
LowerSTORE(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
|
|
StoreSDNode *SN = cast<StoreSDNode>(Op);
|
|
SDValue Value = SN->getValue();
|
|
MVT VT = Value.getValueType();
|
|
MVT StVT = (!SN->isTruncatingStore() ? VT : SN->getMemoryVT());
|
|
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
unsigned alignment = SN->getAlignment();
|
|
|
|
switch (SN->getAddressingMode()) {
|
|
case ISD::UNINDEXED: {
|
|
// The vector type we really want to load from the 16-byte chunk.
|
|
MVT vecVT = MVT::getVectorVT(VT, (128 / VT.getSizeInBits())),
|
|
stVecVT = MVT::getVectorVT(StVT, (128 / StVT.getSizeInBits()));
|
|
|
|
SDValue alignLoadVec;
|
|
SDValue basePtr = SN->getBasePtr();
|
|
SDValue the_chain = SN->getChain();
|
|
SDValue insertEltOffs;
|
|
|
|
if (alignment == 16) {
|
|
ConstantSDNode *CN;
|
|
|
|
// Special cases for a known aligned load to simplify the base pointer
|
|
// and insertion byte:
|
|
if (basePtr.getOpcode() == ISD::ADD
|
|
&& (CN = dyn_cast<ConstantSDNode>(basePtr.getOperand(1))) != 0) {
|
|
// Known offset into basePtr
|
|
int64_t offset = CN->getSExtValue();
|
|
|
|
// Simplify the base pointer for this case:
|
|
basePtr = basePtr.getOperand(0);
|
|
insertEltOffs = DAG.getNode(SPUISD::IndirectAddr, PtrVT,
|
|
basePtr,
|
|
DAG.getConstant((offset & 0xf), PtrVT));
|
|
|
|
if ((offset & ~0xf) > 0) {
|
|
basePtr = DAG.getNode(SPUISD::IndirectAddr, PtrVT,
|
|
basePtr,
|
|
DAG.getConstant((offset & ~0xf), PtrVT));
|
|
}
|
|
} else {
|
|
// Otherwise, assume it's at byte 0 of basePtr
|
|
insertEltOffs = DAG.getNode(SPUISD::IndirectAddr, PtrVT,
|
|
basePtr,
|
|
DAG.getConstant(0, PtrVT));
|
|
}
|
|
} else {
|
|
// Unaligned load: must be more pessimistic about addressing modes:
|
|
if (basePtr.getOpcode() == ISD::ADD) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
unsigned VReg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
|
|
SDValue Flag;
|
|
|
|
SDValue Op0 = basePtr.getOperand(0);
|
|
SDValue Op1 = basePtr.getOperand(1);
|
|
|
|
if (isa<ConstantSDNode>(Op1)) {
|
|
// Convert the (add <ptr>, <const>) to an indirect address contained
|
|
// in a register. Note that this is done because we need to avoid
|
|
// creating a 0(reg) d-form address due to the SPU's block loads.
|
|
basePtr = DAG.getNode(SPUISD::IndirectAddr, PtrVT, Op0, Op1);
|
|
the_chain = DAG.getCopyToReg(the_chain, VReg, basePtr, Flag);
|
|
basePtr = DAG.getCopyFromReg(the_chain, VReg, PtrVT);
|
|
} else {
|
|
// Convert the (add <arg1>, <arg2>) to an indirect address, which
|
|
// will likely be lowered as a reg(reg) x-form address.
|
|
basePtr = DAG.getNode(SPUISD::IndirectAddr, PtrVT, Op0, Op1);
|
|
}
|
|
} else {
|
|
basePtr = DAG.getNode(SPUISD::IndirectAddr, PtrVT,
|
|
basePtr,
|
|
DAG.getConstant(0, PtrVT));
|
|
}
|
|
|
|
// Insertion point is solely determined by basePtr's contents
|
|
insertEltOffs = DAG.getNode(ISD::ADD, PtrVT,
|
|
basePtr,
|
|
DAG.getConstant(0, PtrVT));
|
|
}
|
|
|
|
// Re-emit as a v16i8 vector load
|
|
alignLoadVec = DAG.getLoad(MVT::v16i8, the_chain, basePtr,
|
|
SN->getSrcValue(), SN->getSrcValueOffset(),
|
|
SN->isVolatile(), 16);
|
|
|
|
// Update the chain
|
|
the_chain = alignLoadVec.getValue(1);
|
|
|
|
LoadSDNode *LN = cast<LoadSDNode>(alignLoadVec);
|
|
SDValue theValue = SN->getValue();
|
|
SDValue result;
|
|
|
|
if (StVT != VT
|
|
&& (theValue.getOpcode() == ISD::AssertZext
|
|
|| theValue.getOpcode() == ISD::AssertSext)) {
|
|
// Drill down and get the value for zero- and sign-extended
|
|
// quantities
|
|
theValue = theValue.getOperand(0);
|
|
}
|
|
|
|
// If the base pointer is already a D-form address, then just create
|
|
// a new D-form address with a slot offset and the orignal base pointer.
|
|
// Otherwise generate a D-form address with the slot offset relative
|
|
// to the stack pointer, which is always aligned.
|
|
#if !defined(NDEBUG)
|
|
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
|
|
cerr << "CellSPU LowerSTORE: basePtr = ";
|
|
basePtr.getNode()->dump(&DAG);
|
|
cerr << "\n";
|
|
}
|
|
#endif
|
|
|
|
SDValue insertEltOp =
|
|
DAG.getNode(SPUISD::SHUFFLE_MASK, vecVT, insertEltOffs);
|
|
SDValue vectorizeOp =
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, vecVT, theValue);
|
|
|
|
result = DAG.getNode(SPUISD::SHUFB, vecVT,
|
|
vectorizeOp, alignLoadVec,
|
|
DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, insertEltOp));
|
|
|
|
result = DAG.getStore(the_chain, result, basePtr,
|
|
LN->getSrcValue(), LN->getSrcValueOffset(),
|
|
LN->isVolatile(), LN->getAlignment());
|
|
|
|
#if 0 && !defined(NDEBUG)
|
|
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
|
|
const SDValue ¤tRoot = DAG.getRoot();
|
|
|
|
DAG.setRoot(result);
|
|
cerr << "------- CellSPU:LowerStore result:\n";
|
|
DAG.dump();
|
|
cerr << "-------\n";
|
|
DAG.setRoot(currentRoot);
|
|
}
|
|
#endif
|
|
|
|
return result;
|
|
/*UNREACHED*/
|
|
}
|
|
case ISD::PRE_INC:
|
|
case ISD::PRE_DEC:
|
|
case ISD::POST_INC:
|
|
case ISD::POST_DEC:
|
|
case ISD::LAST_INDEXED_MODE:
|
|
cerr << "LowerLOAD: Got a LoadSDNode with an addr mode other than "
|
|
"UNINDEXED\n";
|
|
cerr << (unsigned) SN->getAddressingMode() << "\n";
|
|
abort();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Generate the address of a constant pool entry.
|
|
static SDValue
|
|
LowerConstantPool(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
|
|
MVT PtrVT = Op.getValueType();
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
Constant *C = CP->getConstVal();
|
|
SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
|
|
SDValue Zero = DAG.getConstant(0, PtrVT);
|
|
const TargetMachine &TM = DAG.getTarget();
|
|
|
|
if (TM.getRelocationModel() == Reloc::Static) {
|
|
if (!ST->usingLargeMem()) {
|
|
// Just return the SDValue with the constant pool address in it.
|
|
return DAG.getNode(SPUISD::AFormAddr, PtrVT, CPI, Zero);
|
|
} else {
|
|
SDValue Hi = DAG.getNode(SPUISD::Hi, PtrVT, CPI, Zero);
|
|
SDValue Lo = DAG.getNode(SPUISD::Lo, PtrVT, CPI, Zero);
|
|
return DAG.getNode(SPUISD::IndirectAddr, PtrVT, Hi, Lo);
|
|
}
|
|
}
|
|
|
|
assert(0 &&
|
|
"LowerConstantPool: Relocation model other than static"
|
|
" not supported.");
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue
|
|
LowerJumpTable(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
|
|
MVT PtrVT = Op.getValueType();
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
|
|
SDValue Zero = DAG.getConstant(0, PtrVT);
|
|
const TargetMachine &TM = DAG.getTarget();
|
|
|
|
if (TM.getRelocationModel() == Reloc::Static) {
|
|
if (!ST->usingLargeMem()) {
|
|
return DAG.getNode(SPUISD::AFormAddr, PtrVT, JTI, Zero);
|
|
} else {
|
|
SDValue Hi = DAG.getNode(SPUISD::Hi, PtrVT, JTI, Zero);
|
|
SDValue Lo = DAG.getNode(SPUISD::Lo, PtrVT, JTI, Zero);
|
|
return DAG.getNode(SPUISD::IndirectAddr, PtrVT, Hi, Lo);
|
|
}
|
|
}
|
|
|
|
assert(0 &&
|
|
"LowerJumpTable: Relocation model other than static not supported.");
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue
|
|
LowerGlobalAddress(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
|
|
MVT PtrVT = Op.getValueType();
|
|
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
|
|
GlobalValue *GV = GSDN->getGlobal();
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
|
|
const TargetMachine &TM = DAG.getTarget();
|
|
SDValue Zero = DAG.getConstant(0, PtrVT);
|
|
|
|
if (TM.getRelocationModel() == Reloc::Static) {
|
|
if (!ST->usingLargeMem()) {
|
|
return DAG.getNode(SPUISD::AFormAddr, PtrVT, GA, Zero);
|
|
} else {
|
|
SDValue Hi = DAG.getNode(SPUISD::Hi, PtrVT, GA, Zero);
|
|
SDValue Lo = DAG.getNode(SPUISD::Lo, PtrVT, GA, Zero);
|
|
return DAG.getNode(SPUISD::IndirectAddr, PtrVT, Hi, Lo);
|
|
}
|
|
} else {
|
|
cerr << "LowerGlobalAddress: Relocation model other than static not "
|
|
<< "supported.\n";
|
|
abort();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//! Custom lower i64 integer constants
|
|
/*!
|
|
This code inserts all of the necessary juggling that needs to occur to load
|
|
a 64-bit constant into a register.
|
|
*/
|
|
static SDValue
|
|
LowerConstant(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getValueType();
|
|
|
|
if (VT == MVT::i64) {
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(Op.getNode());
|
|
SDValue T = DAG.getConstant(CN->getZExtValue(), VT);
|
|
return DAG.getNode(SPUISD::VEC2PREFSLOT, VT,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i64, T, T));
|
|
} else {
|
|
cerr << "LowerConstant: unhandled constant type "
|
|
<< VT.getMVTString()
|
|
<< "\n";
|
|
abort();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//! Custom lower double precision floating point constants
|
|
static SDValue
|
|
LowerConstantFP(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getValueType();
|
|
|
|
if (VT == MVT::f64) {
|
|
ConstantFPSDNode *FP = cast<ConstantFPSDNode>(Op.getNode());
|
|
|
|
assert((FP != 0) &&
|
|
"LowerConstantFP: Node is not ConstantFPSDNode");
|
|
|
|
uint64_t dbits = DoubleToBits(FP->getValueAPF().convertToDouble());
|
|
SDValue T = DAG.getConstant(dbits, MVT::i64);
|
|
SDValue Tvec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i64, T, T);
|
|
return DAG.getNode(SPUISD::VEC2PREFSLOT, VT,
|
|
DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Tvec));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue
|
|
LowerBRCOND(SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI) {
|
|
SDValue Cond = Op.getOperand(1);
|
|
MVT CondVT = Cond.getValueType();
|
|
unsigned CondOpc;
|
|
|
|
if (CondVT == MVT::i8) {
|
|
SDValue CondOp0 = Cond.getOperand(0);
|
|
if (Cond.getOpcode() == ISD::TRUNCATE) {
|
|
// Use the truncate's value type and ANY_EXTEND the condition (DAGcombine
|
|
// will then remove the truncate)
|
|
CondVT = CondOp0.getValueType();
|
|
CondOpc = ISD::ANY_EXTEND;
|
|
} else {
|
|
CondVT = MVT::i32; // default to something reasonable
|
|
CondOpc = ISD::ZERO_EXTEND;
|
|
}
|
|
|
|
Cond = DAG.getNode(CondOpc, CondVT, Op.getOperand(1));
|
|
|
|
return DAG.getNode(ISD::BRCOND, Op.getValueType(),
|
|
Op.getOperand(0), Cond, Op.getOperand(2));
|
|
}
|
|
|
|
return SDValue(); // Unchanged
|
|
}
|
|
|
|
static SDValue
|
|
LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG, int &VarArgsFrameIndex)
|
|
{
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
SmallVector<SDValue, 48> ArgValues;
|
|
SDValue Root = Op.getOperand(0);
|
|
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
|
|
|
|
const unsigned *ArgRegs = SPURegisterInfo::getArgRegs();
|
|
const unsigned NumArgRegs = SPURegisterInfo::getNumArgRegs();
|
|
|
|
unsigned ArgOffset = SPUFrameInfo::minStackSize();
|
|
unsigned ArgRegIdx = 0;
|
|
unsigned StackSlotSize = SPUFrameInfo::stackSlotSize();
|
|
|
|
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
// Add DAG nodes to load the arguments or copy them out of registers.
|
|
for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
|
|
ArgNo != e; ++ArgNo) {
|
|
MVT ObjectVT = Op.getValue(ArgNo).getValueType();
|
|
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
|
|
SDValue ArgVal;
|
|
|
|
if (ArgRegIdx < NumArgRegs) {
|
|
const TargetRegisterClass *ArgRegClass;
|
|
|
|
switch (ObjectVT.getSimpleVT()) {
|
|
default: {
|
|
cerr << "LowerFORMAL_ARGUMENTS Unhandled argument type: "
|
|
<< ObjectVT.getMVTString()
|
|
<< "\n";
|
|
abort();
|
|
}
|
|
case MVT::i8:
|
|
ArgRegClass = &SPU::R8CRegClass;
|
|
break;
|
|
case MVT::i16:
|
|
ArgRegClass = &SPU::R16CRegClass;
|
|
break;
|
|
case MVT::i32:
|
|
ArgRegClass = &SPU::R32CRegClass;
|
|
break;
|
|
case MVT::i64:
|
|
ArgRegClass = &SPU::R64CRegClass;
|
|
break;
|
|
case MVT::f32:
|
|
ArgRegClass = &SPU::R32FPRegClass;
|
|
break;
|
|
case MVT::f64:
|
|
ArgRegClass = &SPU::R64FPRegClass;
|
|
break;
|
|
case MVT::v2f64:
|
|
case MVT::v4f32:
|
|
case MVT::v2i64:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
ArgRegClass = &SPU::VECREGRegClass;
|
|
break;
|
|
}
|
|
|
|
unsigned VReg = RegInfo.createVirtualRegister(ArgRegClass);
|
|
RegInfo.addLiveIn(ArgRegs[ArgRegIdx], VReg);
|
|
ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
|
|
++ArgRegIdx;
|
|
} else {
|
|
// We need to load the argument to a virtual register if we determined
|
|
// above that we ran out of physical registers of the appropriate type
|
|
// or we're forced to do vararg
|
|
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
|
|
ArgOffset += StackSlotSize;
|
|
}
|
|
|
|
ArgValues.push_back(ArgVal);
|
|
// Update the chain
|
|
Root = ArgVal.getOperand(0);
|
|
}
|
|
|
|
// vararg handling:
|
|
if (isVarArg) {
|
|
// unsigned int ptr_size = PtrVT.getSizeInBits() / 8;
|
|
// We will spill (79-3)+1 registers to the stack
|
|
SmallVector<SDValue, 79-3+1> MemOps;
|
|
|
|
// Create the frame slot
|
|
|
|
for (; ArgRegIdx != NumArgRegs; ++ArgRegIdx) {
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(StackSlotSize, ArgOffset);
|
|
SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
|
|
SDValue ArgVal = DAG.getRegister(ArgRegs[ArgRegIdx], MVT::v16i8);
|
|
SDValue Store = DAG.getStore(Root, ArgVal, FIN, NULL, 0);
|
|
Root = Store.getOperand(0);
|
|
MemOps.push_back(Store);
|
|
|
|
// Increment address by stack slot size for the next stored argument
|
|
ArgOffset += StackSlotSize;
|
|
}
|
|
if (!MemOps.empty())
|
|
Root = DAG.getNode(ISD::TokenFactor,MVT::Other,&MemOps[0],MemOps.size());
|
|
}
|
|
|
|
ArgValues.push_back(Root);
|
|
|
|
// Return the new list of results.
|
|
return DAG.getNode(ISD::MERGE_VALUES, Op.getNode()->getVTList(),
|
|
&ArgValues[0], ArgValues.size());
|
|
}
|
|
|
|
/// isLSAAddress - Return the immediate to use if the specified
|
|
/// value is representable as a LSA address.
|
|
static SDNode *isLSAAddress(SDValue Op, SelectionDAG &DAG) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C) return 0;
|
|
|
|
int Addr = C->getZExtValue();
|
|
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
|
|
(Addr << 14 >> 14) != Addr)
|
|
return 0; // Top 14 bits have to be sext of immediate.
|
|
|
|
return DAG.getConstant((int)C->getZExtValue() >> 2, MVT::i32).getNode();
|
|
}
|
|
|
|
static
|
|
SDValue
|
|
LowerCALL(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
|
|
CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
|
|
SDValue Chain = TheCall->getChain();
|
|
SDValue Callee = TheCall->getCallee();
|
|
unsigned NumOps = TheCall->getNumArgs();
|
|
unsigned StackSlotSize = SPUFrameInfo::stackSlotSize();
|
|
const unsigned *ArgRegs = SPURegisterInfo::getArgRegs();
|
|
const unsigned NumArgRegs = SPURegisterInfo::getNumArgRegs();
|
|
|
|
// Handy pointer type
|
|
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
// Accumulate how many bytes are to be pushed on the stack, including the
|
|
// linkage area, and parameter passing area. According to the SPU ABI,
|
|
// we minimally need space for [LR] and [SP]
|
|
unsigned NumStackBytes = SPUFrameInfo::minStackSize();
|
|
|
|
// Set up a copy of the stack pointer for use loading and storing any
|
|
// arguments that may not fit in the registers available for argument
|
|
// passing.
|
|
SDValue StackPtr = DAG.getRegister(SPU::R1, MVT::i32);
|
|
|
|
// Figure out which arguments are going to go in registers, and which in
|
|
// memory.
|
|
unsigned ArgOffset = SPUFrameInfo::minStackSize(); // Just below [LR]
|
|
unsigned ArgRegIdx = 0;
|
|
|
|
// Keep track of registers passing arguments
|
|
std::vector<std::pair<unsigned, SDValue> > RegsToPass;
|
|
// And the arguments passed on the stack
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
SDValue Arg = TheCall->getArg(i);
|
|
|
|
// PtrOff will be used to store the current argument to the stack if a
|
|
// register cannot be found for it.
|
|
SDValue PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
|
PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
|
|
|
|
switch (Arg.getValueType().getSimpleVT()) {
|
|
default: assert(0 && "Unexpected ValueType for argument!");
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
case MVT::i128:
|
|
if (ArgRegIdx != NumArgRegs) {
|
|
RegsToPass.push_back(std::make_pair(ArgRegs[ArgRegIdx++], Arg));
|
|
} else {
|
|
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
|
|
ArgOffset += StackSlotSize;
|
|
}
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (ArgRegIdx != NumArgRegs) {
|
|
RegsToPass.push_back(std::make_pair(ArgRegs[ArgRegIdx++], Arg));
|
|
} else {
|
|
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
|
|
ArgOffset += StackSlotSize;
|
|
}
|
|
break;
|
|
case MVT::v2i64:
|
|
case MVT::v2f64:
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
if (ArgRegIdx != NumArgRegs) {
|
|
RegsToPass.push_back(std::make_pair(ArgRegs[ArgRegIdx++], Arg));
|
|
} else {
|
|
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
|
|
ArgOffset += StackSlotSize;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Update number of stack bytes actually used, insert a call sequence start
|
|
NumStackBytes = (ArgOffset - SPUFrameInfo::minStackSize());
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumStackBytes,
|
|
true));
|
|
|
|
if (!MemOpChains.empty()) {
|
|
// Adjust the stack pointer for the stack arguments.
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
}
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
|
|
InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
unsigned CallOpc = SPUISD::CALL;
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
GlobalValue *GV = G->getGlobal();
|
|
MVT CalleeVT = Callee.getValueType();
|
|
SDValue Zero = DAG.getConstant(0, PtrVT);
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, CalleeVT);
|
|
|
|
if (!ST->usingLargeMem()) {
|
|
// Turn calls to targets that are defined (i.e., have bodies) into BRSL
|
|
// style calls, otherwise, external symbols are BRASL calls. This assumes
|
|
// that declared/defined symbols are in the same compilation unit and can
|
|
// be reached through PC-relative jumps.
|
|
//
|
|
// NOTE:
|
|
// This may be an unsafe assumption for JIT and really large compilation
|
|
// units.
|
|
if (GV->isDeclaration()) {
|
|
Callee = DAG.getNode(SPUISD::AFormAddr, CalleeVT, GA, Zero);
|
|
} else {
|
|
Callee = DAG.getNode(SPUISD::PCRelAddr, CalleeVT, GA, Zero);
|
|
}
|
|
} else {
|
|
// "Large memory" mode: Turn all calls into indirect calls with a X-form
|
|
// address pairs:
|
|
Callee = DAG.getNode(SPUISD::IndirectAddr, PtrVT, GA, Zero);
|
|
}
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
MVT CalleeVT = Callee.getValueType();
|
|
SDValue Zero = DAG.getConstant(0, PtrVT);
|
|
SDValue ExtSym = DAG.getTargetExternalSymbol(S->getSymbol(),
|
|
Callee.getValueType());
|
|
|
|
if (!ST->usingLargeMem()) {
|
|
Callee = DAG.getNode(SPUISD::AFormAddr, CalleeVT, ExtSym, Zero);
|
|
} else {
|
|
Callee = DAG.getNode(SPUISD::IndirectAddr, PtrVT, ExtSym, Zero);
|
|
}
|
|
} else if (SDNode *Dest = isLSAAddress(Callee, DAG)) {
|
|
// If this is an absolute destination address that appears to be a legal
|
|
// local store address, use the munged value.
|
|
Callee = SDValue(Dest, 0);
|
|
}
|
|
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
// Returns a chain and a flag for retval copy to use.
|
|
Chain = DAG.getNode(CallOpc, DAG.getVTList(MVT::Other, MVT::Flag),
|
|
&Ops[0], Ops.size());
|
|
InFlag = Chain.getValue(1);
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumStackBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag);
|
|
if (TheCall->getValueType(0) != MVT::Other)
|
|
InFlag = Chain.getValue(1);
|
|
|
|
SDValue ResultVals[3];
|
|
unsigned NumResults = 0;
|
|
|
|
// If the call has results, copy the values out of the ret val registers.
|
|
switch (TheCall->getValueType(0).getSimpleVT()) {
|
|
default: assert(0 && "Unexpected ret value!");
|
|
case MVT::Other: break;
|
|
case MVT::i32:
|
|
if (TheCall->getValueType(1) == MVT::i32) {
|
|
Chain = DAG.getCopyFromReg(Chain, SPU::R4, MVT::i32, InFlag).getValue(1);
|
|
ResultVals[0] = Chain.getValue(0);
|
|
Chain = DAG.getCopyFromReg(Chain, SPU::R3, MVT::i32,
|
|
Chain.getValue(2)).getValue(1);
|
|
ResultVals[1] = Chain.getValue(0);
|
|
NumResults = 2;
|
|
} else {
|
|
Chain = DAG.getCopyFromReg(Chain, SPU::R3, MVT::i32, InFlag).getValue(1);
|
|
ResultVals[0] = Chain.getValue(0);
|
|
NumResults = 1;
|
|
}
|
|
break;
|
|
case MVT::i64:
|
|
Chain = DAG.getCopyFromReg(Chain, SPU::R3, MVT::i64, InFlag).getValue(1);
|
|
ResultVals[0] = Chain.getValue(0);
|
|
NumResults = 1;
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
Chain = DAG.getCopyFromReg(Chain, SPU::R3, TheCall->getValueType(0),
|
|
InFlag).getValue(1);
|
|
ResultVals[0] = Chain.getValue(0);
|
|
NumResults = 1;
|
|
break;
|
|
case MVT::v2f64:
|
|
case MVT::v2i64:
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
Chain = DAG.getCopyFromReg(Chain, SPU::R3, TheCall->getValueType(0),
|
|
InFlag).getValue(1);
|
|
ResultVals[0] = Chain.getValue(0);
|
|
NumResults = 1;
|
|
break;
|
|
}
|
|
|
|
// If the function returns void, just return the chain.
|
|
if (NumResults == 0)
|
|
return Chain;
|
|
|
|
// Otherwise, merge everything together with a MERGE_VALUES node.
|
|
ResultVals[NumResults++] = Chain;
|
|
SDValue Res = DAG.getMergeValues(ResultVals, NumResults);
|
|
return Res.getValue(Op.getResNo());
|
|
}
|
|
|
|
static SDValue
|
|
LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
|
|
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
|
|
CCState CCInfo(CC, isVarArg, TM, RVLocs);
|
|
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_SPU);
|
|
|
|
// If this is the first return lowered for this function, add the regs to the
|
|
// liveout set for the function.
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i)
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
|
|
}
|
|
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Flag;
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
if (Flag.getNode())
|
|
return DAG.getNode(SPUISD::RET_FLAG, MVT::Other, Chain, Flag);
|
|
else
|
|
return DAG.getNode(SPUISD::RET_FLAG, MVT::Other, Chain);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector related lowering:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static ConstantSDNode *
|
|
getVecImm(SDNode *N) {
|
|
SDValue OpVal(0, 0);
|
|
|
|
// Check to see if this buildvec has a single non-undef value in its elements.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
if (OpVal.getNode() == 0)
|
|
OpVal = N->getOperand(i);
|
|
else if (OpVal != N->getOperand(i))
|
|
return 0;
|
|
}
|
|
|
|
if (OpVal.getNode() != 0) {
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
|
|
return CN;
|
|
}
|
|
}
|
|
|
|
return 0; // All UNDEF: use implicit def.; not Constant node
|
|
}
|
|
|
|
/// get_vec_i18imm - Test if this vector is a vector filled with the same value
|
|
/// and the value fits into an unsigned 18-bit constant, and if so, return the
|
|
/// constant
|
|
SDValue SPU::get_vec_u18imm(SDNode *N, SelectionDAG &DAG,
|
|
MVT ValueType) {
|
|
if (ConstantSDNode *CN = getVecImm(N)) {
|
|
uint64_t Value = CN->getZExtValue();
|
|
if (ValueType == MVT::i64) {
|
|
uint64_t UValue = CN->getZExtValue();
|
|
uint32_t upper = uint32_t(UValue >> 32);
|
|
uint32_t lower = uint32_t(UValue);
|
|
if (upper != lower)
|
|
return SDValue();
|
|
Value = Value >> 32;
|
|
}
|
|
if (Value <= 0x3ffff)
|
|
return DAG.getTargetConstant(Value, ValueType);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// get_vec_i16imm - Test if this vector is a vector filled with the same value
|
|
/// and the value fits into a signed 16-bit constant, and if so, return the
|
|
/// constant
|
|
SDValue SPU::get_vec_i16imm(SDNode *N, SelectionDAG &DAG,
|
|
MVT ValueType) {
|
|
if (ConstantSDNode *CN = getVecImm(N)) {
|
|
int64_t Value = CN->getSExtValue();
|
|
if (ValueType == MVT::i64) {
|
|
uint64_t UValue = CN->getZExtValue();
|
|
uint32_t upper = uint32_t(UValue >> 32);
|
|
uint32_t lower = uint32_t(UValue);
|
|
if (upper != lower)
|
|
return SDValue();
|
|
Value = Value >> 32;
|
|
}
|
|
if (Value >= -(1 << 15) && Value <= ((1 << 15) - 1)) {
|
|
return DAG.getTargetConstant(Value, ValueType);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// get_vec_i10imm - Test if this vector is a vector filled with the same value
|
|
/// and the value fits into a signed 10-bit constant, and if so, return the
|
|
/// constant
|
|
SDValue SPU::get_vec_i10imm(SDNode *N, SelectionDAG &DAG,
|
|
MVT ValueType) {
|
|
if (ConstantSDNode *CN = getVecImm(N)) {
|
|
int64_t Value = CN->getSExtValue();
|
|
if (ValueType == MVT::i64) {
|
|
uint64_t UValue = CN->getZExtValue();
|
|
uint32_t upper = uint32_t(UValue >> 32);
|
|
uint32_t lower = uint32_t(UValue);
|
|
if (upper != lower)
|
|
return SDValue();
|
|
Value = Value >> 32;
|
|
}
|
|
if (isS10Constant(Value))
|
|
return DAG.getTargetConstant(Value, ValueType);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// get_vec_i8imm - Test if this vector is a vector filled with the same value
|
|
/// and the value fits into a signed 8-bit constant, and if so, return the
|
|
/// constant.
|
|
///
|
|
/// @note: The incoming vector is v16i8 because that's the only way we can load
|
|
/// constant vectors. Thus, we test to see if the upper and lower bytes are the
|
|
/// same value.
|
|
SDValue SPU::get_vec_i8imm(SDNode *N, SelectionDAG &DAG,
|
|
MVT ValueType) {
|
|
if (ConstantSDNode *CN = getVecImm(N)) {
|
|
int Value = (int) CN->getZExtValue();
|
|
if (ValueType == MVT::i16
|
|
&& Value <= 0xffff /* truncated from uint64_t */
|
|
&& ((short) Value >> 8) == ((short) Value & 0xff))
|
|
return DAG.getTargetConstant(Value & 0xff, ValueType);
|
|
else if (ValueType == MVT::i8
|
|
&& (Value & 0xff) == Value)
|
|
return DAG.getTargetConstant(Value, ValueType);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// get_ILHUvec_imm - Test if this vector is a vector filled with the same value
|
|
/// and the value fits into a signed 16-bit constant, and if so, return the
|
|
/// constant
|
|
SDValue SPU::get_ILHUvec_imm(SDNode *N, SelectionDAG &DAG,
|
|
MVT ValueType) {
|
|
if (ConstantSDNode *CN = getVecImm(N)) {
|
|
uint64_t Value = CN->getZExtValue();
|
|
if ((ValueType == MVT::i32
|
|
&& ((unsigned) Value & 0xffff0000) == (unsigned) Value)
|
|
|| (ValueType == MVT::i64 && (Value & 0xffff0000) == Value))
|
|
return DAG.getTargetConstant(Value >> 16, ValueType);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// get_v4i32_imm - Catch-all for general 32-bit constant vectors
|
|
SDValue SPU::get_v4i32_imm(SDNode *N, SelectionDAG &DAG) {
|
|
if (ConstantSDNode *CN = getVecImm(N)) {
|
|
return DAG.getTargetConstant((unsigned) CN->getZExtValue(), MVT::i32);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// get_v4i32_imm - Catch-all for general 64-bit constant vectors
|
|
SDValue SPU::get_v2i64_imm(SDNode *N, SelectionDAG &DAG) {
|
|
if (ConstantSDNode *CN = getVecImm(N)) {
|
|
return DAG.getTargetConstant((unsigned) CN->getZExtValue(), MVT::i64);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// If this is a vector of constants or undefs, get the bits. A bit in
|
|
// UndefBits is set if the corresponding element of the vector is an
|
|
// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
|
|
// zero. Return true if this is not an array of constants, false if it is.
|
|
//
|
|
static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
|
|
uint64_t UndefBits[2]) {
|
|
// Start with zero'd results.
|
|
VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
|
|
|
|
unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
|
|
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
|
|
SDValue OpVal = BV->getOperand(i);
|
|
|
|
unsigned PartNo = i >= e/2; // In the upper 128 bits?
|
|
unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
|
|
|
|
uint64_t EltBits = 0;
|
|
if (OpVal.getOpcode() == ISD::UNDEF) {
|
|
uint64_t EltUndefBits = ~0ULL >> (64-EltBitSize);
|
|
UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
|
|
continue;
|
|
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
|
|
EltBits = CN->getZExtValue() & (~0ULL >> (64-EltBitSize));
|
|
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
|
|
const APFloat &apf = CN->getValueAPF();
|
|
EltBits = (CN->getValueType(0) == MVT::f32
|
|
? FloatToBits(apf.convertToFloat())
|
|
: DoubleToBits(apf.convertToDouble()));
|
|
} else {
|
|
// Nonconstant element.
|
|
return true;
|
|
}
|
|
|
|
VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
|
|
}
|
|
|
|
//printf("%llx %llx %llx %llx\n",
|
|
// VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
|
|
return false;
|
|
}
|
|
|
|
/// If this is a splat (repetition) of a value across the whole vector, return
|
|
/// the smallest size that splats it. For example, "0x01010101010101..." is a
|
|
/// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
|
|
/// SplatSize = 1 byte.
|
|
static bool isConstantSplat(const uint64_t Bits128[2],
|
|
const uint64_t Undef128[2],
|
|
int MinSplatBits,
|
|
uint64_t &SplatBits, uint64_t &SplatUndef,
|
|
int &SplatSize) {
|
|
// Don't let undefs prevent splats from matching. See if the top 64-bits are
|
|
// the same as the lower 64-bits, ignoring undefs.
|
|
uint64_t Bits64 = Bits128[0] | Bits128[1];
|
|
uint64_t Undef64 = Undef128[0] & Undef128[1];
|
|
uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
|
|
uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
|
|
uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
|
|
uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
|
|
|
|
if ((Bits128[0] & ~Undef128[1]) == (Bits128[1] & ~Undef128[0])) {
|
|
if (MinSplatBits < 64) {
|
|
|
|
// Check that the top 32-bits are the same as the lower 32-bits, ignoring
|
|
// undefs.
|
|
if ((Bits64 & (~Undef64 >> 32)) == ((Bits64 >> 32) & ~Undef64)) {
|
|
if (MinSplatBits < 32) {
|
|
|
|
// If the top 16-bits are different than the lower 16-bits, ignoring
|
|
// undefs, we have an i32 splat.
|
|
if ((Bits32 & (~Undef32 >> 16)) == ((Bits32 >> 16) & ~Undef32)) {
|
|
if (MinSplatBits < 16) {
|
|
// If the top 8-bits are different than the lower 8-bits, ignoring
|
|
// undefs, we have an i16 splat.
|
|
if ((Bits16 & (uint16_t(~Undef16) >> 8))
|
|
== ((Bits16 >> 8) & ~Undef16)) {
|
|
// Otherwise, we have an 8-bit splat.
|
|
SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
|
|
SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
|
|
SplatSize = 1;
|
|
return true;
|
|
}
|
|
} else {
|
|
SplatBits = Bits16;
|
|
SplatUndef = Undef16;
|
|
SplatSize = 2;
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
SplatBits = Bits32;
|
|
SplatUndef = Undef32;
|
|
SplatSize = 4;
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
SplatBits = Bits128[0];
|
|
SplatUndef = Undef128[0];
|
|
SplatSize = 8;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false; // Can't be a splat if two pieces don't match.
|
|
}
|
|
|
|
// If this is a case we can't handle, return null and let the default
|
|
// expansion code take care of it. If we CAN select this case, and if it
|
|
// selects to a single instruction, return Op. Otherwise, if we can codegen
|
|
// this case more efficiently than a constant pool load, lower it to the
|
|
// sequence of ops that should be used.
|
|
static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getValueType();
|
|
// If this is a vector of constants or undefs, get the bits. A bit in
|
|
// UndefBits is set if the corresponding element of the vector is an
|
|
// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
|
|
// zero.
|
|
uint64_t VectorBits[2];
|
|
uint64_t UndefBits[2];
|
|
uint64_t SplatBits, SplatUndef;
|
|
int SplatSize;
|
|
if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits)
|
|
|| !isConstantSplat(VectorBits, UndefBits,
|
|
VT.getVectorElementType().getSizeInBits(),
|
|
SplatBits, SplatUndef, SplatSize))
|
|
return SDValue(); // Not a constant vector, not a splat.
|
|
|
|
switch (VT.getSimpleVT()) {
|
|
default:
|
|
case MVT::v4f32: {
|
|
uint32_t Value32 = SplatBits;
|
|
assert(SplatSize == 4
|
|
&& "LowerBUILD_VECTOR: Unexpected floating point vector element.");
|
|
// NOTE: pretend the constant is an integer. LLVM won't load FP constants
|
|
SDValue T = DAG.getConstant(Value32, MVT::i32);
|
|
return DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, T, T, T, T));
|
|
break;
|
|
}
|
|
case MVT::v2f64: {
|
|
uint64_t f64val = SplatBits;
|
|
assert(SplatSize == 8
|
|
&& "LowerBUILD_VECTOR: 64-bit float vector size > 8 bytes.");
|
|
// NOTE: pretend the constant is an integer. LLVM won't load FP constants
|
|
SDValue T = DAG.getConstant(f64val, MVT::i64);
|
|
return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i64, T, T));
|
|
break;
|
|
}
|
|
case MVT::v16i8: {
|
|
// 8-bit constants have to be expanded to 16-bits
|
|
unsigned short Value16 = SplatBits | (SplatBits << 8);
|
|
SDValue Ops[8];
|
|
for (int i = 0; i < 8; ++i)
|
|
Ops[i] = DAG.getConstant(Value16, MVT::i16);
|
|
return DAG.getNode(ISD::BIT_CONVERT, VT,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v8i16, Ops, 8));
|
|
}
|
|
case MVT::v8i16: {
|
|
unsigned short Value16;
|
|
if (SplatSize == 2)
|
|
Value16 = (unsigned short) (SplatBits & 0xffff);
|
|
else
|
|
Value16 = (unsigned short) (SplatBits | (SplatBits << 8));
|
|
SDValue T = DAG.getConstant(Value16, VT.getVectorElementType());
|
|
SDValue Ops[8];
|
|
for (int i = 0; i < 8; ++i) Ops[i] = T;
|
|
return DAG.getNode(ISD::BUILD_VECTOR, VT, Ops, 8);
|
|
}
|
|
case MVT::v4i32: {
|
|
unsigned int Value = SplatBits;
|
|
SDValue T = DAG.getConstant(Value, VT.getVectorElementType());
|
|
return DAG.getNode(ISD::BUILD_VECTOR, VT, T, T, T, T);
|
|
}
|
|
case MVT::v2i64: {
|
|
uint64_t val = SplatBits;
|
|
uint32_t upper = uint32_t(val >> 32);
|
|
uint32_t lower = uint32_t(val);
|
|
|
|
if (upper == lower) {
|
|
// Magic constant that can be matched by IL, ILA, et. al.
|
|
SDValue Val = DAG.getTargetConstant(val, MVT::i64);
|
|
return DAG.getNode(ISD::BUILD_VECTOR, VT, Val, Val);
|
|
} else {
|
|
SDValue LO32;
|
|
SDValue HI32;
|
|
SmallVector<SDValue, 16> ShufBytes;
|
|
SDValue Result;
|
|
bool upper_special, lower_special;
|
|
|
|
// NOTE: This code creates common-case shuffle masks that can be easily
|
|
// detected as common expressions. It is not attempting to create highly
|
|
// specialized masks to replace any and all 0's, 0xff's and 0x80's.
|
|
|
|
// Detect if the upper or lower half is a special shuffle mask pattern:
|
|
upper_special = (upper == 0||upper == 0xffffffff||upper == 0x80000000);
|
|
lower_special = (lower == 0||lower == 0xffffffff||lower == 0x80000000);
|
|
|
|
// Create lower vector if not a special pattern
|
|
if (!lower_special) {
|
|
SDValue LO32C = DAG.getConstant(lower, MVT::i32);
|
|
LO32 = DAG.getNode(ISD::BIT_CONVERT, VT,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32,
|
|
LO32C, LO32C, LO32C, LO32C));
|
|
}
|
|
|
|
// Create upper vector if not a special pattern
|
|
if (!upper_special) {
|
|
SDValue HI32C = DAG.getConstant(upper, MVT::i32);
|
|
HI32 = DAG.getNode(ISD::BIT_CONVERT, VT,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32,
|
|
HI32C, HI32C, HI32C, HI32C));
|
|
}
|
|
|
|
// If either upper or lower are special, then the two input operands are
|
|
// the same (basically, one of them is a "don't care")
|
|
if (lower_special)
|
|
LO32 = HI32;
|
|
if (upper_special)
|
|
HI32 = LO32;
|
|
if (lower_special && upper_special) {
|
|
// Unhappy situation... both upper and lower are special, so punt with
|
|
// a target constant:
|
|
SDValue Zero = DAG.getConstant(0, MVT::i32);
|
|
HI32 = LO32 = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Zero, Zero,
|
|
Zero, Zero);
|
|
}
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
uint64_t val = 0;
|
|
for (int j = 0; j < 4; ++j) {
|
|
SDValue V;
|
|
bool process_upper, process_lower;
|
|
val <<= 8;
|
|
process_upper = (upper_special && (i & 1) == 0);
|
|
process_lower = (lower_special && (i & 1) == 1);
|
|
|
|
if (process_upper || process_lower) {
|
|
if ((process_upper && upper == 0)
|
|
|| (process_lower && lower == 0))
|
|
val |= 0x80;
|
|
else if ((process_upper && upper == 0xffffffff)
|
|
|| (process_lower && lower == 0xffffffff))
|
|
val |= 0xc0;
|
|
else if ((process_upper && upper == 0x80000000)
|
|
|| (process_lower && lower == 0x80000000))
|
|
val |= (j == 0 ? 0xe0 : 0x80);
|
|
} else
|
|
val |= i * 4 + j + ((i & 1) * 16);
|
|
}
|
|
|
|
ShufBytes.push_back(DAG.getConstant(val, MVT::i32));
|
|
}
|
|
|
|
return DAG.getNode(SPUISD::SHUFB, VT, HI32, LO32,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32,
|
|
&ShufBytes[0], ShufBytes.size()));
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// LowerVECTOR_SHUFFLE - Lower a vector shuffle (V1, V2, V3) to something on
|
|
/// which the Cell can operate. The code inspects V3 to ascertain whether the
|
|
/// permutation vector, V3, is monotonically increasing with one "exception"
|
|
/// element, e.g., (0, 1, _, 3). If this is the case, then generate a
|
|
/// SHUFFLE_MASK synthetic instruction. Otherwise, spill V3 to the constant pool.
|
|
/// In either case, the net result is going to eventually invoke SHUFB to
|
|
/// permute/shuffle the bytes from V1 and V2.
|
|
/// \note
|
|
/// SHUFFLE_MASK is eventually selected as one of the C*D instructions, generate
|
|
/// control word for byte/halfword/word insertion. This takes care of a single
|
|
/// element move from V2 into V1.
|
|
/// \note
|
|
/// SPUISD::SHUFB is eventually selected as Cell's <i>shufb</i> instructions.
|
|
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDValue PermMask = Op.getOperand(2);
|
|
|
|
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
|
|
|
|
// If we have a single element being moved from V1 to V2, this can be handled
|
|
// using the C*[DX] compute mask instructions, but the vector elements have
|
|
// to be monotonically increasing with one exception element.
|
|
MVT VecVT = V1.getValueType();
|
|
MVT EltVT = VecVT.getVectorElementType();
|
|
unsigned EltsFromV2 = 0;
|
|
unsigned V2Elt = 0;
|
|
unsigned V2EltIdx0 = 0;
|
|
unsigned CurrElt = 0;
|
|
unsigned MaxElts = VecVT.getVectorNumElements();
|
|
unsigned PrevElt = 0;
|
|
unsigned V0Elt = 0;
|
|
bool monotonic = true;
|
|
bool rotate = true;
|
|
|
|
if (EltVT == MVT::i8) {
|
|
V2EltIdx0 = 16;
|
|
} else if (EltVT == MVT::i16) {
|
|
V2EltIdx0 = 8;
|
|
} else if (EltVT == MVT::i32 || EltVT == MVT::f32) {
|
|
V2EltIdx0 = 4;
|
|
} else if (EltVT == MVT::i64 || EltVT == MVT::f64) {
|
|
V2EltIdx0 = 2;
|
|
} else
|
|
assert(0 && "Unhandled vector type in LowerVECTOR_SHUFFLE");
|
|
|
|
for (unsigned i = 0; i != PermMask.getNumOperands(); ++i) {
|
|
if (PermMask.getOperand(i).getOpcode() != ISD::UNDEF) {
|
|
unsigned SrcElt = cast<ConstantSDNode > (PermMask.getOperand(i))->getZExtValue();
|
|
|
|
if (monotonic) {
|
|
if (SrcElt >= V2EltIdx0) {
|
|
if (1 >= (++EltsFromV2)) {
|
|
V2Elt = (V2EltIdx0 - SrcElt) << 2;
|
|
}
|
|
} else if (CurrElt != SrcElt) {
|
|
monotonic = false;
|
|
}
|
|
|
|
++CurrElt;
|
|
}
|
|
|
|
if (rotate) {
|
|
if (PrevElt > 0 && SrcElt < MaxElts) {
|
|
if ((PrevElt == SrcElt - 1)
|
|
|| (PrevElt == MaxElts - 1 && SrcElt == 0)) {
|
|
PrevElt = SrcElt;
|
|
if (SrcElt == 0)
|
|
V0Elt = i;
|
|
} else {
|
|
rotate = false;
|
|
}
|
|
} else if (PrevElt == 0) {
|
|
// First time through, need to keep track of previous element
|
|
PrevElt = SrcElt;
|
|
} else {
|
|
// This isn't a rotation, takes elements from vector 2
|
|
rotate = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (EltsFromV2 == 1 && monotonic) {
|
|
// Compute mask and shuffle
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
unsigned VReg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
|
|
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
// Initialize temporary register to 0
|
|
SDValue InitTempReg =
|
|
DAG.getCopyToReg(DAG.getEntryNode(), VReg, DAG.getConstant(0, PtrVT));
|
|
// Copy register's contents as index in SHUFFLE_MASK:
|
|
SDValue ShufMaskOp =
|
|
DAG.getNode(SPUISD::SHUFFLE_MASK, MVT::v4i32,
|
|
DAG.getTargetConstant(V2Elt, MVT::i32),
|
|
DAG.getCopyFromReg(InitTempReg, VReg, PtrVT));
|
|
// Use shuffle mask in SHUFB synthetic instruction:
|
|
return DAG.getNode(SPUISD::SHUFB, V1.getValueType(), V2, V1, ShufMaskOp);
|
|
} else if (rotate) {
|
|
int rotamt = (MaxElts - V0Elt) * EltVT.getSizeInBits()/8;
|
|
|
|
return DAG.getNode(SPUISD::ROTBYTES_LEFT, V1.getValueType(),
|
|
V1, DAG.getConstant(rotamt, MVT::i16));
|
|
} else {
|
|
// Convert the SHUFFLE_VECTOR mask's input element units to the
|
|
// actual bytes.
|
|
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
|
|
|
|
SmallVector<SDValue, 16> ResultMask;
|
|
for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
|
|
unsigned SrcElt;
|
|
if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
|
|
SrcElt = 0;
|
|
else
|
|
SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getZExtValue();
|
|
|
|
for (unsigned j = 0; j < BytesPerElement; ++j) {
|
|
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
|
|
MVT::i8));
|
|
}
|
|
}
|
|
|
|
SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
|
|
&ResultMask[0], ResultMask.size());
|
|
return DAG.getNode(SPUISD::SHUFB, V1.getValueType(), V1, V2, VPermMask);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue Op0 = Op.getOperand(0); // Op0 = the scalar
|
|
|
|
if (Op0.getNode()->getOpcode() == ISD::Constant) {
|
|
// For a constant, build the appropriate constant vector, which will
|
|
// eventually simplify to a vector register load.
|
|
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(Op0.getNode());
|
|
SmallVector<SDValue, 16> ConstVecValues;
|
|
MVT VT;
|
|
size_t n_copies;
|
|
|
|
// Create a constant vector:
|
|
switch (Op.getValueType().getSimpleVT()) {
|
|
default: assert(0 && "Unexpected constant value type in "
|
|
"LowerSCALAR_TO_VECTOR");
|
|
case MVT::v16i8: n_copies = 16; VT = MVT::i8; break;
|
|
case MVT::v8i16: n_copies = 8; VT = MVT::i16; break;
|
|
case MVT::v4i32: n_copies = 4; VT = MVT::i32; break;
|
|
case MVT::v4f32: n_copies = 4; VT = MVT::f32; break;
|
|
case MVT::v2i64: n_copies = 2; VT = MVT::i64; break;
|
|
case MVT::v2f64: n_copies = 2; VT = MVT::f64; break;
|
|
}
|
|
|
|
SDValue CValue = DAG.getConstant(CN->getZExtValue(), VT);
|
|
for (size_t j = 0; j < n_copies; ++j)
|
|
ConstVecValues.push_back(CValue);
|
|
|
|
return DAG.getNode(ISD::BUILD_VECTOR, Op.getValueType(),
|
|
&ConstVecValues[0], ConstVecValues.size());
|
|
} else {
|
|
// Otherwise, copy the value from one register to another:
|
|
switch (Op0.getValueType().getSimpleVT()) {
|
|
default: assert(0 && "Unexpected value type in LowerSCALAR_TO_VECTOR");
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
return DAG.getNode(SPUISD::PREFSLOT2VEC, Op.getValueType(), Op0, Op0);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getValueType();
|
|
SDValue N = Op.getOperand(0);
|
|
SDValue Elt = Op.getOperand(1);
|
|
SDValue retval;
|
|
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
|
|
// Constant argument:
|
|
int EltNo = (int) C->getZExtValue();
|
|
|
|
// sanity checks:
|
|
if (VT == MVT::i8 && EltNo >= 16)
|
|
assert(0 && "SPU LowerEXTRACT_VECTOR_ELT: i8 extraction slot > 15");
|
|
else if (VT == MVT::i16 && EltNo >= 8)
|
|
assert(0 && "SPU LowerEXTRACT_VECTOR_ELT: i16 extraction slot > 7");
|
|
else if (VT == MVT::i32 && EltNo >= 4)
|
|
assert(0 && "SPU LowerEXTRACT_VECTOR_ELT: i32 extraction slot > 4");
|
|
else if (VT == MVT::i64 && EltNo >= 2)
|
|
assert(0 && "SPU LowerEXTRACT_VECTOR_ELT: i64 extraction slot > 2");
|
|
|
|
if (EltNo == 0 && (VT == MVT::i32 || VT == MVT::i64)) {
|
|
// i32 and i64: Element 0 is the preferred slot
|
|
return DAG.getNode(SPUISD::VEC2PREFSLOT, VT, N);
|
|
}
|
|
|
|
// Need to generate shuffle mask and extract:
|
|
int prefslot_begin = -1, prefslot_end = -1;
|
|
int elt_byte = EltNo * VT.getSizeInBits() / 8;
|
|
|
|
switch (VT.getSimpleVT()) {
|
|
default:
|
|
assert(false && "Invalid value type!");
|
|
case MVT::i8: {
|
|
prefslot_begin = prefslot_end = 3;
|
|
break;
|
|
}
|
|
case MVT::i16: {
|
|
prefslot_begin = 2; prefslot_end = 3;
|
|
break;
|
|
}
|
|
case MVT::i32:
|
|
case MVT::f32: {
|
|
prefslot_begin = 0; prefslot_end = 3;
|
|
break;
|
|
}
|
|
case MVT::i64:
|
|
case MVT::f64: {
|
|
prefslot_begin = 0; prefslot_end = 7;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(prefslot_begin != -1 && prefslot_end != -1 &&
|
|
"LowerEXTRACT_VECTOR_ELT: preferred slots uninitialized");
|
|
|
|
unsigned int ShufBytes[16];
|
|
for (int i = 0; i < 16; ++i) {
|
|
// zero fill uppper part of preferred slot, don't care about the
|
|
// other slots:
|
|
unsigned int mask_val;
|
|
if (i <= prefslot_end) {
|
|
mask_val =
|
|
((i < prefslot_begin)
|
|
? 0x80
|
|
: elt_byte + (i - prefslot_begin));
|
|
|
|
ShufBytes[i] = mask_val;
|
|
} else
|
|
ShufBytes[i] = ShufBytes[i % (prefslot_end + 1)];
|
|
}
|
|
|
|
SDValue ShufMask[4];
|
|
for (unsigned i = 0; i < sizeof(ShufMask)/sizeof(ShufMask[0]); ++i) {
|
|
unsigned bidx = i * 4;
|
|
unsigned int bits = ((ShufBytes[bidx] << 24) |
|
|
(ShufBytes[bidx+1] << 16) |
|
|
(ShufBytes[bidx+2] << 8) |
|
|
ShufBytes[bidx+3]);
|
|
ShufMask[i] = DAG.getConstant(bits, MVT::i32);
|
|
}
|
|
|
|
SDValue ShufMaskVec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32,
|
|
&ShufMask[0],
|
|
sizeof(ShufMask) / sizeof(ShufMask[0]));
|
|
|
|
retval = DAG.getNode(SPUISD::VEC2PREFSLOT, VT,
|
|
DAG.getNode(SPUISD::SHUFB, N.getValueType(),
|
|
N, N, ShufMaskVec));
|
|
} else {
|
|
// Variable index: Rotate the requested element into slot 0, then replicate
|
|
// slot 0 across the vector
|
|
MVT VecVT = N.getValueType();
|
|
if (!VecVT.isSimple() || !VecVT.isVector() || !VecVT.is128BitVector()) {
|
|
cerr << "LowerEXTRACT_VECTOR_ELT: Must have a simple, 128-bit vector type!\n";
|
|
abort();
|
|
}
|
|
|
|
// Make life easier by making sure the index is zero-extended to i32
|
|
if (Elt.getValueType() != MVT::i32)
|
|
Elt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Elt);
|
|
|
|
// Scale the index to a bit/byte shift quantity
|
|
APInt scaleFactor =
|
|
APInt(32, uint64_t(16 / N.getValueType().getVectorNumElements()), false);
|
|
unsigned scaleShift = scaleFactor.logBase2();
|
|
SDValue vecShift;
|
|
|
|
if (scaleShift > 0) {
|
|
// Scale the shift factor:
|
|
Elt = DAG.getNode(ISD::SHL, MVT::i32, Elt,
|
|
DAG.getConstant(scaleShift, MVT::i32));
|
|
}
|
|
|
|
vecShift = DAG.getNode(SPUISD::SHLQUAD_L_BYTES, VecVT, N, Elt);
|
|
|
|
// Replicate the bytes starting at byte 0 across the entire vector (for
|
|
// consistency with the notion of a unified register set)
|
|
SDValue replicate;
|
|
|
|
switch (VT.getSimpleVT()) {
|
|
default:
|
|
cerr << "LowerEXTRACT_VECTOR_ELT(varable): Unhandled vector type\n";
|
|
abort();
|
|
/*NOTREACHED*/
|
|
case MVT::i8: {
|
|
SDValue factor = DAG.getConstant(0x00000000, MVT::i32);
|
|
replicate = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, factor, factor,
|
|
factor, factor);
|
|
break;
|
|
}
|
|
case MVT::i16: {
|
|
SDValue factor = DAG.getConstant(0x00010001, MVT::i32);
|
|
replicate = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, factor, factor,
|
|
factor, factor);
|
|
break;
|
|
}
|
|
case MVT::i32:
|
|
case MVT::f32: {
|
|
SDValue factor = DAG.getConstant(0x00010203, MVT::i32);
|
|
replicate = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, factor, factor,
|
|
factor, factor);
|
|
break;
|
|
}
|
|
case MVT::i64:
|
|
case MVT::f64: {
|
|
SDValue loFactor = DAG.getConstant(0x00010203, MVT::i32);
|
|
SDValue hiFactor = DAG.getConstant(0x04050607, MVT::i32);
|
|
replicate = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, loFactor, hiFactor,
|
|
loFactor, hiFactor);
|
|
break;
|
|
}
|
|
}
|
|
|
|
retval = DAG.getNode(SPUISD::VEC2PREFSLOT, VT,
|
|
DAG.getNode(SPUISD::SHUFB, VecVT,
|
|
vecShift, vecShift, replicate));
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue VecOp = Op.getOperand(0);
|
|
SDValue ValOp = Op.getOperand(1);
|
|
SDValue IdxOp = Op.getOperand(2);
|
|
MVT VT = Op.getValueType();
|
|
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(IdxOp);
|
|
assert(CN != 0 && "LowerINSERT_VECTOR_ELT: Index is not constant!");
|
|
|
|
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
// Use $sp ($1) because it's always 16-byte aligned and it's available:
|
|
SDValue Pointer = DAG.getNode(SPUISD::IndirectAddr, PtrVT,
|
|
DAG.getRegister(SPU::R1, PtrVT),
|
|
DAG.getConstant(CN->getSExtValue(), PtrVT));
|
|
SDValue ShufMask = DAG.getNode(SPUISD::SHUFFLE_MASK, VT, Pointer);
|
|
|
|
SDValue result =
|
|
DAG.getNode(SPUISD::SHUFB, VT,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, ValOp),
|
|
VecOp,
|
|
DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, ShufMask));
|
|
|
|
return result;
|
|
}
|
|
|
|
static SDValue LowerI8Math(SDValue Op, SelectionDAG &DAG, unsigned Opc,
|
|
const TargetLowering &TLI)
|
|
{
|
|
SDValue N0 = Op.getOperand(0); // Everything has at least one operand
|
|
MVT ShiftVT = TLI.getShiftAmountTy();
|
|
|
|
assert(Op.getValueType() == MVT::i8);
|
|
switch (Opc) {
|
|
default:
|
|
assert(0 && "Unhandled i8 math operator");
|
|
/*NOTREACHED*/
|
|
break;
|
|
case ISD::ADD: {
|
|
// 8-bit addition: Promote the arguments up to 16-bits and truncate
|
|
// the result:
|
|
SDValue N1 = Op.getOperand(1);
|
|
N0 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i16, N0);
|
|
N1 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i16, N1);
|
|
return DAG.getNode(ISD::TRUNCATE, MVT::i8,
|
|
DAG.getNode(Opc, MVT::i16, N0, N1));
|
|
|
|
}
|
|
|
|
case ISD::SUB: {
|
|
// 8-bit subtraction: Promote the arguments up to 16-bits and truncate
|
|
// the result:
|
|
SDValue N1 = Op.getOperand(1);
|
|
N0 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i16, N0);
|
|
N1 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i16, N1);
|
|
return DAG.getNode(ISD::TRUNCATE, MVT::i8,
|
|
DAG.getNode(Opc, MVT::i16, N0, N1));
|
|
}
|
|
case ISD::ROTR:
|
|
case ISD::ROTL: {
|
|
SDValue N1 = Op.getOperand(1);
|
|
unsigned N1Opc;
|
|
N0 = (N0.getOpcode() != ISD::Constant
|
|
? DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, N0)
|
|
: DAG.getConstant(cast<ConstantSDNode>(N0)->getZExtValue(),
|
|
MVT::i16));
|
|
N1Opc = N1.getValueType().bitsLT(ShiftVT)
|
|
? ISD::ZERO_EXTEND
|
|
: ISD::TRUNCATE;
|
|
N1 = (N1.getOpcode() != ISD::Constant
|
|
? DAG.getNode(N1Opc, ShiftVT, N1)
|
|
: DAG.getConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
|
|
TLI.getShiftAmountTy()));
|
|
SDValue ExpandArg =
|
|
DAG.getNode(ISD::OR, MVT::i16, N0,
|
|
DAG.getNode(ISD::SHL, MVT::i16,
|
|
N0, DAG.getConstant(8, MVT::i32)));
|
|
return DAG.getNode(ISD::TRUNCATE, MVT::i8,
|
|
DAG.getNode(Opc, MVT::i16, ExpandArg, N1));
|
|
}
|
|
case ISD::SRL:
|
|
case ISD::SHL: {
|
|
SDValue N1 = Op.getOperand(1);
|
|
unsigned N1Opc;
|
|
N0 = (N0.getOpcode() != ISD::Constant
|
|
? DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, N0)
|
|
: DAG.getConstant(cast<ConstantSDNode>(N0)->getZExtValue(),
|
|
MVT::i32));
|
|
N1Opc = N1.getValueType().bitsLT(ShiftVT)
|
|
? ISD::ZERO_EXTEND
|
|
: ISD::TRUNCATE;
|
|
N1 = (N1.getOpcode() != ISD::Constant
|
|
? DAG.getNode(N1Opc, ShiftVT, N1)
|
|
: DAG.getConstant(cast<ConstantSDNode>(N1)->getZExtValue(), ShiftVT));
|
|
return DAG.getNode(ISD::TRUNCATE, MVT::i8,
|
|
DAG.getNode(Opc, MVT::i16, N0, N1));
|
|
}
|
|
case ISD::SRA: {
|
|
SDValue N1 = Op.getOperand(1);
|
|
unsigned N1Opc;
|
|
N0 = (N0.getOpcode() != ISD::Constant
|
|
? DAG.getNode(ISD::SIGN_EXTEND, MVT::i16, N0)
|
|
: DAG.getConstant(cast<ConstantSDNode>(N0)->getSExtValue(),
|
|
MVT::i16));
|
|
N1Opc = N1.getValueType().bitsLT(ShiftVT)
|
|
? ISD::SIGN_EXTEND
|
|
: ISD::TRUNCATE;
|
|
N1 = (N1.getOpcode() != ISD::Constant
|
|
? DAG.getNode(N1Opc, ShiftVT, N1)
|
|
: DAG.getConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
|
|
ShiftVT));
|
|
return DAG.getNode(ISD::TRUNCATE, MVT::i8,
|
|
DAG.getNode(Opc, MVT::i16, N0, N1));
|
|
}
|
|
case ISD::MUL: {
|
|
SDValue N1 = Op.getOperand(1);
|
|
unsigned N1Opc;
|
|
N0 = (N0.getOpcode() != ISD::Constant
|
|
? DAG.getNode(ISD::SIGN_EXTEND, MVT::i16, N0)
|
|
: DAG.getConstant(cast<ConstantSDNode>(N0)->getZExtValue(),
|
|
MVT::i16));
|
|
N1Opc = N1.getValueType().bitsLT(MVT::i16) ? ISD::SIGN_EXTEND : ISD::TRUNCATE;
|
|
N1 = (N1.getOpcode() != ISD::Constant
|
|
? DAG.getNode(N1Opc, MVT::i16, N1)
|
|
: DAG.getConstant(cast<ConstantSDNode>(N1)->getSExtValue(),
|
|
MVT::i16));
|
|
return DAG.getNode(ISD::TRUNCATE, MVT::i8,
|
|
DAG.getNode(Opc, MVT::i16, N0, N1));
|
|
break;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerI64Math(SDValue Op, SelectionDAG &DAG, unsigned Opc)
|
|
{
|
|
MVT VT = Op.getValueType();
|
|
MVT VecVT = MVT::getVectorVT(VT, (128 / VT.getSizeInBits()));
|
|
|
|
SDValue Op0 = Op.getOperand(0);
|
|
|
|
switch (Opc) {
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND: {
|
|
MVT Op0VT = Op0.getValueType();
|
|
MVT Op0VecVT = MVT::getVectorVT(Op0VT, (128 / Op0VT.getSizeInBits()));
|
|
|
|
assert(Op0VT == MVT::i32
|
|
&& "CellSPU: Zero/sign extending something other than i32");
|
|
|
|
DEBUG(cerr << "CellSPU.LowerI64Math: lowering zero/sign/any extend\n");
|
|
|
|
SDValue PromoteScalar =
|
|
DAG.getNode(SPUISD::PREFSLOT2VEC, Op0VecVT, Op0);
|
|
|
|
// Use a shuffle to zero extend the i32 to i64 directly:
|
|
SDValue shufMask = DAG.getNode(ISD::BUILD_VECTOR, Op0VecVT,
|
|
DAG.getConstant(0x80808080, MVT::i32), DAG.getConstant(0x00010203,
|
|
MVT::i32), DAG.getConstant(0x80808080, MVT::i32), DAG.getConstant(
|
|
0x08090a0b, MVT::i32));
|
|
SDValue zextShuffle = DAG.getNode(SPUISD::SHUFB, Op0VecVT, PromoteScalar,
|
|
PromoteScalar, shufMask);
|
|
|
|
return DAG.getNode(SPUISD::VEC2PREFSLOT, VT, DAG.getNode(ISD::BIT_CONVERT,
|
|
VecVT, zextShuffle));
|
|
}
|
|
|
|
case ISD::ADD: {
|
|
// Turn operands into vectors to satisfy type checking (shufb works on
|
|
// vectors)
|
|
SDValue Op0 =
|
|
DAG.getNode(SPUISD::PREFSLOT2VEC, MVT::v2i64, Op.getOperand(0));
|
|
SDValue Op1 =
|
|
DAG.getNode(SPUISD::PREFSLOT2VEC, MVT::v2i64, Op.getOperand(1));
|
|
SmallVector<SDValue, 16> ShufBytes;
|
|
|
|
// Create the shuffle mask for "rotating" the borrow up one register slot
|
|
// once the borrow is generated.
|
|
ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
|
|
ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
|
|
ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
|
|
ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
|
|
|
|
SDValue CarryGen =
|
|
DAG.getNode(SPUISD::CARRY_GENERATE, MVT::v2i64, Op0, Op1);
|
|
SDValue ShiftedCarry =
|
|
DAG.getNode(SPUISD::SHUFB, MVT::v2i64,
|
|
CarryGen, CarryGen,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32,
|
|
&ShufBytes[0], ShufBytes.size()));
|
|
|
|
return DAG.getNode(SPUISD::VEC2PREFSLOT, MVT::i64,
|
|
DAG.getNode(SPUISD::ADD_EXTENDED, MVT::v2i64,
|
|
Op0, Op1, ShiftedCarry));
|
|
}
|
|
|
|
case ISD::SUB: {
|
|
// Turn operands into vectors to satisfy type checking (shufb works on
|
|
// vectors)
|
|
SDValue Op0 =
|
|
DAG.getNode(SPUISD::PREFSLOT2VEC, MVT::v2i64, Op.getOperand(0));
|
|
SDValue Op1 =
|
|
DAG.getNode(SPUISD::PREFSLOT2VEC, MVT::v2i64, Op.getOperand(1));
|
|
SmallVector<SDValue, 16> ShufBytes;
|
|
|
|
// Create the shuffle mask for "rotating" the borrow up one register slot
|
|
// once the borrow is generated.
|
|
ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
|
|
ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
|
|
ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
|
|
ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
|
|
|
|
SDValue BorrowGen =
|
|
DAG.getNode(SPUISD::BORROW_GENERATE, MVT::v2i64, Op0, Op1);
|
|
SDValue ShiftedBorrow =
|
|
DAG.getNode(SPUISD::SHUFB, MVT::v2i64,
|
|
BorrowGen, BorrowGen,
|
|
DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32,
|
|
&ShufBytes[0], ShufBytes.size()));
|
|
|
|
return DAG.getNode(SPUISD::VEC2PREFSLOT, MVT::i64,
|
|
DAG.getNode(SPUISD::SUB_EXTENDED, MVT::v2i64,
|
|
Op0, Op1, ShiftedBorrow));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//! Lower byte immediate operations for v16i8 vectors:
|
|
static SDValue
|
|
LowerByteImmed(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue ConstVec;
|
|
SDValue Arg;
|
|
MVT VT = Op.getValueType();
|
|
|
|
ConstVec = Op.getOperand(0);
|
|
Arg = Op.getOperand(1);
|
|
if (ConstVec.getNode()->getOpcode() != ISD::BUILD_VECTOR) {
|
|
if (ConstVec.getNode()->getOpcode() == ISD::BIT_CONVERT) {
|
|
ConstVec = ConstVec.getOperand(0);
|
|
} else {
|
|
ConstVec = Op.getOperand(1);
|
|
Arg = Op.getOperand(0);
|
|
if (ConstVec.getNode()->getOpcode() == ISD::BIT_CONVERT) {
|
|
ConstVec = ConstVec.getOperand(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ConstVec.getNode()->getOpcode() == ISD::BUILD_VECTOR) {
|
|
uint64_t VectorBits[2];
|
|
uint64_t UndefBits[2];
|
|
uint64_t SplatBits, SplatUndef;
|
|
int SplatSize;
|
|
|
|
if (!GetConstantBuildVectorBits(ConstVec.getNode(), VectorBits, UndefBits)
|
|
&& isConstantSplat(VectorBits, UndefBits,
|
|
VT.getVectorElementType().getSizeInBits(),
|
|
SplatBits, SplatUndef, SplatSize)) {
|
|
SDValue tcVec[16];
|
|
SDValue tc = DAG.getTargetConstant(SplatBits & 0xff, MVT::i8);
|
|
const size_t tcVecSize = sizeof(tcVec) / sizeof(tcVec[0]);
|
|
|
|
// Turn the BUILD_VECTOR into a set of target constants:
|
|
for (size_t i = 0; i < tcVecSize; ++i)
|
|
tcVec[i] = tc;
|
|
|
|
return DAG.getNode(Op.getNode()->getOpcode(), VT, Arg,
|
|
DAG.getNode(ISD::BUILD_VECTOR, VT, tcVec, tcVecSize));
|
|
}
|
|
}
|
|
// These operations (AND, OR, XOR) are legal, they just couldn't be custom
|
|
// lowered. Return the operation, rather than a null SDValue.
|
|
return Op;
|
|
}
|
|
|
|
//! Custom lowering for CTPOP (count population)
|
|
/*!
|
|
Custom lowering code that counts the number ones in the input
|
|
operand. SPU has such an instruction, but it counts the number of
|
|
ones per byte, which then have to be accumulated.
|
|
*/
|
|
static SDValue LowerCTPOP(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getValueType();
|
|
MVT vecVT = MVT::getVectorVT(VT, (128 / VT.getSizeInBits()));
|
|
|
|
switch (VT.getSimpleVT()) {
|
|
default:
|
|
assert(false && "Invalid value type!");
|
|
case MVT::i8: {
|
|
SDValue N = Op.getOperand(0);
|
|
SDValue Elt0 = DAG.getConstant(0, MVT::i32);
|
|
|
|
SDValue Promote = DAG.getNode(SPUISD::PREFSLOT2VEC, vecVT, N, N);
|
|
SDValue CNTB = DAG.getNode(SPUISD::CNTB, vecVT, Promote);
|
|
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i8, CNTB, Elt0);
|
|
}
|
|
|
|
case MVT::i16: {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
|
|
unsigned CNTB_reg = RegInfo.createVirtualRegister(&SPU::R16CRegClass);
|
|
|
|
SDValue N = Op.getOperand(0);
|
|
SDValue Elt0 = DAG.getConstant(0, MVT::i16);
|
|
SDValue Mask0 = DAG.getConstant(0x0f, MVT::i16);
|
|
SDValue Shift1 = DAG.getConstant(8, MVT::i32);
|
|
|
|
SDValue Promote = DAG.getNode(SPUISD::PREFSLOT2VEC, vecVT, N, N);
|
|
SDValue CNTB = DAG.getNode(SPUISD::CNTB, vecVT, Promote);
|
|
|
|
// CNTB_result becomes the chain to which all of the virtual registers
|
|
// CNTB_reg, SUM1_reg become associated:
|
|
SDValue CNTB_result =
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, CNTB, Elt0);
|
|
|
|
SDValue CNTB_rescopy =
|
|
DAG.getCopyToReg(CNTB_result, CNTB_reg, CNTB_result);
|
|
|
|
SDValue Tmp1 = DAG.getCopyFromReg(CNTB_rescopy, CNTB_reg, MVT::i16);
|
|
|
|
return DAG.getNode(ISD::AND, MVT::i16,
|
|
DAG.getNode(ISD::ADD, MVT::i16,
|
|
DAG.getNode(ISD::SRL, MVT::i16,
|
|
Tmp1, Shift1),
|
|
Tmp1),
|
|
Mask0);
|
|
}
|
|
|
|
case MVT::i32: {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
|
|
unsigned CNTB_reg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
|
|
unsigned SUM1_reg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
|
|
|
|
SDValue N = Op.getOperand(0);
|
|
SDValue Elt0 = DAG.getConstant(0, MVT::i32);
|
|
SDValue Mask0 = DAG.getConstant(0xff, MVT::i32);
|
|
SDValue Shift1 = DAG.getConstant(16, MVT::i32);
|
|
SDValue Shift2 = DAG.getConstant(8, MVT::i32);
|
|
|
|
SDValue Promote = DAG.getNode(SPUISD::PREFSLOT2VEC, vecVT, N, N);
|
|
SDValue CNTB = DAG.getNode(SPUISD::CNTB, vecVT, Promote);
|
|
|
|
// CNTB_result becomes the chain to which all of the virtual registers
|
|
// CNTB_reg, SUM1_reg become associated:
|
|
SDValue CNTB_result =
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, CNTB, Elt0);
|
|
|
|
SDValue CNTB_rescopy =
|
|
DAG.getCopyToReg(CNTB_result, CNTB_reg, CNTB_result);
|
|
|
|
SDValue Comp1 =
|
|
DAG.getNode(ISD::SRL, MVT::i32,
|
|
DAG.getCopyFromReg(CNTB_rescopy, CNTB_reg, MVT::i32), Shift1);
|
|
|
|
SDValue Sum1 =
|
|
DAG.getNode(ISD::ADD, MVT::i32,
|
|
Comp1, DAG.getCopyFromReg(CNTB_rescopy, CNTB_reg, MVT::i32));
|
|
|
|
SDValue Sum1_rescopy =
|
|
DAG.getCopyToReg(CNTB_result, SUM1_reg, Sum1);
|
|
|
|
SDValue Comp2 =
|
|
DAG.getNode(ISD::SRL, MVT::i32,
|
|
DAG.getCopyFromReg(Sum1_rescopy, SUM1_reg, MVT::i32),
|
|
Shift2);
|
|
SDValue Sum2 =
|
|
DAG.getNode(ISD::ADD, MVT::i32, Comp2,
|
|
DAG.getCopyFromReg(Sum1_rescopy, SUM1_reg, MVT::i32));
|
|
|
|
return DAG.getNode(ISD::AND, MVT::i32, Sum2, Mask0);
|
|
}
|
|
|
|
case MVT::i64:
|
|
break;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//! Lower ISD::SETCC
|
|
/*!
|
|
Lower i64 condition code handling.
|
|
*/
|
|
|
|
static SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getValueType();
|
|
SDValue lhs = Op.getOperand(0);
|
|
SDValue rhs = Op.getOperand(1);
|
|
SDValue condition = Op.getOperand(2);
|
|
|
|
if (VT == MVT::i32 && lhs.getValueType() == MVT::i64) {
|
|
// Expand the i64 comparisons to what Cell can actually support,
|
|
// which is eq, ugt and sgt:
|
|
#if 0
|
|
CondCodeSDNode *ccvalue = dyn_cast<CondCodeSDValue>(condition);
|
|
|
|
switch (ccvalue->get()) {
|
|
case
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//! Lower ISD::SELECT_CC
|
|
/*!
|
|
ISD::SELECT_CC can (generally) be implemented directly on the SPU using the
|
|
SELB instruction.
|
|
|
|
\note Need to revisit this in the future: if the code path through the true
|
|
and false value computations is longer than the latency of a branch (6
|
|
cycles), then it would be more advantageous to branch and insert a new basic
|
|
block and branch on the condition. However, this code does not make that
|
|
assumption, given the simplisitc uses so far.
|
|
*/
|
|
|
|
static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
MVT VT = Op.getValueType();
|
|
SDValue lhs = Op.getOperand(0);
|
|
SDValue rhs = Op.getOperand(1);
|
|
SDValue trueval = Op.getOperand(2);
|
|
SDValue falseval = Op.getOperand(3);
|
|
SDValue condition = Op.getOperand(4);
|
|
|
|
// NOTE: SELB's arguments: $rA, $rB, $mask
|
|
//
|
|
// SELB selects bits from $rA where bits in $mask are 0, bits from $rB
|
|
// where bits in $mask are 1. CCond will be inverted, having 1s where the
|
|
// condition was true and 0s where the condition was false. Hence, the
|
|
// arguments to SELB get reversed.
|
|
|
|
// Note: Really should be ISD::SELECT instead of SPUISD::SELB, but LLVM's
|
|
// legalizer insists on combining SETCC/SELECT into SELECT_CC, so we end up
|
|
// with another "cannot select select_cc" assert:
|
|
|
|
SDValue compare = DAG.getNode(ISD::SETCC,
|
|
TLI.getSetCCResultType(Op.getValueType()),
|
|
lhs, rhs, condition);
|
|
return DAG.getNode(SPUISD::SELB, VT, falseval, trueval, compare);
|
|
}
|
|
|
|
//! Custom lower ISD::TRUNCATE
|
|
static SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
MVT VT = Op.getValueType();
|
|
MVT::SimpleValueType simpleVT = VT.getSimpleVT();
|
|
MVT VecVT = MVT::getVectorVT(VT, (128 / VT.getSizeInBits()));
|
|
|
|
SDValue Op0 = Op.getOperand(0);
|
|
MVT Op0VT = Op0.getValueType();
|
|
MVT Op0VecVT = MVT::getVectorVT(Op0VT, (128 / Op0VT.getSizeInBits()));
|
|
|
|
// Create shuffle mask
|
|
if (Op0VT.getSimpleVT() == MVT::i128 && simpleVT == MVT::i64) {
|
|
// least significant doubleword of quadword
|
|
unsigned maskHigh = 0x08090a0b;
|
|
unsigned maskLow = 0x0c0d0e0f;
|
|
// Use a shuffle to perform the truncation
|
|
SDValue shufMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32,
|
|
DAG.getConstant(maskHigh, MVT::i32),
|
|
DAG.getConstant(maskLow, MVT::i32),
|
|
DAG.getConstant(maskHigh, MVT::i32),
|
|
DAG.getConstant(maskLow, MVT::i32));
|
|
|
|
|
|
SDValue PromoteScalar = DAG.getNode(SPUISD::PREFSLOT2VEC, Op0VecVT, Op0);
|
|
|
|
SDValue truncShuffle = DAG.getNode(SPUISD::SHUFB, Op0VecVT,
|
|
PromoteScalar, PromoteScalar, shufMask);
|
|
|
|
return DAG.getNode(SPUISD::VEC2PREFSLOT, VT,
|
|
DAG.getNode(ISD::BIT_CONVERT, VecVT, truncShuffle));
|
|
}
|
|
|
|
return SDValue(); // Leave the truncate unmolested
|
|
}
|
|
|
|
//! Custom (target-specific) lowering entry point
|
|
/*!
|
|
This is where LLVM's DAG selection process calls to do target-specific
|
|
lowering of nodes.
|
|
*/
|
|
SDValue
|
|
SPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
unsigned Opc = (unsigned) Op.getOpcode();
|
|
MVT VT = Op.getValueType();
|
|
|
|
switch (Opc) {
|
|
default: {
|
|
cerr << "SPUTargetLowering::LowerOperation(): need to lower this!\n";
|
|
cerr << "Op.getOpcode() = " << Opc << "\n";
|
|
cerr << "*Op.getNode():\n";
|
|
Op.getNode()->dump();
|
|
abort();
|
|
}
|
|
case ISD::LOAD:
|
|
case ISD::EXTLOAD:
|
|
case ISD::SEXTLOAD:
|
|
case ISD::ZEXTLOAD:
|
|
return LowerLOAD(Op, DAG, SPUTM.getSubtargetImpl());
|
|
case ISD::STORE:
|
|
return LowerSTORE(Op, DAG, SPUTM.getSubtargetImpl());
|
|
case ISD::ConstantPool:
|
|
return LowerConstantPool(Op, DAG, SPUTM.getSubtargetImpl());
|
|
case ISD::GlobalAddress:
|
|
return LowerGlobalAddress(Op, DAG, SPUTM.getSubtargetImpl());
|
|
case ISD::JumpTable:
|
|
return LowerJumpTable(Op, DAG, SPUTM.getSubtargetImpl());
|
|
case ISD::Constant:
|
|
return LowerConstant(Op, DAG);
|
|
case ISD::ConstantFP:
|
|
return LowerConstantFP(Op, DAG);
|
|
case ISD::BRCOND:
|
|
return LowerBRCOND(Op, DAG, *this);
|
|
case ISD::FORMAL_ARGUMENTS:
|
|
return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
|
|
case ISD::CALL:
|
|
return LowerCALL(Op, DAG, SPUTM.getSubtargetImpl());
|
|
case ISD::RET:
|
|
return LowerRET(Op, DAG, getTargetMachine());
|
|
|
|
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
return LowerI64Math(Op, DAG, Opc);
|
|
|
|
// i8, i64 math ops:
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::ROTR:
|
|
case ISD::ROTL:
|
|
case ISD::SRL:
|
|
case ISD::SHL:
|
|
case ISD::SRA: {
|
|
if (VT == MVT::i8)
|
|
return LowerI8Math(Op, DAG, Opc, *this);
|
|
else if (VT == MVT::i64)
|
|
return LowerI64Math(Op, DAG, Opc);
|
|
break;
|
|
}
|
|
|
|
// Vector-related lowering.
|
|
case ISD::BUILD_VECTOR:
|
|
return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::SCALAR_TO_VECTOR:
|
|
return LowerSCALAR_TO_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE:
|
|
return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return LowerINSERT_VECTOR_ELT(Op, DAG);
|
|
|
|
// Look for ANDBI, ORBI and XORBI opportunities and lower appropriately:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
return LowerByteImmed(Op, DAG);
|
|
|
|
// Vector and i8 multiply:
|
|
case ISD::MUL:
|
|
if (VT == MVT::i8)
|
|
return LowerI8Math(Op, DAG, Opc, *this);
|
|
|
|
case ISD::CTPOP:
|
|
return LowerCTPOP(Op, DAG);
|
|
|
|
case ISD::SELECT_CC:
|
|
return LowerSELECT_CC(Op, DAG, *this);
|
|
|
|
case ISD::TRUNCATE:
|
|
return LowerTRUNCATE(Op, DAG);
|
|
|
|
case ISD::SETCC:
|
|
return LowerSETCC(Op, DAG);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
void SPUTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG)
|
|
{
|
|
#if 0
|
|
unsigned Opc = (unsigned) N->getOpcode();
|
|
MVT OpVT = N->getValueType(0);
|
|
|
|
switch (Opc) {
|
|
default: {
|
|
cerr << "SPUTargetLowering::ReplaceNodeResults(): need to fix this!\n";
|
|
cerr << "Op.getOpcode() = " << Opc << "\n";
|
|
cerr << "*Op.getNode():\n";
|
|
N->dump();
|
|
abort();
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Otherwise, return unchanged */
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Target Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue
|
|
SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
|
|
{
|
|
#if 0
|
|
TargetMachine &TM = getTargetMachine();
|
|
#endif
|
|
const SPUSubtarget *ST = SPUTM.getSubtargetImpl();
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue Op0 = N->getOperand(0); // everything has at least one operand
|
|
MVT NodeVT = N->getValueType(0); // The node's value type
|
|
MVT Op0VT = Op0.getValueType(); // The first operand's result
|
|
SDValue Result; // Initially, empty result
|
|
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::ADD: {
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
if (Op0.getOpcode() == SPUISD::IndirectAddr
|
|
|| Op1.getOpcode() == SPUISD::IndirectAddr) {
|
|
// Normalize the operands to reduce repeated code
|
|
SDValue IndirectArg = Op0, AddArg = Op1;
|
|
|
|
if (Op1.getOpcode() == SPUISD::IndirectAddr) {
|
|
IndirectArg = Op1;
|
|
AddArg = Op0;
|
|
}
|
|
|
|
if (isa<ConstantSDNode>(AddArg)) {
|
|
ConstantSDNode *CN0 = cast<ConstantSDNode > (AddArg);
|
|
SDValue IndOp1 = IndirectArg.getOperand(1);
|
|
|
|
if (CN0->isNullValue()) {
|
|
// (add (SPUindirect <arg>, <arg>), 0) ->
|
|
// (SPUindirect <arg>, <arg>)
|
|
|
|
#if !defined(NDEBUG)
|
|
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
|
|
cerr << "\n"
|
|
<< "Replace: (add (SPUindirect <arg>, <arg>), 0)\n"
|
|
<< "With: (SPUindirect <arg>, <arg>)\n";
|
|
}
|
|
#endif
|
|
|
|
return IndirectArg;
|
|
} else if (isa<ConstantSDNode>(IndOp1)) {
|
|
// (add (SPUindirect <arg>, <const>), <const>) ->
|
|
// (SPUindirect <arg>, <const + const>)
|
|
ConstantSDNode *CN1 = cast<ConstantSDNode > (IndOp1);
|
|
int64_t combinedConst = CN0->getSExtValue() + CN1->getSExtValue();
|
|
SDValue combinedValue = DAG.getConstant(combinedConst, Op0VT);
|
|
|
|
#if !defined(NDEBUG)
|
|
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
|
|
cerr << "\n"
|
|
<< "Replace: (add (SPUindirect <arg>, " << CN1->getSExtValue()
|
|
<< "), " << CN0->getSExtValue() << ")\n"
|
|
<< "With: (SPUindirect <arg>, "
|
|
<< combinedConst << ")\n";
|
|
}
|
|
#endif
|
|
|
|
return DAG.getNode(SPUISD::IndirectAddr, Op0VT,
|
|
IndirectArg, combinedValue);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND: {
|
|
if (Op0.getOpcode() == SPUISD::VEC2PREFSLOT && NodeVT == Op0VT) {
|
|
// (any_extend (SPUextract_elt0 <arg>)) ->
|
|
// (SPUextract_elt0 <arg>)
|
|
// Types must match, however...
|
|
#if !defined(NDEBUG)
|
|
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
|
|
cerr << "\nReplace: ";
|
|
N->dump(&DAG);
|
|
cerr << "\nWith: ";
|
|
Op0.getNode()->dump(&DAG);
|
|
cerr << "\n";
|
|
}
|
|
#endif
|
|
|
|
return Op0;
|
|
}
|
|
break;
|
|
}
|
|
case SPUISD::IndirectAddr: {
|
|
if (!ST->usingLargeMem() && Op0.getOpcode() == SPUISD::AFormAddr) {
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(1));
|
|
if (CN->getZExtValue() == 0) {
|
|
// (SPUindirect (SPUaform <addr>, 0), 0) ->
|
|
// (SPUaform <addr>, 0)
|
|
|
|
DEBUG(cerr << "Replace: ");
|
|
DEBUG(N->dump(&DAG));
|
|
DEBUG(cerr << "\nWith: ");
|
|
DEBUG(Op0.getNode()->dump(&DAG));
|
|
DEBUG(cerr << "\n");
|
|
|
|
return Op0;
|
|
}
|
|
} else if (Op0.getOpcode() == ISD::ADD) {
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(Op1)) {
|
|
// (SPUindirect (add <arg>, <arg>), 0) ->
|
|
// (SPUindirect <arg>, <arg>)
|
|
if (CN1->isNullValue()) {
|
|
|
|
#if !defined(NDEBUG)
|
|
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
|
|
cerr << "\n"
|
|
<< "Replace: (SPUindirect (add <arg>, <arg>), 0)\n"
|
|
<< "With: (SPUindirect <arg>, <arg>)\n";
|
|
}
|
|
#endif
|
|
|
|
return DAG.getNode(SPUISD::IndirectAddr, Op0VT,
|
|
Op0.getOperand(0), Op0.getOperand(1));
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case SPUISD::SHLQUAD_L_BITS:
|
|
case SPUISD::SHLQUAD_L_BYTES:
|
|
case SPUISD::VEC_SHL:
|
|
case SPUISD::VEC_SRL:
|
|
case SPUISD::VEC_SRA:
|
|
case SPUISD::ROTBYTES_LEFT: {
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
// Kill degenerate vector shifts:
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
|
|
if (CN->isNullValue()) {
|
|
Result = Op0;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case SPUISD::PREFSLOT2VEC: {
|
|
switch (Op0.getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::SIGN_EXTEND: {
|
|
// (SPUprefslot2vec (any|zero|sign_extend (SPUvec2prefslot <arg>))) ->
|
|
// <arg>
|
|
// but only if the SPUprefslot2vec and <arg> types match.
|
|
SDValue Op00 = Op0.getOperand(0);
|
|
if (Op00.getOpcode() == SPUISD::VEC2PREFSLOT) {
|
|
SDValue Op000 = Op00.getOperand(0);
|
|
if (Op000.getValueType() == NodeVT) {
|
|
Result = Op000;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case SPUISD::VEC2PREFSLOT: {
|
|
// (SPUprefslot2vec (SPUvec2prefslot <arg>)) ->
|
|
// <arg>
|
|
Result = Op0.getOperand(0);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// Otherwise, return unchanged.
|
|
#ifndef NDEBUG
|
|
if (Result.getNode()) {
|
|
DEBUG(cerr << "\nReplace.SPU: ");
|
|
DEBUG(N->dump(&DAG));
|
|
DEBUG(cerr << "\nWith: ");
|
|
DEBUG(Result.getNode()->dump(&DAG));
|
|
DEBUG(cerr << "\n");
|
|
}
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
SPUTargetLowering::ConstraintType
|
|
SPUTargetLowering::getConstraintType(const std::string &ConstraintLetter) const {
|
|
if (ConstraintLetter.size() == 1) {
|
|
switch (ConstraintLetter[0]) {
|
|
default: break;
|
|
case 'b':
|
|
case 'r':
|
|
case 'f':
|
|
case 'v':
|
|
case 'y':
|
|
return C_RegisterClass;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(ConstraintLetter);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
SPUTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT VT) const
|
|
{
|
|
if (Constraint.size() == 1) {
|
|
// GCC RS6000 Constraint Letters
|
|
switch (Constraint[0]) {
|
|
case 'b': // R1-R31
|
|
case 'r': // R0-R31
|
|
if (VT == MVT::i64)
|
|
return std::make_pair(0U, SPU::R64CRegisterClass);
|
|
return std::make_pair(0U, SPU::R32CRegisterClass);
|
|
case 'f':
|
|
if (VT == MVT::f32)
|
|
return std::make_pair(0U, SPU::R32FPRegisterClass);
|
|
else if (VT == MVT::f64)
|
|
return std::make_pair(0U, SPU::R64FPRegisterClass);
|
|
break;
|
|
case 'v':
|
|
return std::make_pair(0U, SPU::GPRCRegisterClass);
|
|
}
|
|
}
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
//! Compute used/known bits for a SPU operand
|
|
void
|
|
SPUTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
|
|
const APInt &Mask,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth ) const {
|
|
#if 0
|
|
const uint64_t uint64_sizebits = sizeof(uint64_t) * 8;
|
|
#endif
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
// KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
|
|
break;
|
|
|
|
#if 0
|
|
case CALL:
|
|
case SHUFB:
|
|
case SHUFFLE_MASK:
|
|
case CNTB:
|
|
#endif
|
|
|
|
case SPUISD::PREFSLOT2VEC: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
MVT Op0VT = Op0.getValueType();
|
|
unsigned Op0VTBits = Op0VT.getSizeInBits();
|
|
uint64_t InMask = Op0VT.getIntegerVTBitMask();
|
|
KnownZero |= APInt(Op0VTBits, ~InMask, false);
|
|
KnownOne |= APInt(Op0VTBits, InMask, false);
|
|
break;
|
|
}
|
|
|
|
case SPUISD::LDRESULT:
|
|
case SPUISD::VEC2PREFSLOT: {
|
|
MVT OpVT = Op.getValueType();
|
|
unsigned OpVTBits = OpVT.getSizeInBits();
|
|
uint64_t InMask = OpVT.getIntegerVTBitMask();
|
|
KnownZero |= APInt(OpVTBits, ~InMask, false);
|
|
KnownOne |= APInt(OpVTBits, InMask, false);
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
case SPUISD::SHLQUAD_L_BITS:
|
|
case SPUISD::SHLQUAD_L_BYTES:
|
|
case SPUISD::VEC_SHL:
|
|
case SPUISD::VEC_SRL:
|
|
case SPUISD::VEC_SRA:
|
|
case SPUISD::VEC_ROTL:
|
|
case SPUISD::VEC_ROTR:
|
|
case SPUISD::ROTBYTES_LEFT:
|
|
case SPUISD::SELECT_MASK:
|
|
case SPUISD::SELB:
|
|
case SPUISD::SEXT32TO64:
|
|
#endif
|
|
}
|
|
}
|
|
|
|
unsigned
|
|
SPUTargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
|
|
unsigned Depth) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
return 1;
|
|
|
|
case ISD::SETCC: {
|
|
MVT VT = Op.getValueType();
|
|
|
|
if (VT != MVT::i8 && VT != MVT::i16 && VT != MVT::i32) {
|
|
VT = MVT::i32;
|
|
}
|
|
return VT.getSizeInBits();
|
|
}
|
|
}
|
|
}
|
|
|
|
// LowerAsmOperandForConstraint
|
|
void
|
|
SPUTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
char ConstraintLetter,
|
|
bool hasMemory,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
// Default, for the time being, to the base class handler
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, ConstraintLetter, hasMemory,
|
|
Ops, DAG);
|
|
}
|
|
|
|
/// isLegalAddressImmediate - Return true if the integer value can be used
|
|
/// as the offset of the target addressing mode.
|
|
bool SPUTargetLowering::isLegalAddressImmediate(int64_t V,
|
|
const Type *Ty) const {
|
|
// SPU's addresses are 256K:
|
|
return (V > -(1 << 18) && V < (1 << 18) - 1);
|
|
}
|
|
|
|
bool SPUTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
SPUTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The SPU target isn't yet aware of offsets.
|
|
return false;
|
|
}
|