mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-07 12:30:44 +00:00
9171ef5e8d
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6499 91177308-0d34-0410-b5e6-96231b3b80d8
2027 lines
76 KiB
C++
2027 lines
76 KiB
C++
//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
|
|
//
|
|
// This file defines a simple peephole instruction selector for the x86 target
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
|
|
/// BMI - A special BuildMI variant that takes an iterator to insert the
|
|
/// instruction at as well as a basic block. This is the version for when you
|
|
/// have a destination register in mind.
|
|
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &I,
|
|
MachineOpCode Opcode,
|
|
unsigned NumOperands,
|
|
unsigned DestReg) {
|
|
assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
|
|
MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
|
|
I = MBB->insert(I, MI)+1;
|
|
return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
|
|
}
|
|
|
|
/// BMI - A special BuildMI variant that takes an iterator to insert the
|
|
/// instruction at as well as a basic block.
|
|
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &I,
|
|
MachineOpCode Opcode,
|
|
unsigned NumOperands) {
|
|
assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
|
|
MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
|
|
I = MBB->insert(I, MI)+1;
|
|
return MachineInstrBuilder(MI);
|
|
}
|
|
|
|
|
|
namespace {
|
|
struct ISel : public FunctionPass, InstVisitor<ISel> {
|
|
TargetMachine &TM;
|
|
MachineFunction *F; // The function we are compiling into
|
|
MachineBasicBlock *BB; // The current MBB we are compiling
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area
|
|
|
|
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
|
|
|
|
// MBBMap - Mapping between LLVM BB -> Machine BB
|
|
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
|
|
|
|
ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
|
|
|
|
/// runOnFunction - Top level implementation of instruction selection for
|
|
/// the entire function.
|
|
///
|
|
bool runOnFunction(Function &Fn) {
|
|
F = &MachineFunction::construct(&Fn, TM);
|
|
|
|
// Create all of the machine basic blocks for the function...
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
|
|
|
|
BB = &F->front();
|
|
|
|
// Copy incoming arguments off of the stack...
|
|
LoadArgumentsToVirtualRegs(Fn);
|
|
|
|
// Instruction select everything except PHI nodes
|
|
visit(Fn);
|
|
|
|
// Select the PHI nodes
|
|
SelectPHINodes();
|
|
|
|
RegMap.clear();
|
|
MBBMap.clear();
|
|
F = 0;
|
|
return false; // We never modify the LLVM itself.
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 Simple Instruction Selection";
|
|
}
|
|
|
|
/// visitBasicBlock - This method is called when we are visiting a new basic
|
|
/// block. This simply creates a new MachineBasicBlock to emit code into
|
|
/// and adds it to the current MachineFunction. Subsequent visit* for
|
|
/// instructions will be invoked for all instructions in the basic block.
|
|
///
|
|
void visitBasicBlock(BasicBlock &LLVM_BB) {
|
|
BB = MBBMap[&LLVM_BB];
|
|
}
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
|
|
/// from the stack into virtual registers.
|
|
///
|
|
void LoadArgumentsToVirtualRegs(Function &F);
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks,
|
|
/// not the current one.
|
|
///
|
|
void SelectPHINodes();
|
|
|
|
// Visitation methods for various instructions. These methods simply emit
|
|
// fixed X86 code for each instruction.
|
|
//
|
|
|
|
// Control flow operators
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitBranchInst(BranchInst &BI);
|
|
|
|
struct ValueRecord {
|
|
unsigned Reg;
|
|
const Type *Ty;
|
|
ValueRecord(unsigned R, const Type *T) : Reg(R), Ty(T) {}
|
|
};
|
|
void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args);
|
|
void visitCallInst(CallInst &I);
|
|
void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
|
|
|
|
// Arithmetic operators
|
|
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
|
|
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
|
|
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
|
|
void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned Op0Reg, unsigned Op1Reg);
|
|
void visitMul(BinaryOperator &B);
|
|
|
|
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitRem(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitDivRem(BinaryOperator &B);
|
|
|
|
// Bitwise operators
|
|
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
|
|
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
|
|
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
|
|
|
|
// Comparison operators...
|
|
void visitSetCondInst(SetCondInst &I);
|
|
bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
|
|
|
|
// Memory Instructions
|
|
MachineInstr *doFPLoad(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
const Type *Ty, unsigned DestReg);
|
|
void visitLoadInst(LoadInst &I);
|
|
void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
|
|
void visitStoreInst(StoreInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitMallocInst(MallocInst &I);
|
|
void visitFreeInst(FreeInst &I);
|
|
|
|
// Other operators
|
|
void visitShiftInst(ShiftInst &I);
|
|
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
|
|
void visitCastInst(CastInst &I);
|
|
void visitVarArgInst(VarArgInst &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "Cannot instruction select: " << I;
|
|
abort();
|
|
}
|
|
|
|
/// promote32 - Make a value 32-bits wide, and put it somewhere.
|
|
///
|
|
void promote32(unsigned targetReg, const ValueRecord &VR);
|
|
|
|
/// EmitByteSwap - Byteswap SrcReg into DestReg.
|
|
///
|
|
void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
|
|
|
|
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
|
|
/// constant expression GEP support.
|
|
///
|
|
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg);
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and
|
|
/// constant expression cast support.
|
|
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
|
|
Value *Src, const Type *DestTy, unsigned TargetReg);
|
|
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
void emitSimpleBinaryOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator &IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
Constant *C, unsigned Reg);
|
|
|
|
/// makeAnotherReg - This method returns the next register number we haven't
|
|
/// yet used.
|
|
///
|
|
/// Long values are handled somewhat specially. They are always allocated
|
|
/// as pairs of 32 bit integer values. The register number returned is the
|
|
/// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
|
|
/// of the long value.
|
|
///
|
|
unsigned makeAnotherReg(const Type *Ty) {
|
|
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
|
|
const TargetRegisterClass *RC =
|
|
TM.getRegisterInfo()->getRegClassForType(Type::IntTy);
|
|
// Create the lower part
|
|
F->getSSARegMap()->createVirtualRegister(RC);
|
|
// Create the upper part.
|
|
return F->getSSARegMap()->createVirtualRegister(RC)-1;
|
|
}
|
|
|
|
// Add the mapping of regnumber => reg class to MachineFunction
|
|
const TargetRegisterClass *RC =
|
|
TM.getRegisterInfo()->getRegClassForType(Ty);
|
|
return F->getSSARegMap()->createVirtualRegister(RC);
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number. This
|
|
/// is guaranteed to produce the same register number for a particular value
|
|
/// every time it is queried.
|
|
///
|
|
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
|
|
unsigned getReg(Value *V) {
|
|
// Just append to the end of the current bb.
|
|
MachineBasicBlock::iterator It = BB->end();
|
|
return getReg(V, BB, It);
|
|
}
|
|
unsigned getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &IPt) {
|
|
unsigned &Reg = RegMap[V];
|
|
if (Reg == 0) {
|
|
Reg = makeAnotherReg(V->getType());
|
|
RegMap[V] = Reg;
|
|
}
|
|
|
|
// If this operand is a constant, emit the code to copy the constant into
|
|
// the register here...
|
|
//
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
copyConstantToRegister(MBB, IPt, C, Reg);
|
|
RegMap.erase(V); // Assign a new name to this constant if ref'd again
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
// Move the address of the global into the register
|
|
BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
|
|
RegMap.erase(V); // Assign a new name to this address if ref'd again
|
|
}
|
|
|
|
return Reg;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
|
|
/// Representation.
|
|
///
|
|
enum TypeClass {
|
|
cByte, cShort, cInt, cFP, cLong
|
|
};
|
|
|
|
/// getClass - Turn a primitive type into a "class" number which is based on the
|
|
/// size of the type, and whether or not it is floating point.
|
|
///
|
|
static inline TypeClass getClass(const Type *Ty) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::SByteTyID:
|
|
case Type::UByteTyID: return cByte; // Byte operands are class #0
|
|
case Type::ShortTyID:
|
|
case Type::UShortTyID: return cShort; // Short operands are class #1
|
|
case Type::IntTyID:
|
|
case Type::UIntTyID:
|
|
case Type::PointerTyID: return cInt; // Int's and pointers are class #2
|
|
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID: return cFP; // Floating Point is #3
|
|
|
|
case Type::LongTyID:
|
|
case Type::ULongTyID: return cLong; // Longs are class #4
|
|
default:
|
|
assert(0 && "Invalid type to getClass!");
|
|
return cByte; // not reached
|
|
}
|
|
}
|
|
|
|
// getClassB - Just like getClass, but treat boolean values as bytes.
|
|
static inline TypeClass getClassB(const Type *Ty) {
|
|
if (Ty == Type::BoolTy) return cByte;
|
|
return getClass(Ty);
|
|
}
|
|
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &IP,
|
|
Constant *C, unsigned R) {
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
unsigned Class = 0;
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::GetElementPtr:
|
|
emitGEPOperation(MBB, IP, CE->getOperand(0),
|
|
CE->op_begin()+1, CE->op_end(), R);
|
|
return;
|
|
case Instruction::Cast:
|
|
emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
|
|
return;
|
|
|
|
case Instruction::Xor: ++Class; // FALL THROUGH
|
|
case Instruction::Or: ++Class; // FALL THROUGH
|
|
case Instruction::And: ++Class; // FALL THROUGH
|
|
case Instruction::Sub: ++Class; // FALL THROUGH
|
|
case Instruction::Add:
|
|
emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
Class, R);
|
|
return;
|
|
|
|
default:
|
|
std::cerr << "Offending expr: " << C << "\n";
|
|
assert(0 && "Constant expressions not yet handled!\n");
|
|
}
|
|
}
|
|
|
|
if (C->getType()->isIntegral()) {
|
|
unsigned Class = getClassB(C->getType());
|
|
|
|
if (Class == cLong) {
|
|
// Copy the value into the register pair.
|
|
uint64_t Val;
|
|
if (C->getType()->isSigned())
|
|
Val = cast<ConstantSInt>(C)->getValue();
|
|
else
|
|
Val = cast<ConstantUInt>(C)->getValue();
|
|
|
|
BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
|
|
BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
|
|
return;
|
|
}
|
|
|
|
assert(Class <= cInt && "Type not handled yet!");
|
|
|
|
static const unsigned IntegralOpcodeTab[] = {
|
|
X86::MOVir8, X86::MOVir16, X86::MOVir32
|
|
};
|
|
|
|
if (C->getType() == Type::BoolTy) {
|
|
BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
|
|
} else if (C->getType()->isSigned()) {
|
|
ConstantSInt *CSI = cast<ConstantSInt>(C);
|
|
BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CSI->getValue());
|
|
} else {
|
|
ConstantUInt *CUI = cast<ConstantUInt>(C);
|
|
BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
|
|
}
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
double Value = CFP->getValue();
|
|
if (Value == +0.0)
|
|
BMI(MBB, IP, X86::FLD0, 0, R);
|
|
else if (Value == +1.0)
|
|
BMI(MBB, IP, X86::FLD1, 0, R);
|
|
else {
|
|
// Otherwise we need to spill the constant to memory...
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(CFP);
|
|
addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
|
|
}
|
|
|
|
} else if (isa<ConstantPointerNull>(C)) {
|
|
// Copy zero (null pointer) to the register.
|
|
BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
|
|
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
|
|
unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
|
|
BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
|
|
} else {
|
|
std::cerr << "Offending constant: " << C << "\n";
|
|
assert(0 && "Type not handled yet!");
|
|
}
|
|
}
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
|
|
/// the stack into virtual registers.
|
|
///
|
|
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
|
|
// Emit instructions to load the arguments... On entry to a function on the
|
|
// X86, the stack frame looks like this:
|
|
//
|
|
// [ESP] -- return address
|
|
// [ESP + 4] -- first argument (leftmost lexically)
|
|
// [ESP + 8] -- second argument, if first argument is four bytes in size
|
|
// ...
|
|
//
|
|
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
|
|
MachineFrameInfo *MFI = F->getFrameInfo();
|
|
|
|
for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
|
|
unsigned Reg = getReg(*I);
|
|
|
|
int FI; // Frame object index
|
|
switch (getClassB(I->getType())) {
|
|
case cByte:
|
|
FI = MFI->CreateFixedObject(1, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
|
|
break;
|
|
case cShort:
|
|
FI = MFI->CreateFixedObject(2, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
|
|
break;
|
|
case cInt:
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
|
|
break;
|
|
case cLong:
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
|
|
addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
|
|
ArgOffset += 4; // longs require 4 additional bytes
|
|
break;
|
|
case cFP:
|
|
unsigned Opcode;
|
|
if (I->getType() == Type::FloatTy) {
|
|
Opcode = X86::FLDr32;
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
} else {
|
|
Opcode = X86::FLDr64;
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
ArgOffset += 4; // doubles require 4 additional bytes
|
|
}
|
|
addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
|
|
break;
|
|
default:
|
|
assert(0 && "Unhandled argument type!");
|
|
}
|
|
ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
|
|
}
|
|
|
|
// If the function takes variable number of arguments, add a frame offset for
|
|
// the start of the first vararg value... this is used to expand
|
|
// llvm.va_start.
|
|
if (Fn.getFunctionType()->isVarArg())
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
|
|
}
|
|
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks, not
|
|
/// the current one.
|
|
///
|
|
void ISel::SelectPHINodes() {
|
|
const TargetInstrInfo &TII = TM.getInstrInfo();
|
|
const Function &LF = *F->getFunction(); // The LLVM function...
|
|
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
|
|
const BasicBlock *BB = I;
|
|
MachineBasicBlock *MBB = MBBMap[I];
|
|
|
|
// Loop over all of the PHI nodes in the LLVM basic block...
|
|
unsigned NumPHIs = 0;
|
|
for (BasicBlock::const_iterator I = BB->begin();
|
|
PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
|
|
|
|
// Create a new machine instr PHI node, and insert it.
|
|
unsigned PHIReg = getReg(*PN);
|
|
MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
|
|
MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
|
|
|
|
MachineInstr *LongPhiMI = 0;
|
|
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
|
|
LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
|
|
MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
|
|
}
|
|
|
|
// PHIValues - Map of blocks to incoming virtual registers. We use this
|
|
// so that we only initialize one incoming value for a particular block,
|
|
// even if the block has multiple entries in the PHI node.
|
|
//
|
|
std::map<MachineBasicBlock*, unsigned> PHIValues;
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
|
|
unsigned ValReg;
|
|
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
|
|
PHIValues.lower_bound(PredMBB);
|
|
|
|
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
|
|
// We already inserted an initialization of the register for this
|
|
// predecessor. Recycle it.
|
|
ValReg = EntryIt->second;
|
|
|
|
} else {
|
|
// Get the incoming value into a virtual register. If it is not
|
|
// already available in a virtual register, insert the computation
|
|
// code into PredMBB
|
|
//
|
|
MachineBasicBlock::iterator PI = PredMBB->end();
|
|
while (PI != PredMBB->begin() &&
|
|
TII.isTerminatorInstr((*(PI-1))->getOpcode()))
|
|
--PI;
|
|
ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
|
|
|
|
// Remember that we inserted a value for this PHI for this predecessor
|
|
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
|
|
}
|
|
|
|
PhiMI->addRegOperand(ValReg);
|
|
PhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
if (LongPhiMI) {
|
|
LongPhiMI->addRegOperand(ValReg+1);
|
|
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
|
|
// the conditional branch instruction which is the only user of the cc
|
|
// instruction. This is the case if the conditional branch is the only user of
|
|
// the setcc, and if the setcc is in the same basic block as the conditional
|
|
// branch. We also don't handle long arguments below, so we reject them here as
|
|
// well.
|
|
//
|
|
static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
|
|
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
|
|
if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
|
|
SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
|
|
const Type *Ty = SCI->getOperand(0)->getType();
|
|
if (Ty != Type::LongTy && Ty != Type::ULongTy)
|
|
return SCI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Return a fixed numbering for setcc instructions which does not depend on the
|
|
// order of the opcodes.
|
|
//
|
|
static unsigned getSetCCNumber(unsigned Opcode) {
|
|
switch(Opcode) {
|
|
default: assert(0 && "Unknown setcc instruction!");
|
|
case Instruction::SetEQ: return 0;
|
|
case Instruction::SetNE: return 1;
|
|
case Instruction::SetLT: return 2;
|
|
case Instruction::SetGE: return 3;
|
|
case Instruction::SetGT: return 4;
|
|
case Instruction::SetLE: return 5;
|
|
}
|
|
}
|
|
|
|
// LLVM -> X86 signed X86 unsigned
|
|
// ----- ---------- ------------
|
|
// seteq -> sete sete
|
|
// setne -> setne setne
|
|
// setlt -> setl setb
|
|
// setge -> setge setae
|
|
// setgt -> setg seta
|
|
// setle -> setle setbe
|
|
static const unsigned SetCCOpcodeTab[2][6] = {
|
|
{X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
|
|
{X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
|
|
};
|
|
|
|
bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
|
|
|
|
// The arguments are already supposed to be of the same type.
|
|
const Type *CompTy = Op0->getType();
|
|
bool isSigned = CompTy->isSigned();
|
|
unsigned reg1 = getReg(Op0);
|
|
unsigned reg2 = getReg(Op1);
|
|
|
|
unsigned Class = getClassB(CompTy);
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown type class!");
|
|
// Emit: cmp <var1>, <var2> (do the comparison). We can
|
|
// compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
|
|
// 32-bit.
|
|
case cByte:
|
|
BuildMI(BB, X86::CMPrr8, 2).addReg(reg1).addReg(reg2);
|
|
break;
|
|
case cShort:
|
|
BuildMI(BB, X86::CMPrr16, 2).addReg(reg1).addReg(reg2);
|
|
break;
|
|
case cInt:
|
|
BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
|
|
break;
|
|
case cFP:
|
|
BuildMI(BB, X86::FpUCOM, 2).addReg(reg1).addReg(reg2);
|
|
BuildMI(BB, X86::FNSTSWr8, 0);
|
|
BuildMI(BB, X86::SAHF, 1);
|
|
isSigned = false; // Compare with unsigned operators
|
|
break;
|
|
|
|
case cLong:
|
|
if (OpNum < 2) { // seteq, setne
|
|
unsigned LoTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned HiTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(reg1).addReg(reg2);
|
|
BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(reg1+1).addReg(reg2+1);
|
|
BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
|
|
break; // Allow the sete or setne to be generated from flags set by OR
|
|
} else {
|
|
// Emit a sequence of code which compares the high and low parts once
|
|
// each, then uses a conditional move to handle the overflow case. For
|
|
// example, a setlt for long would generate code like this:
|
|
//
|
|
// AL = lo(op1) < lo(op2) // Signedness depends on operands
|
|
// BL = hi(op1) < hi(op2) // Always unsigned comparison
|
|
// dest = hi(op1) == hi(op2) ? AL : BL;
|
|
//
|
|
|
|
// FIXME: This would be much better if we had hierarchical register
|
|
// classes! Until then, hardcode registers so that we can deal with their
|
|
// aliases (because we don't have conditional byte moves).
|
|
//
|
|
BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
|
|
BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
|
|
BuildMI(BB, X86::CMPrr32, 2).addReg(reg1+1).addReg(reg2+1);
|
|
BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
|
|
BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
|
|
// NOTE: visitSetCondInst knows that the value is dumped into the BL
|
|
// register at this point for long values...
|
|
return isSigned;
|
|
}
|
|
}
|
|
return isSigned;
|
|
}
|
|
|
|
|
|
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
|
|
/// register, then move it to wherever the result should be.
|
|
///
|
|
void ISel::visitSetCondInst(SetCondInst &I) {
|
|
if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
|
|
|
|
unsigned OpNum = getSetCCNumber(I.getOpcode());
|
|
unsigned DestReg = getReg(I);
|
|
bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
|
|
I.getOperand(1));
|
|
|
|
if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
|
|
// Handle normal comparisons with a setcc instruction...
|
|
BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
|
|
} else {
|
|
// Handle long comparisons by copying the value which is already in BL into
|
|
// the register we want...
|
|
BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
|
|
}
|
|
}
|
|
|
|
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
|
|
/// operand, in the specified target register.
|
|
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
|
|
bool isUnsigned = VR.Ty->isUnsigned();
|
|
switch (getClassB(VR.Ty)) {
|
|
case cByte:
|
|
// Extend value into target register (8->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(VR.Reg);
|
|
else
|
|
BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(VR.Reg);
|
|
break;
|
|
case cShort:
|
|
// Extend value into target register (16->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(VR.Reg);
|
|
else
|
|
BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(VR.Reg);
|
|
break;
|
|
case cInt:
|
|
// Move value into target register (32->32)
|
|
BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(VR.Reg);
|
|
break;
|
|
default:
|
|
assert(0 && "Unpromotable operand class in promote32");
|
|
}
|
|
}
|
|
|
|
/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
|
|
/// we have the following possibilities:
|
|
///
|
|
/// ret void: No return value, simply emit a 'ret' instruction
|
|
/// ret sbyte, ubyte : Extend value into EAX and return
|
|
/// ret short, ushort: Extend value into EAX and return
|
|
/// ret int, uint : Move value into EAX and return
|
|
/// ret pointer : Move value into EAX and return
|
|
/// ret long, ulong : Move value into EAX/EDX and return
|
|
/// ret float/double : Top of FP stack
|
|
///
|
|
void ISel::visitReturnInst(ReturnInst &I) {
|
|
if (I.getNumOperands() == 0) {
|
|
BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
|
|
return;
|
|
}
|
|
|
|
Value *RetVal = I.getOperand(0);
|
|
unsigned RetReg = getReg(RetVal);
|
|
switch (getClassB(RetVal->getType())) {
|
|
case cByte: // integral return values: extend or move into EAX and return
|
|
case cShort:
|
|
case cInt:
|
|
promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
|
|
// Declare that EAX is live on exit
|
|
BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
|
|
break;
|
|
case cFP: // Floats & Doubles: Return in ST(0)
|
|
BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
|
|
// Declare that top-of-stack is live on exit
|
|
BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
|
|
break;
|
|
case cLong:
|
|
BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
|
|
BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
|
|
// Declare that EAX & EDX are live on exit
|
|
BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
|
|
break;
|
|
default:
|
|
visitInstruction(I);
|
|
}
|
|
// Emit a 'ret' instruction
|
|
BuildMI(BB, X86::RET, 0);
|
|
}
|
|
|
|
// getBlockAfter - Return the basic block which occurs lexically after the
|
|
// specified one.
|
|
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
|
|
Function::iterator I = BB; ++I; // Get iterator to next block
|
|
return I != BB->getParent()->end() ? &*I : 0;
|
|
}
|
|
|
|
/// visitBranchInst - Handle conditional and unconditional branches here. Note
|
|
/// that since code layout is frozen at this point, that if we are trying to
|
|
/// jump to a block that is the immediate successor of the current block, we can
|
|
/// just make a fall-through (but we don't currently).
|
|
///
|
|
void ISel::visitBranchInst(BranchInst &BI) {
|
|
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
|
|
|
|
if (!BI.isConditional()) { // Unconditional branch?
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
|
|
return;
|
|
}
|
|
|
|
// See if we can fold the setcc into the branch itself...
|
|
SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
|
|
if (SCI == 0) {
|
|
// Nope, cannot fold setcc into this branch. Emit a branch on a condition
|
|
// computed some other way...
|
|
unsigned condReg = getReg(BI.getCondition());
|
|
BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
|
|
if (BI.getSuccessor(1) == NextBB) {
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
|
|
} else {
|
|
BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
|
|
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
|
|
}
|
|
return;
|
|
}
|
|
|
|
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
|
|
bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
|
|
SCI->getOperand(1));
|
|
|
|
// LLVM -> X86 signed X86 unsigned
|
|
// ----- ---------- ------------
|
|
// seteq -> je je
|
|
// setne -> jne jne
|
|
// setlt -> jl jb
|
|
// setge -> jge jae
|
|
// setgt -> jg ja
|
|
// setle -> jle jbe
|
|
static const unsigned OpcodeTab[2][6] = {
|
|
{ X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
|
|
{ X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
|
|
};
|
|
|
|
if (BI.getSuccessor(0) != NextBB) {
|
|
BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
|
|
if (BI.getSuccessor(1) != NextBB)
|
|
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
|
|
} else {
|
|
// Change to the inverse condition...
|
|
if (BI.getSuccessor(1) != NextBB) {
|
|
OpNum ^= 1;
|
|
BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// doCall - This emits an abstract call instruction, setting up the arguments
|
|
/// and the return value as appropriate. For the actual function call itself,
|
|
/// it inserts the specified CallMI instruction into the stream.
|
|
///
|
|
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args) {
|
|
|
|
// Count how many bytes are to be pushed on the stack...
|
|
unsigned NumBytes = 0;
|
|
|
|
if (!Args.empty()) {
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte: case cShort: case cInt:
|
|
NumBytes += 4; break;
|
|
case cLong:
|
|
NumBytes += 8; break;
|
|
case cFP:
|
|
NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
|
|
|
|
// Arguments go on the stack in reverse order, as specified by the ABI.
|
|
unsigned ArgOffset = 0;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
unsigned ArgReg = Args[i].Reg;
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte:
|
|
case cShort: {
|
|
// Promote arg to 32 bits wide into a temporary register...
|
|
unsigned R = makeAnotherReg(Type::UIntTy);
|
|
promote32(R, Args[i]);
|
|
addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
|
|
X86::ESP, ArgOffset).addReg(R);
|
|
break;
|
|
}
|
|
case cInt:
|
|
addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
break;
|
|
case cLong:
|
|
addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
|
|
X86::ESP, ArgOffset+4).addReg(ArgReg+1);
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
break;
|
|
|
|
case cFP:
|
|
if (Args[i].Ty == Type::FloatTy) {
|
|
addRegOffset(BuildMI(BB, X86::FSTr32, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
} else {
|
|
assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
|
|
addRegOffset(BuildMI(BB, X86::FSTr64, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
}
|
|
break;
|
|
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
ArgOffset += 4;
|
|
}
|
|
} else {
|
|
BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
|
|
}
|
|
|
|
BB->push_back(CallMI);
|
|
|
|
BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
|
|
|
|
// If there is a return value, scavenge the result from the location the call
|
|
// leaves it in...
|
|
//
|
|
if (Ret.Ty != Type::VoidTy) {
|
|
unsigned DestClass = getClassB(Ret.Ty);
|
|
switch (DestClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt: {
|
|
// Integral results are in %eax, or the appropriate portion
|
|
// thereof.
|
|
static const unsigned regRegMove[] = {
|
|
X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
|
|
};
|
|
static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
|
|
BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
|
|
break;
|
|
}
|
|
case cFP: // Floating-point return values live in %ST(0)
|
|
BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
|
|
break;
|
|
case cLong: // Long values are left in EDX:EAX
|
|
BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
|
|
BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitCallInst - Push args on stack and do a procedure call instruction.
|
|
void ISel::visitCallInst(CallInst &CI) {
|
|
MachineInstr *TheCall;
|
|
if (Function *F = CI.getCalledFunction()) {
|
|
// Is it an intrinsic function call?
|
|
if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
|
|
visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
|
|
return;
|
|
}
|
|
|
|
// Emit a CALL instruction with PC-relative displacement.
|
|
TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
|
|
} else { // Emit an indirect call...
|
|
unsigned Reg = getReg(CI.getCalledValue());
|
|
TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
|
|
Args.push_back(ValueRecord(getReg(CI.getOperand(i)),
|
|
CI.getOperand(i)->getType()));
|
|
|
|
unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
|
|
doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
|
|
}
|
|
|
|
void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
|
|
unsigned TmpReg1, TmpReg2;
|
|
switch (ID) {
|
|
case LLVMIntrinsic::va_start:
|
|
// Get the address of the first vararg value...
|
|
TmpReg1 = makeAnotherReg(Type::UIntTy);
|
|
addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
|
|
TmpReg2 = getReg(CI.getOperand(1));
|
|
addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
|
|
return;
|
|
|
|
case LLVMIntrinsic::va_end: return; // Noop on X86
|
|
case LLVMIntrinsic::va_copy:
|
|
TmpReg1 = getReg(CI.getOperand(2)); // Get existing va_list
|
|
TmpReg2 = getReg(CI.getOperand(1)); // Get va_list* to store into
|
|
addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
|
|
return;
|
|
|
|
default: assert(0 && "Unknown intrinsic for X86!");
|
|
}
|
|
}
|
|
|
|
|
|
/// visitSimpleBinary - Implement simple binary operators for integral types...
|
|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
|
|
/// Xor.
|
|
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
|
|
unsigned DestReg = getReg(B);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
|
|
OperatorClass, DestReg);
|
|
}
|
|
|
|
/// visitSimpleBinary - Implement simple binary operators for integral types...
|
|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
|
|
/// 4 for Xor.
|
|
///
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator &IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass,unsigned TargetReg){
|
|
unsigned Class = getClassB(Op0->getType());
|
|
|
|
static const unsigned OpcodeTab[][4] = {
|
|
// Arithmetic operators
|
|
{ X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
|
|
{ X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
|
|
|
|
// Bitwise operators
|
|
{ X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
|
|
{ X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
|
|
{ X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
|
|
};
|
|
|
|
bool isLong = false;
|
|
if (Class == cLong) {
|
|
isLong = true;
|
|
Class = cInt; // Bottom 32 bits are handled just like ints
|
|
}
|
|
|
|
unsigned Opcode = OpcodeTab[OperatorClass][Class];
|
|
assert(Opcode && "Floating point arguments to logical inst?");
|
|
unsigned Op0r = getReg(Op0, BB, IP);
|
|
unsigned Op1r = getReg(Op1, BB, IP);
|
|
BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
|
|
|
|
if (isLong) { // Handle the upper 32 bits of long values...
|
|
static const unsigned TopTab[] = {
|
|
X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
|
|
};
|
|
BMI(BB, IP, TopTab[OperatorClass], 2,
|
|
TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
|
|
}
|
|
}
|
|
|
|
/// doMultiply - Emit appropriate instructions to multiply together the
|
|
/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
|
|
/// result should be given as DestTy.
|
|
///
|
|
/// FIXME: doMultiply should use one of the two address IMUL instructions!
|
|
///
|
|
void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned op0Reg, unsigned op1Reg) {
|
|
unsigned Class = getClass(DestTy);
|
|
switch (Class) {
|
|
case cFP: // Floating point multiply
|
|
BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
|
|
return;
|
|
default:
|
|
case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
|
|
case cByte:
|
|
case cShort:
|
|
case cInt: // Small integerals, handled below...
|
|
break;
|
|
}
|
|
|
|
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
|
|
static const unsigned MulOpcode[]={ X86::MULr8 , X86::MULr16 , X86::MULr32 };
|
|
static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
|
|
unsigned Reg = Regs[Class];
|
|
|
|
// Emit a MOV to put the first operand into the appropriately-sized
|
|
// subreg of EAX.
|
|
BMI(MBB, MBBI, MovOpcode[Class], 1, Reg).addReg(op0Reg);
|
|
|
|
// Emit the appropriate multiply instruction.
|
|
BMI(MBB, MBBI, MulOpcode[Class], 1).addReg(op1Reg);
|
|
|
|
// Emit another MOV to put the result into the destination register.
|
|
BMI(MBB, MBBI, MovOpcode[Class], 1, DestReg).addReg(Reg);
|
|
}
|
|
|
|
/// visitMul - Multiplies are not simple binary operators because they must deal
|
|
/// with the EAX register explicitly.
|
|
///
|
|
void ISel::visitMul(BinaryOperator &I) {
|
|
unsigned Op0Reg = getReg(I.getOperand(0));
|
|
unsigned Op1Reg = getReg(I.getOperand(1));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
// Simple scalar multiply?
|
|
if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
|
|
} else {
|
|
// Long value. We have to do things the hard way...
|
|
// Multiply the two low parts... capturing carry into EDX
|
|
BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
|
|
BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
|
|
|
|
unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
|
|
BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
|
|
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
|
|
doMultiply(BB, MBBI, AHBLReg, Type::UIntTy, Op0Reg+1, Op1Reg); // AH*BL
|
|
|
|
unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
|
|
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
|
|
|
|
MBBI = BB->end();
|
|
unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
|
|
doMultiply(BB, MBBI, ALBHReg, Type::UIntTy, Op0Reg, Op1Reg+1); // AL*BH
|
|
|
|
BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
|
|
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
|
|
}
|
|
}
|
|
|
|
|
|
/// visitDivRem - Handle division and remainder instructions... these
|
|
/// instruction both require the same instructions to be generated, they just
|
|
/// select the result from a different register. Note that both of these
|
|
/// instructions work differently for signed and unsigned operands.
|
|
///
|
|
void ISel::visitDivRem(BinaryOperator &I) {
|
|
unsigned Class = getClass(I.getType());
|
|
unsigned Op0Reg = getReg(I.getOperand(0));
|
|
unsigned Op1Reg = getReg(I.getOperand(1));
|
|
unsigned ResultReg = getReg(I);
|
|
|
|
switch (Class) {
|
|
case cFP: // Floating point divide
|
|
if (I.getOpcode() == Instruction::Div)
|
|
BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
|
|
else { // Floating point remainder...
|
|
MachineInstr *TheCall =
|
|
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
|
|
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
|
|
}
|
|
return;
|
|
case cLong: {
|
|
static const char *FnName[] =
|
|
{ "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
|
|
|
|
unsigned NameIdx = I.getType()->isUnsigned()*2;
|
|
NameIdx += I.getOpcode() == Instruction::Div;
|
|
MachineInstr *TheCall =
|
|
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
|
|
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
|
|
return;
|
|
}
|
|
case cByte: case cShort: case cInt:
|
|
break; // Small integerals, handled below...
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
|
|
static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
|
|
static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
|
|
static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
|
|
static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
|
|
|
|
static const unsigned DivOpcode[][4] = {
|
|
{ X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
|
|
{ X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
|
|
};
|
|
|
|
bool isSigned = I.getType()->isSigned();
|
|
unsigned Reg = Regs[Class];
|
|
unsigned ExtReg = ExtRegs[Class];
|
|
|
|
// Put the first operand into one of the A registers...
|
|
BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
|
|
|
|
if (isSigned) {
|
|
// Emit a sign extension instruction...
|
|
BuildMI(BB, ExtOpcode[Class], 0);
|
|
} else {
|
|
// If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
|
|
BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
|
|
}
|
|
|
|
// Emit the appropriate divide or remainder instruction...
|
|
BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
|
|
|
|
// Figure out which register we want to pick the result out of...
|
|
unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
|
|
|
|
// Put the result into the destination register...
|
|
BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
|
|
}
|
|
|
|
|
|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
|
|
/// for constant immediate shift values, and for constant immediate
|
|
/// shift values equal to 1. Even the general case is sort of special,
|
|
/// because the shift amount has to be in CL, not just any old register.
|
|
///
|
|
void ISel::visitShiftInst(ShiftInst &I) {
|
|
unsigned SrcReg = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
bool isLeftShift = I.getOpcode() == Instruction::Shl;
|
|
bool isSigned = I.getType()->isSigned();
|
|
unsigned Class = getClass(I.getType());
|
|
|
|
static const unsigned ConstantOperand[][4] = {
|
|
{ X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
|
|
{ X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
|
|
{ X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
|
|
{ X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
|
|
};
|
|
|
|
static const unsigned NonConstantOperand[][4] = {
|
|
{ X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
|
|
{ X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
|
|
{ X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
|
|
{ X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
|
|
};
|
|
|
|
// Longs, as usual, are handled specially...
|
|
if (Class == cLong) {
|
|
// If we have a constant shift, we can generate much more efficient code
|
|
// than otherwise...
|
|
//
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
|
|
unsigned Amount = CUI->getValue();
|
|
if (Amount < 32) {
|
|
const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
|
|
if (isLeftShift) {
|
|
BuildMI(BB, Opc[3], 3,
|
|
DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
|
|
BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
|
|
} else {
|
|
BuildMI(BB, Opc[3], 3,
|
|
DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
|
|
BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
|
|
}
|
|
} else { // Shifting more than 32 bits
|
|
Amount -= 32;
|
|
if (isLeftShift) {
|
|
BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
|
|
BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
|
|
} else {
|
|
unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
|
|
BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
|
|
BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
|
|
}
|
|
}
|
|
} else {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
|
|
if (!isLeftShift && isSigned) {
|
|
// If this is a SHR of a Long, then we need to do funny sign extension
|
|
// stuff. TmpReg gets the value to use as the high-part if we are
|
|
// shifting more than 32 bits.
|
|
BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
|
|
} else {
|
|
// Other shifts use a fixed zero value if the shift is more than 32
|
|
// bits.
|
|
BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
|
|
}
|
|
|
|
// Initialize CL with the shift amount...
|
|
unsigned ShiftAmount = getReg(I.getOperand(1));
|
|
BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
|
|
|
|
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
|
|
if (isLeftShift) {
|
|
// TmpReg2 = shld inHi, inLo
|
|
BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
|
|
// TmpReg3 = shl inLo, CL
|
|
BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
|
|
|
|
// Set the flags to indicate whether the shift was by more than 32 bits.
|
|
BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
|
|
|
|
// DestHi = (>32) ? TmpReg3 : TmpReg2;
|
|
BuildMI(BB, X86::CMOVNErr32, 2,
|
|
DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
|
|
// DestLo = (>32) ? TmpReg : TmpReg3;
|
|
BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
|
|
} else {
|
|
// TmpReg2 = shrd inLo, inHi
|
|
BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
|
|
// TmpReg3 = s[ah]r inHi, CL
|
|
BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
|
|
.addReg(SrcReg+1);
|
|
|
|
// Set the flags to indicate whether the shift was by more than 32 bits.
|
|
BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
|
|
|
|
// DestLo = (>32) ? TmpReg3 : TmpReg2;
|
|
BuildMI(BB, X86::CMOVNErr32, 2,
|
|
DestReg).addReg(TmpReg2).addReg(TmpReg3);
|
|
|
|
// DestHi = (>32) ? TmpReg : TmpReg3;
|
|
BuildMI(BB, X86::CMOVNErr32, 2,
|
|
DestReg+1).addReg(TmpReg3).addReg(TmpReg);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
|
|
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
|
|
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
|
|
|
|
const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
|
|
BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
|
|
} else { // The shift amount is non-constant.
|
|
BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
|
|
|
|
const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
|
|
BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
|
|
}
|
|
}
|
|
|
|
|
|
/// doFPLoad - This method is used to load an FP value from memory using the
|
|
/// current endianness. NOTE: This method returns a partially constructed load
|
|
/// instruction which needs to have the memory source filled in still.
|
|
///
|
|
MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
const Type *Ty, unsigned DestReg) {
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
|
|
|
|
if (TM.getTargetData().isLittleEndian()) // fast path...
|
|
return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
|
|
|
|
// If we are big-endian, start by creating an LEA instruction to represent the
|
|
// address of the memory location to load from...
|
|
//
|
|
unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
|
|
MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
|
|
|
|
// Allocate a temporary stack slot to transform the value into...
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
|
|
|
|
// Perform the bswaps 32 bits at a time...
|
|
unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
|
|
unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
|
|
addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
|
|
BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
|
|
unsigned Offset = (Ty == Type::DoubleTy) << 2;
|
|
addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
|
|
FrameIdx, Offset).addReg(TmpReg2);
|
|
|
|
if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
|
|
TmpReg1 = makeAnotherReg(Type::UIntTy);
|
|
TmpReg2 = makeAnotherReg(Type::UIntTy);
|
|
|
|
addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
|
|
BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
|
|
unsigned Offset = (Ty == Type::DoubleTy) << 2;
|
|
addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
|
|
}
|
|
|
|
// Now we can reload the final byteswapped result into the final destination.
|
|
addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
|
|
return Result;
|
|
}
|
|
|
|
/// EmitByteSwap - Byteswap SrcReg into DestReg.
|
|
///
|
|
void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
|
|
// Emit the byte swap instruction...
|
|
switch (Class) {
|
|
case cByte:
|
|
// No byteswap necessary for 8 bit value...
|
|
BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
|
|
break;
|
|
case cInt:
|
|
// Use the 32 bit bswap instruction to do a 32 bit swap...
|
|
BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
|
|
break;
|
|
|
|
case cShort:
|
|
// For 16 bit we have to use an xchg instruction, because there is no
|
|
// 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
|
|
// into AX to do the xchg.
|
|
//
|
|
BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
|
|
BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
|
|
.addReg(X86::AH, MOTy::UseAndDef);
|
|
BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
|
|
break;
|
|
default: assert(0 && "Cannot byteswap this class!");
|
|
}
|
|
}
|
|
|
|
|
|
/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
|
|
/// instruction. The load and store instructions are the only place where we
|
|
/// need to worry about the memory layout of the target machine.
|
|
///
|
|
void ISel::visitLoadInst(LoadInst &I) {
|
|
bool isLittleEndian = TM.getTargetData().isLittleEndian();
|
|
bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
|
|
unsigned SrcAddrReg = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
unsigned Class = getClass(I.getType());
|
|
switch (Class) {
|
|
case cFP: {
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
|
|
return;
|
|
}
|
|
case cLong: case cInt: case cShort: case cByte:
|
|
break; // Integers of various sizes handled below
|
|
default: assert(0 && "Unknown memory class!");
|
|
}
|
|
|
|
// We need to adjust the input pointer if we are emulating a big-endian
|
|
// long-pointer target. On these systems, the pointer that we are interested
|
|
// in is in the upper part of the eight byte memory image of the pointer. It
|
|
// also happens to be byte-swapped, but this will be handled later.
|
|
//
|
|
if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
|
|
unsigned R = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
|
|
SrcAddrReg = R;
|
|
}
|
|
|
|
unsigned IReg = DestReg;
|
|
if (!isLittleEndian) // If big endian we need an intermediate stage
|
|
DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
|
|
|
|
static const unsigned Opcode[] = {
|
|
X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
|
|
};
|
|
addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
|
|
|
|
// Handle long values now...
|
|
if (Class == cLong) {
|
|
if (isLittleEndian) {
|
|
addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
|
|
} else {
|
|
EmitByteSwap(IReg+1, DestReg, cInt);
|
|
unsigned TempReg = makeAnotherReg(Type::IntTy);
|
|
addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
|
|
EmitByteSwap(IReg, TempReg, cInt);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!isLittleEndian)
|
|
EmitByteSwap(IReg, DestReg, Class);
|
|
}
|
|
|
|
|
|
/// doFPStore - This method is used to store an FP value to memory using the
|
|
/// current endianness.
|
|
///
|
|
void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
|
|
|
|
if (TM.getTargetData().isLittleEndian()) { // fast path...
|
|
addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// Allocate a temporary stack slot to transform the value into...
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
|
|
unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
|
|
addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
|
|
|
|
// Store the value into a temporary stack slot...
|
|
addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
|
|
|
|
// Perform the bswaps 32 bits at a time...
|
|
unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
|
|
unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
|
|
addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
|
|
BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
|
|
unsigned Offset = (Ty == Type::DoubleTy) << 2;
|
|
addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
|
|
DestAddrReg, Offset).addReg(TmpReg2);
|
|
|
|
if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
|
|
TmpReg1 = makeAnotherReg(Type::UIntTy);
|
|
TmpReg2 = makeAnotherReg(Type::UIntTy);
|
|
|
|
addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
|
|
BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
|
|
unsigned Offset = (Ty == Type::DoubleTy) << 2;
|
|
addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
|
|
}
|
|
}
|
|
|
|
|
|
/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
|
|
/// instruction.
|
|
///
|
|
void ISel::visitStoreInst(StoreInst &I) {
|
|
bool isLittleEndian = TM.getTargetData().isLittleEndian();
|
|
bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
|
|
unsigned ValReg = getReg(I.getOperand(0));
|
|
unsigned AddressReg = getReg(I.getOperand(1));
|
|
|
|
unsigned Class = getClass(I.getOperand(0)->getType());
|
|
switch (Class) {
|
|
case cLong:
|
|
if (isLittleEndian) {
|
|
addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
|
|
addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
|
|
AddressReg, 4).addReg(ValReg+1);
|
|
} else {
|
|
unsigned T1 = makeAnotherReg(Type::IntTy);
|
|
unsigned T2 = makeAnotherReg(Type::IntTy);
|
|
EmitByteSwap(T1, ValReg , cInt);
|
|
EmitByteSwap(T2, ValReg+1, cInt);
|
|
addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
|
|
addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
|
|
}
|
|
return;
|
|
case cFP:
|
|
doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
|
|
return;
|
|
case cInt: case cShort: case cByte:
|
|
break; // Integers of various sizes handled below
|
|
default: assert(0 && "Unknown memory class!");
|
|
}
|
|
|
|
if (!isLittleEndian && hasLongPointers &&
|
|
isa<PointerType>(I.getOperand(0)->getType())) {
|
|
unsigned R = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
|
|
AddressReg = R;
|
|
}
|
|
|
|
if (!isLittleEndian && Class != cByte) {
|
|
unsigned R = makeAnotherReg(I.getOperand(0)->getType());
|
|
EmitByteSwap(R, ValReg, Class);
|
|
ValReg = R;
|
|
}
|
|
|
|
static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
|
|
addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
|
|
}
|
|
|
|
|
|
/// visitCastInst - Here we have various kinds of copying with or without
|
|
/// sign extension going on.
|
|
void ISel::visitCastInst(CastInst &CI) {
|
|
unsigned DestReg = getReg(CI);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
emitCastOperation(BB, MI, CI.getOperand(0), CI.getType(), DestReg);
|
|
}
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and
|
|
/// constant expression cast support.
|
|
void ISel::emitCastOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator &IP,
|
|
Value *Src, const Type *DestTy,
|
|
unsigned DestReg) {
|
|
unsigned SrcReg = getReg(Src, BB, IP);
|
|
const Type *SrcTy = Src->getType();
|
|
unsigned SrcClass = getClassB(SrcTy);
|
|
unsigned DestClass = getClassB(DestTy);
|
|
|
|
// Implement casts to bool by using compare on the operand followed by set if
|
|
// not zero on the result.
|
|
if (DestTy == Type::BoolTy) {
|
|
if (SrcClass == cFP || SrcClass == cLong)
|
|
abort(); // FIXME: implement cast (long & FP) to bool
|
|
|
|
BMI(BB, IP, X86::CMPri8, 2).addReg(SrcReg).addZImm(0);
|
|
BMI(BB, IP, X86::SETNEr, 1, DestReg);
|
|
return;
|
|
}
|
|
|
|
static const unsigned RegRegMove[] = {
|
|
X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
|
|
};
|
|
|
|
// Implement casts between values of the same type class (as determined by
|
|
// getClass) by using a register-to-register move.
|
|
if (SrcClass == DestClass) {
|
|
if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
|
|
BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
|
|
} else if (SrcClass == cFP) {
|
|
if (SrcTy == Type::FloatTy) { // double -> float
|
|
assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
|
|
BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
|
|
} else { // float -> double
|
|
assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
|
|
"Unknown cFP member!");
|
|
// Truncate from double to float by storing to memory as short, then
|
|
// reading it back.
|
|
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
|
|
addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
|
|
addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
|
|
}
|
|
} else if (SrcClass == cLong) {
|
|
BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
|
|
BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
|
|
} else {
|
|
assert(0 && "Cannot handle this type of cast instruction!");
|
|
abort();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle cast of SMALLER int to LARGER int using a move with sign extension
|
|
// or zero extension, depending on whether the source type was signed.
|
|
if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
|
|
SrcClass < DestClass) {
|
|
bool isLong = DestClass == cLong;
|
|
if (isLong) DestClass = cInt;
|
|
|
|
static const unsigned Opc[][4] = {
|
|
{ X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
|
|
{ X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
|
|
};
|
|
|
|
bool isUnsigned = SrcTy->isUnsigned();
|
|
BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
|
|
DestReg).addReg(SrcReg);
|
|
|
|
if (isLong) { // Handle upper 32 bits as appropriate...
|
|
if (isUnsigned) // Zero out top bits...
|
|
BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
|
|
else // Sign extend bottom half...
|
|
BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Special case long -> int ...
|
|
if (SrcClass == cLong && DestClass == cInt) {
|
|
BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
|
|
// move out of AX or AL.
|
|
if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
|
|
&& SrcClass > DestClass) {
|
|
static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
|
|
BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
|
|
BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
|
|
return;
|
|
}
|
|
|
|
// Handle casts from integer to floating point now...
|
|
if (DestClass == cFP) {
|
|
// Promote the integer to a type supported by FLD. We do this because there
|
|
// are no unsigned FLD instructions, so we must promote an unsigned value to
|
|
// a larger signed value, then use FLD on the larger value.
|
|
//
|
|
const Type *PromoteType = 0;
|
|
unsigned PromoteOpcode;
|
|
switch (SrcTy->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
case Type::SByteTyID:
|
|
// We don't have the facilities for directly loading byte sized data from
|
|
// memory (even signed). Promote it to 16 bits.
|
|
PromoteType = Type::ShortTy;
|
|
PromoteOpcode = X86::MOVSXr16r8;
|
|
break;
|
|
case Type::UByteTyID:
|
|
PromoteType = Type::ShortTy;
|
|
PromoteOpcode = X86::MOVZXr16r8;
|
|
break;
|
|
case Type::UShortTyID:
|
|
PromoteType = Type::IntTy;
|
|
PromoteOpcode = X86::MOVZXr32r16;
|
|
break;
|
|
case Type::UIntTyID: {
|
|
// Make a 64 bit temporary... and zero out the top of it...
|
|
unsigned TmpReg = makeAnotherReg(Type::LongTy);
|
|
BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
|
|
BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
|
|
SrcTy = Type::LongTy;
|
|
SrcClass = cLong;
|
|
SrcReg = TmpReg;
|
|
break;
|
|
}
|
|
case Type::ULongTyID:
|
|
assert("FIXME: not implemented: cast ulong X to fp type!");
|
|
default: // No promotion needed...
|
|
break;
|
|
}
|
|
|
|
if (PromoteType) {
|
|
unsigned TmpReg = makeAnotherReg(PromoteType);
|
|
BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
|
|
1, TmpReg).addReg(SrcReg);
|
|
SrcTy = PromoteType;
|
|
SrcClass = getClass(PromoteType);
|
|
SrcReg = TmpReg;
|
|
}
|
|
|
|
// Spill the integer to memory and reload it from there...
|
|
int FrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
|
|
|
|
if (SrcClass == cLong) {
|
|
addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
|
|
addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
|
|
FrameIdx, 4).addReg(SrcReg+1);
|
|
} else {
|
|
static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
|
|
addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
|
|
}
|
|
|
|
static const unsigned Op2[] =
|
|
{ 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
|
|
addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
|
|
return;
|
|
}
|
|
|
|
// Handle casts from floating point to integer now...
|
|
if (SrcClass == cFP) {
|
|
// Change the floating point control register to use "round towards zero"
|
|
// mode when truncating to an integer value.
|
|
//
|
|
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
|
|
addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
|
|
|
|
// Load the old value of the high byte of the control word...
|
|
unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
|
|
addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
|
|
|
|
// Set the high part to be round to zero...
|
|
addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
|
|
|
|
// Reload the modified control word now...
|
|
addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
|
|
|
|
// Restore the memory image of control word to original value
|
|
addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
|
|
CWFrameIdx, 1).addReg(HighPartOfCW);
|
|
|
|
// We don't have the facilities for directly storing byte sized data to
|
|
// memory. Promote it to 16 bits. We also must promote unsigned values to
|
|
// larger classes because we only have signed FP stores.
|
|
unsigned StoreClass = DestClass;
|
|
const Type *StoreTy = DestTy;
|
|
if (StoreClass == cByte || DestTy->isUnsigned())
|
|
switch (StoreClass) {
|
|
case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
|
|
case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
|
|
case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
|
|
case cLong:
|
|
assert(0 &&"FIXME not implemented: cast FP to unsigned long long");
|
|
abort();
|
|
default: assert(0 && "Unknown store class!");
|
|
}
|
|
|
|
// Spill the integer to memory and reload it from there...
|
|
int FrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
|
|
|
|
static const unsigned Op1[] =
|
|
{ 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
|
|
addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
|
|
|
|
if (DestClass == cLong) {
|
|
addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
|
|
addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
|
|
} else {
|
|
static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
|
|
addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
|
|
}
|
|
|
|
// Reload the original control word now...
|
|
addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
|
|
return;
|
|
}
|
|
|
|
// Anything we haven't handled already, we can't (yet) handle at all.
|
|
assert(0 && "Unhandled cast instruction!");
|
|
abort();
|
|
}
|
|
|
|
/// visitVarArgInst - Implement the va_arg instruction...
|
|
///
|
|
void ISel::visitVarArgInst(VarArgInst &I) {
|
|
unsigned SrcReg = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
// Load the va_list into a register...
|
|
unsigned VAList = makeAnotherReg(Type::UIntTy);
|
|
addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
|
|
|
|
unsigned Size;
|
|
switch (I.getType()->getPrimitiveID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_arg instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
Size = 4;
|
|
addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
Size = 8;
|
|
addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
|
|
addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
|
|
break;
|
|
case Type::DoubleTyID:
|
|
Size = 8;
|
|
addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
|
|
break;
|
|
}
|
|
|
|
// Increment the VAList pointer...
|
|
unsigned NextVAList = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
|
|
|
|
// Update the VAList in memory...
|
|
addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
|
|
}
|
|
|
|
|
|
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
|
|
// returns zero when the input is not exactly a power of two.
|
|
static unsigned ExactLog2(unsigned Val) {
|
|
if (Val == 0) return 0;
|
|
unsigned Count = 0;
|
|
while (Val != 1) {
|
|
if (Val & 1) return 0;
|
|
Val >>= 1;
|
|
++Count;
|
|
}
|
|
return Count+1;
|
|
}
|
|
|
|
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
unsigned outputReg = getReg(I);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
emitGEPOperation(BB, MI, I.getOperand(0),
|
|
I.op_begin()+1, I.op_end(), outputReg);
|
|
}
|
|
|
|
void ISel::emitGEPOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
const Type *Ty = Src->getType();
|
|
unsigned BaseReg = getReg(Src, MBB, IP);
|
|
|
|
// GEPs have zero or more indices; we must perform a struct access
|
|
// or array access for each one.
|
|
for (GetElementPtrInst::op_iterator oi = IdxBegin,
|
|
oe = IdxEnd; oi != oe; ++oi) {
|
|
Value *idx = *oi;
|
|
unsigned NextReg = BaseReg;
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
// It's a struct access. idx is the index into the structure,
|
|
// which names the field. This index must have ubyte type.
|
|
const ConstantUInt *CUI = cast<ConstantUInt>(idx);
|
|
assert(CUI->getType() == Type::UByteTy
|
|
&& "Funny-looking structure index in GEP");
|
|
// Use the TargetData structure to pick out what the layout of
|
|
// the structure is in memory. Since the structure index must
|
|
// be constant, we can get its value and use it to find the
|
|
// right byte offset from the StructLayout class's list of
|
|
// structure member offsets.
|
|
unsigned idxValue = CUI->getValue();
|
|
unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
|
|
if (FieldOff) {
|
|
NextReg = makeAnotherReg(Type::UIntTy);
|
|
// Emit an ADD to add FieldOff to the basePtr.
|
|
BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
|
|
}
|
|
// The next type is the member of the structure selected by the
|
|
// index.
|
|
Ty = StTy->getElementTypes()[idxValue];
|
|
} else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
|
|
// It's an array or pointer access: [ArraySize x ElementType].
|
|
|
|
// idx is the index into the array. Unlike with structure
|
|
// indices, we may not know its actual value at code-generation
|
|
// time.
|
|
assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
|
|
|
|
// We want to add BaseReg to(idxReg * sizeof ElementType). First, we
|
|
// must find the size of the pointed-to type (Not coincidentally, the next
|
|
// type is the type of the elements in the array).
|
|
Ty = SqTy->getElementType();
|
|
unsigned elementSize = TD.getTypeSize(Ty);
|
|
|
|
// If idxReg is a constant, we don't need to perform the multiply!
|
|
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
|
|
if (!CSI->isNullValue()) {
|
|
unsigned Offset = elementSize*CSI->getValue();
|
|
NextReg = makeAnotherReg(Type::UIntTy);
|
|
BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
|
|
}
|
|
} else if (elementSize == 1) {
|
|
// If the element size is 1, we don't have to multiply, just add
|
|
unsigned idxReg = getReg(idx, MBB, IP);
|
|
NextReg = makeAnotherReg(Type::UIntTy);
|
|
BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
|
|
} else {
|
|
unsigned idxReg = getReg(idx, MBB, IP);
|
|
unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
|
|
if (unsigned Shift = ExactLog2(elementSize)) {
|
|
// If the element size is exactly a power of 2, use a shift to get it.
|
|
BMI(MBB, IP, X86::SHLir32, 2,
|
|
OffsetReg).addReg(idxReg).addZImm(Shift-1);
|
|
} else {
|
|
// Most general case, emit a multiply...
|
|
unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
|
|
BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
|
|
|
|
// Emit a MUL to multiply the register holding the index by
|
|
// elementSize, putting the result in OffsetReg.
|
|
doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
|
|
}
|
|
// Emit an ADD to add OffsetReg to the basePtr.
|
|
NextReg = makeAnotherReg(Type::UIntTy);
|
|
BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
|
|
}
|
|
}
|
|
// Now that we are here, further indices refer to subtypes of this
|
|
// one, so we don't need to worry about BaseReg itself, anymore.
|
|
BaseReg = NextReg;
|
|
}
|
|
// After we have processed all the indices, the result is left in
|
|
// BaseReg. Move it to the register where we were expected to
|
|
// put the answer. A 32-bit move should do it, because we are in
|
|
// ILP32 land.
|
|
BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
|
|
}
|
|
|
|
|
|
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
|
|
/// frame manager, otherwise do it the hard way.
|
|
///
|
|
void ISel::visitAllocaInst(AllocaInst &I) {
|
|
// Find the data size of the alloca inst's getAllocatedType.
|
|
const Type *Ty = I.getAllocatedType();
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
|
|
// If this is a fixed size alloca in the entry block for the function,
|
|
// statically stack allocate the space.
|
|
//
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
|
|
if (I.getParent() == I.getParent()->getParent()->begin()) {
|
|
TySize *= CUI->getValue(); // Get total allocated size...
|
|
unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
|
|
|
|
// Create a new stack object using the frame manager...
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
|
|
addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Create a register to hold the temporary result of multiplying the type size
|
|
// constant by the variable amount.
|
|
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
|
|
unsigned SrcReg1 = getReg(I.getArraySize());
|
|
unsigned SizeReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
|
|
|
|
// TotalSizeReg = mul <numelements>, <TypeSize>
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
|
|
|
|
// AddedSize = add <TotalSizeReg>, 15
|
|
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
|
|
|
|
// AlignedSize = and <AddedSize>, ~15
|
|
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
|
|
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
|
|
|
|
// Put a pointer to the space into the result register, by copying
|
|
// the stack pointer.
|
|
BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
F->getFrameInfo()->CreateVariableSizedObject();
|
|
}
|
|
|
|
/// visitMallocInst - Malloc instructions are code generated into direct calls
|
|
/// to the library malloc.
|
|
///
|
|
void ISel::visitMallocInst(MallocInst &I) {
|
|
unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
|
|
unsigned Arg;
|
|
|
|
if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
|
|
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
|
|
} else {
|
|
Arg = makeAnotherReg(Type::UIntTy);
|
|
unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
|
|
unsigned Op1Reg = getReg(I.getOperand(0));
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
|
|
|
|
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Arg, Type::UIntTy));
|
|
MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
|
|
1).addExternalSymbol("malloc", true);
|
|
doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
|
|
}
|
|
|
|
|
|
/// visitFreeInst - Free instructions are code gen'd to call the free libc
|
|
/// function.
|
|
///
|
|
void ISel::visitFreeInst(FreeInst &I) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(getReg(I.getOperand(0)),
|
|
I.getOperand(0)->getType()));
|
|
MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
|
|
1).addExternalSymbol("free", true);
|
|
doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
|
|
}
|
|
|
|
|
|
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
|
|
/// into a machine code representation is a very simple peep-hole fashion. The
|
|
/// generated code sucks but the implementation is nice and simple.
|
|
///
|
|
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
|
|
return new ISel(TM);
|
|
}
|