llvm/lib/CodeGen/ImplicitNullChecks.cpp
Duncan P. N. Exon Smith 567409db69 CodeGen: Use MachineInstr& in TargetInstrInfo, NFC
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr.  This is a
general API improvement.

Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other.  Instead I've done everything as a block and just
updated what was necessary.

This is mostly mechanical fixes: adding and removing `*` and `&`
operators.  The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency.  Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.

As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.

Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy.  I couldn't run tests
for AVR since llc doesn't link with it turned on.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274189 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-30 00:01:54 +00:00

577 lines
20 KiB
C++

//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass turns explicit null checks of the form
//
// test %r10, %r10
// je throw_npe
// movl (%r10), %esi
// ...
//
// to
//
// faulting_load_op("movl (%r10), %esi", throw_npe)
// ...
//
// With the help of a runtime that understands the .fault_maps section,
// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
// a page fault.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
static cl::opt<int> PageSize("imp-null-check-page-size",
cl::desc("The page size of the target in bytes"),
cl::init(4096));
#define DEBUG_TYPE "implicit-null-checks"
STATISTIC(NumImplicitNullChecks,
"Number of explicit null checks made implicit");
namespace {
class ImplicitNullChecks : public MachineFunctionPass {
/// Represents one null check that can be made implicit.
class NullCheck {
// The memory operation the null check can be folded into.
MachineInstr *MemOperation;
// The instruction actually doing the null check (Ptr != 0).
MachineInstr *CheckOperation;
// The block the check resides in.
MachineBasicBlock *CheckBlock;
// The block branched to if the pointer is non-null.
MachineBasicBlock *NotNullSucc;
// The block branched to if the pointer is null.
MachineBasicBlock *NullSucc;
// If this is non-null, then MemOperation has a dependency on on this
// instruction; and it needs to be hoisted to execute before MemOperation.
MachineInstr *OnlyDependency;
public:
explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
MachineBasicBlock *checkBlock,
MachineBasicBlock *notNullSucc,
MachineBasicBlock *nullSucc,
MachineInstr *onlyDependency)
: MemOperation(memOperation), CheckOperation(checkOperation),
CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
OnlyDependency(onlyDependency) {}
MachineInstr *getMemOperation() const { return MemOperation; }
MachineInstr *getCheckOperation() const { return CheckOperation; }
MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
MachineBasicBlock *getNullSucc() const { return NullSucc; }
MachineInstr *getOnlyDependency() const { return OnlyDependency; }
};
const TargetInstrInfo *TII = nullptr;
const TargetRegisterInfo *TRI = nullptr;
AliasAnalysis *AA = nullptr;
MachineModuleInfo *MMI = nullptr;
bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
SmallVectorImpl<NullCheck> &NullCheckList);
MachineInstr *insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB,
MachineBasicBlock *HandlerMBB);
void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
public:
static char ID;
ImplicitNullChecks() : MachineFunctionPass(ID) {
initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::AllVRegsAllocated);
}
};
/// \brief Detect re-ordering hazards and dependencies.
///
/// This class keeps track of defs and uses, and can be queried if a given
/// machine instruction can be re-ordered from after the machine instructions
/// seen so far to before them.
class HazardDetector {
static MachineInstr *getUnknownMI() {
return DenseMapInfo<MachineInstr *>::getTombstoneKey();
}
// Maps physical registers to the instruction defining them. If there has
// been more than one def of an specific register, that register is mapped to
// getUnknownMI().
DenseMap<unsigned, MachineInstr *> RegDefs;
DenseSet<unsigned> RegUses;
const TargetRegisterInfo &TRI;
bool hasSeenClobber;
AliasAnalysis &AA;
public:
explicit HazardDetector(const TargetRegisterInfo &TRI, AliasAnalysis &AA)
: TRI(TRI), hasSeenClobber(false), AA(AA) {}
/// \brief Make a note of \p MI for later queries to isSafeToHoist.
///
/// May clobber this HazardDetector instance. \see isClobbered.
void rememberInstruction(MachineInstr *MI);
/// \brief Return true if it is safe to hoist \p MI from after all the
/// instructions seen so far (via rememberInstruction) to before it. If \p MI
/// has one and only one transitive dependency, set \p Dependency to that
/// instruction. If there are more dependencies, return false.
bool isSafeToHoist(MachineInstr *MI, MachineInstr *&Dependency);
/// \brief Return true if this instance of HazardDetector has been clobbered
/// (i.e. has no more useful information).
///
/// A HazardDetecter is clobbered when it sees a construct it cannot
/// understand, and it would have to return a conservative answer for all
/// future queries. Having a separate clobbered state lets the client code
/// bail early, without making queries about all of the future instructions
/// (which would have returned the most conservative answer anyway).
///
/// Calling rememberInstruction or isSafeToHoist on a clobbered HazardDetector
/// is an error.
bool isClobbered() { return hasSeenClobber; }
};
}
void HazardDetector::rememberInstruction(MachineInstr *MI) {
assert(!isClobbered() &&
"Don't add instructions to a clobbered hazard detector");
if (MI->mayStore() || MI->hasUnmodeledSideEffects()) {
hasSeenClobber = true;
return;
}
for (auto *MMO : MI->memoperands()) {
// Right now we don't want to worry about LLVM's memory model.
if (!MMO->isUnordered()) {
hasSeenClobber = true;
return;
}
}
for (auto &MO : MI->operands()) {
if (!MO.isReg() || !MO.getReg())
continue;
if (MO.isDef()) {
auto It = RegDefs.find(MO.getReg());
if (It == RegDefs.end())
RegDefs.insert({MO.getReg(), MI});
else {
assert(It->second && "Found null MI?");
It->second = getUnknownMI();
}
} else
RegUses.insert(MO.getReg());
}
}
bool HazardDetector::isSafeToHoist(MachineInstr *MI,
MachineInstr *&Dependency) {
assert(!isClobbered() && "isSafeToHoist cannot do anything useful!");
Dependency = nullptr;
// Right now we don't want to worry about LLVM's memory model. This can be
// made more precise later.
for (auto *MMO : MI->memoperands())
if (!MMO->isUnordered())
return false;
for (auto &MO : MI->operands()) {
if (MO.isReg() && MO.getReg()) {
for (auto &RegDef : RegDefs) {
unsigned Reg = RegDef.first;
MachineInstr *MI = RegDef.second;
if (!TRI.regsOverlap(Reg, MO.getReg()))
continue;
// We found a write-after-write or read-after-write, see if the
// instruction causing this dependency can be hoisted too.
if (MI == getUnknownMI())
// We don't have precise dependency information.
return false;
if (Dependency) {
if (Dependency == MI)
continue;
// We already have one dependency, and we can track only one.
return false;
}
// Now check if MI is actually a dependency that can be hoisted.
// We don't want to track transitive dependencies. We already know that
// MI is the only instruction that defines Reg, but we need to be sure
// that it does not use any registers that have been defined (trivially
// checked below by ensuring that there are no register uses), and that
// it is the only def for every register it defines (otherwise we could
// violate a write after write hazard).
auto IsMIOperandSafe = [&](MachineOperand &MO) {
if (!MO.isReg() || !MO.getReg())
return true;
if (MO.isUse())
return false;
assert((!MO.isDef() || RegDefs.count(MO.getReg())) &&
"All defs must be tracked in RegDefs by now!");
return !MO.isDef() || RegDefs.find(MO.getReg())->second == MI;
};
if (!all_of(MI->operands(), IsMIOperandSafe))
return false;
// Now check for speculation safety:
bool SawStore = true;
if (!MI->isSafeToMove(&AA, SawStore) || MI->mayLoad())
return false;
Dependency = MI;
}
if (MO.isDef())
for (unsigned Reg : RegUses)
if (TRI.regsOverlap(Reg, MO.getReg()))
return false; // We found a write-after-read
}
}
return true;
}
bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getRegInfo().getTargetRegisterInfo();
MMI = &MF.getMMI();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
SmallVector<NullCheck, 16> NullCheckList;
for (auto &MBB : MF)
analyzeBlockForNullChecks(MBB, NullCheckList);
if (!NullCheckList.empty())
rewriteNullChecks(NullCheckList);
return !NullCheckList.empty();
}
// Return true if any register aliasing \p Reg is live-in into \p MBB.
static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
MachineBasicBlock *MBB, unsigned Reg) {
for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
++AR)
if (MBB->isLiveIn(*AR))
return true;
return false;
}
/// Analyze MBB to check if its terminating branch can be turned into an
/// implicit null check. If yes, append a description of the said null check to
/// NullCheckList and return true, else return false.
bool ImplicitNullChecks::analyzeBlockForNullChecks(
MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
MDNode *BranchMD = nullptr;
if (auto *BB = MBB.getBasicBlock())
BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
if (!BranchMD)
return false;
MachineBranchPredicate MBP;
if (TII->AnalyzeBranchPredicate(MBB, MBP, true))
return false;
// Is the predicate comparing an integer to zero?
if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
(MBP.Predicate == MachineBranchPredicate::PRED_NE ||
MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
return false;
// If we cannot erase the test instruction itself, then making the null check
// implicit does not buy us much.
if (!MBP.SingleUseCondition)
return false;
MachineBasicBlock *NotNullSucc, *NullSucc;
if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
NotNullSucc = MBP.TrueDest;
NullSucc = MBP.FalseDest;
} else {
NotNullSucc = MBP.FalseDest;
NullSucc = MBP.TrueDest;
}
// We handle the simplest case for now. We can potentially do better by using
// the machine dominator tree.
if (NotNullSucc->pred_size() != 1)
return false;
// Starting with a code fragment like:
//
// test %RAX, %RAX
// jne LblNotNull
//
// LblNull:
// callq throw_NullPointerException
//
// LblNotNull:
// Inst0
// Inst1
// ...
// Def = Load (%RAX + <offset>)
// ...
//
//
// we want to end up with
//
// Def = FaultingLoad (%RAX + <offset>), LblNull
// jmp LblNotNull ;; explicit or fallthrough
//
// LblNotNull:
// Inst0
// Inst1
// ...
//
// LblNull:
// callq throw_NullPointerException
//
//
// To see why this is legal, consider the two possibilities:
//
// 1. %RAX is null: since we constrain <offset> to be less than PageSize, the
// load instruction dereferences the null page, causing a segmentation
// fault.
//
// 2. %RAX is not null: in this case we know that the load cannot fault, as
// otherwise the load would've faulted in the original program too and the
// original program would've been undefined.
//
// This reasoning cannot be extended to justify hoisting through arbitrary
// control flow. For instance, in the example below (in pseudo-C)
//
// if (ptr == null) { throw_npe(); unreachable; }
// if (some_cond) { return 42; }
// v = ptr->field; // LD
// ...
//
// we cannot (without code duplication) use the load marked "LD" to null check
// ptr -- clause (2) above does not apply in this case. In the above program
// the safety of ptr->field can be dependent on some_cond; and, for instance,
// ptr could be some non-null invalid reference that never gets loaded from
// because some_cond is always true.
unsigned PointerReg = MBP.LHS.getReg();
HazardDetector HD(*TRI, *AA);
for (auto MII = NotNullSucc->begin(), MIE = NotNullSucc->end(); MII != MIE;
++MII) {
MachineInstr &MI = *MII;
unsigned BaseReg;
int64_t Offset;
MachineInstr *Dependency = nullptr;
if (TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
if (MI.mayLoad() && !MI.isPredicable() && BaseReg == PointerReg &&
Offset < PageSize && MI.getDesc().getNumDefs() <= 1 &&
HD.isSafeToHoist(&MI, Dependency)) {
auto DependencyOperandIsOk = [&](MachineOperand &MO) {
assert(!(MO.isReg() && MO.isUse()) &&
"No transitive dependendencies please!");
if (!MO.isReg() || !MO.getReg() || !MO.isDef())
return true;
// Make sure that we won't clobber any live ins to the sibling block
// by hoisting Dependency. For instance, we can't hoist INST to
// before the null check (even if it safe, and does not violate any
// dependencies in the non_null_block) if %rdx is live in to
// _null_block.
//
// test %rcx, %rcx
// je _null_block
// _non_null_block:
// %rdx<def> = INST
// ...
if (AnyAliasLiveIn(TRI, NullSucc, MO.getReg()))
return false;
// Make sure Dependency isn't re-defining the base register. Then we
// won't get the memory operation on the address we want.
if (TRI->regsOverlap(MO.getReg(), BaseReg))
return false;
return true;
};
bool DependencyOperandsAreOk =
!Dependency ||
all_of(Dependency->operands(), DependencyOperandIsOk);
if (DependencyOperandsAreOk) {
NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
NullSucc, Dependency);
return true;
}
}
HD.rememberInstruction(&MI);
if (HD.isClobbered())
return false;
}
return false;
}
/// Wrap a machine load instruction, LoadMI, into a FAULTING_LOAD_OP machine
/// instruction. The FAULTING_LOAD_OP instruction does the same load as LoadMI
/// (defining the same register), and branches to HandlerMBB if the load
/// faults. The FAULTING_LOAD_OP instruction is inserted at the end of MBB.
MachineInstr *
ImplicitNullChecks::insertFaultingLoad(MachineInstr *LoadMI,
MachineBasicBlock *MBB,
MachineBasicBlock *HandlerMBB) {
const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
// all targets.
DebugLoc DL;
unsigned NumDefs = LoadMI->getDesc().getNumDefs();
assert(NumDefs <= 1 && "other cases unhandled!");
unsigned DefReg = NoRegister;
if (NumDefs != 0) {
DefReg = LoadMI->defs().begin()->getReg();
assert(std::distance(LoadMI->defs().begin(), LoadMI->defs().end()) == 1 &&
"expected exactly one def!");
}
auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_LOAD_OP), DefReg)
.addMBB(HandlerMBB)
.addImm(LoadMI->getOpcode());
for (auto &MO : LoadMI->uses())
MIB.addOperand(MO);
MIB.setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end());
return MIB;
}
/// Rewrite the null checks in NullCheckList into implicit null checks.
void ImplicitNullChecks::rewriteNullChecks(
ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
DebugLoc DL;
for (auto &NC : NullCheckList) {
// Remove the conditional branch dependent on the null check.
unsigned BranchesRemoved = TII->RemoveBranch(*NC.getCheckBlock());
(void)BranchesRemoved;
assert(BranchesRemoved > 0 && "expected at least one branch!");
if (auto *DepMI = NC.getOnlyDependency()) {
DepMI->removeFromParent();
NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
}
// Insert a faulting load where the conditional branch was originally. We
// check earlier ensures that this bit of code motion is legal. We do not
// touch the successors list for any basic block since we haven't changed
// control flow, we've just made it implicit.
MachineInstr *FaultingLoad = insertFaultingLoad(
NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
// Now the values defined by MemOperation, if any, are live-in of
// the block of MemOperation.
// The original load operation may define implicit-defs alongside
// the loaded value.
MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
for (const MachineOperand &MO : FaultingLoad->operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (!Reg || MBB->isLiveIn(Reg))
continue;
MBB->addLiveIn(Reg);
}
if (auto *DepMI = NC.getOnlyDependency()) {
for (auto &MO : DepMI->operands()) {
if (!MO.isReg() || !MO.getReg() || !MO.isDef())
continue;
if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
NC.getNotNullSucc()->addLiveIn(MO.getReg());
}
}
NC.getMemOperation()->eraseFromParent();
NC.getCheckOperation()->eraseFromParent();
// Insert an *unconditional* branch to not-null successor.
TII->InsertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
/*Cond=*/None, DL);
NumImplicitNullChecks++;
}
}
char ImplicitNullChecks::ID = 0;
char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks",
"Implicit null checks", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks",
"Implicit null checks", false, false)