llvm/lib/CodeGen/ImplicitNullChecks.cpp
Diana Picus 8a47810cd6 [CodeGen] Rename MachineInstrBuilder::addOperand. NFC
Rename from addOperand to just add, to match the other method that has been
added to MachineInstrBuilder for adding more than just 1 operand.

See https://reviews.llvm.org/D28057 for the whole discussion.

Differential Revision: https://reviews.llvm.org/D28556

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291891 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-13 09:58:52 +00:00

596 lines
20 KiB
C++

//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass turns explicit null checks of the form
//
// test %r10, %r10
// je throw_npe
// movl (%r10), %esi
// ...
//
// to
//
// faulting_load_op("movl (%r10), %esi", throw_npe)
// ...
//
// With the help of a runtime that understands the .fault_maps section,
// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
// a page fault.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
static cl::opt<int> PageSize("imp-null-check-page-size",
cl::desc("The page size of the target in bytes"),
cl::init(4096));
static cl::opt<unsigned> MaxInstsToConsider(
"imp-null-max-insts-to-consider",
cl::desc("The max number of instructions to consider hoisting loads over "
"(the algorithm is quadratic over this number)"),
cl::init(8));
#define DEBUG_TYPE "implicit-null-checks"
STATISTIC(NumImplicitNullChecks,
"Number of explicit null checks made implicit");
namespace {
class ImplicitNullChecks : public MachineFunctionPass {
/// Return true if \c computeDependence can process \p MI.
static bool canHandle(const MachineInstr *MI);
/// Helper function for \c computeDependence. Return true if \p A
/// and \p B do not have any dependences between them, and can be
/// re-ordered without changing program semantics.
bool canReorder(const MachineInstr *A, const MachineInstr *B);
/// A data type for representing the result computed by \c
/// computeDependence. States whether it is okay to reorder the
/// instruction passed to \c computeDependence with at most one
/// depednency.
struct DependenceResult {
/// Can we actually re-order \p MI with \p Insts (see \c
/// computeDependence).
bool CanReorder;
/// If non-None, then an instruction in \p Insts that also must be
/// hoisted.
Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
/*implicit*/ DependenceResult(
bool CanReorder,
Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
: CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
assert((!PotentialDependence || CanReorder) &&
"!CanReorder && PotentialDependence.hasValue() not allowed!");
}
};
/// Compute a result for the following question: can \p MI be
/// re-ordered from after \p Insts to before it.
///
/// \c canHandle should return true for all instructions in \p
/// Insts.
DependenceResult computeDependence(const MachineInstr *MI,
ArrayRef<MachineInstr *> Insts);
/// Represents one null check that can be made implicit.
class NullCheck {
// The memory operation the null check can be folded into.
MachineInstr *MemOperation;
// The instruction actually doing the null check (Ptr != 0).
MachineInstr *CheckOperation;
// The block the check resides in.
MachineBasicBlock *CheckBlock;
// The block branched to if the pointer is non-null.
MachineBasicBlock *NotNullSucc;
// The block branched to if the pointer is null.
MachineBasicBlock *NullSucc;
// If this is non-null, then MemOperation has a dependency on on this
// instruction; and it needs to be hoisted to execute before MemOperation.
MachineInstr *OnlyDependency;
public:
explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
MachineBasicBlock *checkBlock,
MachineBasicBlock *notNullSucc,
MachineBasicBlock *nullSucc,
MachineInstr *onlyDependency)
: MemOperation(memOperation), CheckOperation(checkOperation),
CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
OnlyDependency(onlyDependency) {}
MachineInstr *getMemOperation() const { return MemOperation; }
MachineInstr *getCheckOperation() const { return CheckOperation; }
MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
MachineBasicBlock *getNullSucc() const { return NullSucc; }
MachineInstr *getOnlyDependency() const { return OnlyDependency; }
};
const TargetInstrInfo *TII = nullptr;
const TargetRegisterInfo *TRI = nullptr;
AliasAnalysis *AA = nullptr;
MachineModuleInfo *MMI = nullptr;
bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
SmallVectorImpl<NullCheck> &NullCheckList);
MachineInstr *insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB,
MachineBasicBlock *HandlerMBB);
void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
/// Is \p MI a memory operation that can be used to implicitly null check the
/// value in \p PointerReg? \p PrevInsts is the set of instruction seen since
/// the explicit null check on \p PointerReg.
bool isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
ArrayRef<MachineInstr *> PrevInsts);
/// Return true if \p FaultingMI can be hoisted from after the the
/// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
/// non-null value if we also need to (and legally can) hoist a depedency.
bool canHoistLoadInst(MachineInstr *FaultingMI, unsigned PointerReg,
ArrayRef<MachineInstr *> InstsSeenSoFar,
MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
public:
static char ID;
ImplicitNullChecks() : MachineFunctionPass(ID) {
initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
};
}
bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
if (MI->isCall() || MI->mayStore() || MI->hasUnmodeledSideEffects())
return false;
auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
(void)IsRegMask;
assert(!llvm::any_of(MI->operands(), IsRegMask) &&
"Calls were filtered out above!");
auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
return llvm::all_of(MI->memoperands(), IsUnordered);
}
ImplicitNullChecks::DependenceResult
ImplicitNullChecks::computeDependence(const MachineInstr *MI,
ArrayRef<MachineInstr *> Block) {
assert(llvm::all_of(Block, canHandle) && "Check this first!");
assert(!llvm::is_contained(Block, MI) && "Block must be exclusive of MI!");
Optional<ArrayRef<MachineInstr *>::iterator> Dep;
for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
if (canReorder(*I, MI))
continue;
if (Dep == None) {
// Found one possible dependency, keep track of it.
Dep = I;
} else {
// We found two dependencies, so bail out.
return {false, None};
}
}
return {true, Dep};
}
bool ImplicitNullChecks::canReorder(const MachineInstr *A,
const MachineInstr *B) {
assert(canHandle(A) && canHandle(B) && "Precondition!");
// canHandle makes sure that we _can_ correctly analyze the dependencies
// between A and B here -- for instance, we should not be dealing with heap
// load-store dependencies here.
for (auto MOA : A->operands()) {
if (!(MOA.isReg() && MOA.getReg()))
continue;
unsigned RegA = MOA.getReg();
for (auto MOB : B->operands()) {
if (!(MOB.isReg() && MOB.getReg()))
continue;
unsigned RegB = MOB.getReg();
if (TRI->regsOverlap(RegA, RegB))
return false;
}
}
return true;
}
bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getRegInfo().getTargetRegisterInfo();
MMI = &MF.getMMI();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
SmallVector<NullCheck, 16> NullCheckList;
for (auto &MBB : MF)
analyzeBlockForNullChecks(MBB, NullCheckList);
if (!NullCheckList.empty())
rewriteNullChecks(NullCheckList);
return !NullCheckList.empty();
}
// Return true if any register aliasing \p Reg is live-in into \p MBB.
static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
MachineBasicBlock *MBB, unsigned Reg) {
for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
++AR)
if (MBB->isLiveIn(*AR))
return true;
return false;
}
bool ImplicitNullChecks::isSuitableMemoryOp(
MachineInstr &MI, unsigned PointerReg, ArrayRef<MachineInstr *> PrevInsts) {
int64_t Offset;
unsigned BaseReg;
if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI) ||
BaseReg != PointerReg)
return false;
// We want the load to be issued at a sane offset from PointerReg, so that
// if PointerReg is null then the load reliably page faults.
if (!(MI.mayLoad() && !MI.isPredicable() && Offset < PageSize))
return false;
// Finally, we need to make sure that the load instruction actually is
// loading from PointerReg, and there isn't some re-definition of PointerReg
// between the compare and the load.
for (auto *PrevMI : PrevInsts)
for (auto &PrevMO : PrevMI->operands())
if (PrevMO.isReg() && PrevMO.getReg() &&
TRI->regsOverlap(PrevMO.getReg(), PointerReg))
return false;
return true;
}
bool ImplicitNullChecks::canHoistLoadInst(
MachineInstr *FaultingMI, unsigned PointerReg,
ArrayRef<MachineInstr *> InstsSeenSoFar, MachineBasicBlock *NullSucc,
MachineInstr *&Dependence) {
auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
if (!DepResult.CanReorder)
return false;
if (!DepResult.PotentialDependence) {
Dependence = nullptr;
return true;
}
auto DependenceItr = *DepResult.PotentialDependence;
auto *DependenceMI = *DependenceItr;
// We don't want to reason about speculating loads. Note -- at this point
// we should have already filtered out all of the other non-speculatable
// things, like calls and stores.
assert(canHandle(DependenceMI) && "Should never have reached here!");
if (DependenceMI->mayLoad())
return false;
for (auto &DependenceMO : DependenceMI->operands()) {
if (!(DependenceMO.isReg() && DependenceMO.getReg()))
continue;
// Make sure that we won't clobber any live ins to the sibling block by
// hoisting Dependency. For instance, we can't hoist INST to before the
// null check (even if it safe, and does not violate any dependencies in
// the non_null_block) if %rdx is live in to _null_block.
//
// test %rcx, %rcx
// je _null_block
// _non_null_block:
// %rdx<def> = INST
// ...
//
// This restriction does not apply to the faulting load inst because in
// case the pointer loaded from is in the null page, the load will not
// semantically execute, and affect machine state. That is, if the load
// was loading into %rax and it faults, the value of %rax should stay the
// same as it would have been had the load not have executed and we'd have
// branched to NullSucc directly.
if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
return false;
// The Dependency can't be re-defining the base register -- then we won't
// get the memory operation on the address we want. This is already
// checked in \c IsSuitableMemoryOp.
assert(!TRI->regsOverlap(DependenceMO.getReg(), PointerReg) &&
"Should have been checked before!");
}
auto DepDepResult =
computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
return false;
Dependence = DependenceMI;
return true;
}
/// Analyze MBB to check if its terminating branch can be turned into an
/// implicit null check. If yes, append a description of the said null check to
/// NullCheckList and return true, else return false.
bool ImplicitNullChecks::analyzeBlockForNullChecks(
MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
MDNode *BranchMD = nullptr;
if (auto *BB = MBB.getBasicBlock())
BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
if (!BranchMD)
return false;
MachineBranchPredicate MBP;
if (TII->analyzeBranchPredicate(MBB, MBP, true))
return false;
// Is the predicate comparing an integer to zero?
if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
(MBP.Predicate == MachineBranchPredicate::PRED_NE ||
MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
return false;
// If we cannot erase the test instruction itself, then making the null check
// implicit does not buy us much.
if (!MBP.SingleUseCondition)
return false;
MachineBasicBlock *NotNullSucc, *NullSucc;
if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
NotNullSucc = MBP.TrueDest;
NullSucc = MBP.FalseDest;
} else {
NotNullSucc = MBP.FalseDest;
NullSucc = MBP.TrueDest;
}
// We handle the simplest case for now. We can potentially do better by using
// the machine dominator tree.
if (NotNullSucc->pred_size() != 1)
return false;
// Starting with a code fragment like:
//
// test %RAX, %RAX
// jne LblNotNull
//
// LblNull:
// callq throw_NullPointerException
//
// LblNotNull:
// Inst0
// Inst1
// ...
// Def = Load (%RAX + <offset>)
// ...
//
//
// we want to end up with
//
// Def = FaultingLoad (%RAX + <offset>), LblNull
// jmp LblNotNull ;; explicit or fallthrough
//
// LblNotNull:
// Inst0
// Inst1
// ...
//
// LblNull:
// callq throw_NullPointerException
//
//
// To see why this is legal, consider the two possibilities:
//
// 1. %RAX is null: since we constrain <offset> to be less than PageSize, the
// load instruction dereferences the null page, causing a segmentation
// fault.
//
// 2. %RAX is not null: in this case we know that the load cannot fault, as
// otherwise the load would've faulted in the original program too and the
// original program would've been undefined.
//
// This reasoning cannot be extended to justify hoisting through arbitrary
// control flow. For instance, in the example below (in pseudo-C)
//
// if (ptr == null) { throw_npe(); unreachable; }
// if (some_cond) { return 42; }
// v = ptr->field; // LD
// ...
//
// we cannot (without code duplication) use the load marked "LD" to null check
// ptr -- clause (2) above does not apply in this case. In the above program
// the safety of ptr->field can be dependent on some_cond; and, for instance,
// ptr could be some non-null invalid reference that never gets loaded from
// because some_cond is always true.
const unsigned PointerReg = MBP.LHS.getReg();
SmallVector<MachineInstr *, 8> InstsSeenSoFar;
for (auto &MI : *NotNullSucc) {
if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
return false;
MachineInstr *Dependence;
if (isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar) &&
canHoistLoadInst(&MI, PointerReg, InstsSeenSoFar, NullSucc,
Dependence)) {
NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
NullSucc, Dependence);
return true;
}
InstsSeenSoFar.push_back(&MI);
}
return false;
}
/// Wrap a machine load instruction, LoadMI, into a FAULTING_LOAD_OP machine
/// instruction. The FAULTING_LOAD_OP instruction does the same load as LoadMI
/// (defining the same register), and branches to HandlerMBB if the load
/// faults. The FAULTING_LOAD_OP instruction is inserted at the end of MBB.
MachineInstr *
ImplicitNullChecks::insertFaultingLoad(MachineInstr *LoadMI,
MachineBasicBlock *MBB,
MachineBasicBlock *HandlerMBB) {
const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
// all targets.
DebugLoc DL;
unsigned NumDefs = LoadMI->getDesc().getNumDefs();
assert(NumDefs <= 1 && "other cases unhandled!");
unsigned DefReg = NoRegister;
if (NumDefs != 0) {
DefReg = LoadMI->defs().begin()->getReg();
assert(std::distance(LoadMI->defs().begin(), LoadMI->defs().end()) == 1 &&
"expected exactly one def!");
}
auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_LOAD_OP), DefReg)
.addMBB(HandlerMBB)
.addImm(LoadMI->getOpcode());
for (auto &MO : LoadMI->uses())
MIB.add(MO);
MIB.setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end());
return MIB;
}
/// Rewrite the null checks in NullCheckList into implicit null checks.
void ImplicitNullChecks::rewriteNullChecks(
ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
DebugLoc DL;
for (auto &NC : NullCheckList) {
// Remove the conditional branch dependent on the null check.
unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
(void)BranchesRemoved;
assert(BranchesRemoved > 0 && "expected at least one branch!");
if (auto *DepMI = NC.getOnlyDependency()) {
DepMI->removeFromParent();
NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
}
// Insert a faulting load where the conditional branch was originally. We
// check earlier ensures that this bit of code motion is legal. We do not
// touch the successors list for any basic block since we haven't changed
// control flow, we've just made it implicit.
MachineInstr *FaultingLoad = insertFaultingLoad(
NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
// Now the values defined by MemOperation, if any, are live-in of
// the block of MemOperation.
// The original load operation may define implicit-defs alongside
// the loaded value.
MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
for (const MachineOperand &MO : FaultingLoad->operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (!Reg || MBB->isLiveIn(Reg))
continue;
MBB->addLiveIn(Reg);
}
if (auto *DepMI = NC.getOnlyDependency()) {
for (auto &MO : DepMI->operands()) {
if (!MO.isReg() || !MO.getReg() || !MO.isDef())
continue;
if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
NC.getNotNullSucc()->addLiveIn(MO.getReg());
}
}
NC.getMemOperation()->eraseFromParent();
NC.getCheckOperation()->eraseFromParent();
// Insert an *unconditional* branch to not-null successor.
TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
/*Cond=*/None, DL);
NumImplicitNullChecks++;
}
}
char ImplicitNullChecks::ID = 0;
char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks",
"Implicit null checks", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks",
"Implicit null checks", false, false)