mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-07 12:30:44 +00:00
965b15e108
Summary: Fix a corner case in `MDNode::getMostGenericTBAA` where we can sometimes generate invalid TBAA metadata. Reviewers: chandlerc, hfinkel, mehdi_amini, manmanren Subscribers: mcrosier, llvm-commits Differential Revision: https://reviews.llvm.org/D26635 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289403 91177308-0d34-0410-b5e6-96231b3b80d8
588 lines
20 KiB
C++
588 lines
20 KiB
C++
//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the TypeBasedAliasAnalysis pass, which implements
|
|
// metadata-based TBAA.
|
|
//
|
|
// In LLVM IR, memory does not have types, so LLVM's own type system is not
|
|
// suitable for doing TBAA. Instead, metadata is added to the IR to describe
|
|
// a type system of a higher level language. This can be used to implement
|
|
// typical C/C++ TBAA, but it can also be used to implement custom alias
|
|
// analysis behavior for other languages.
|
|
//
|
|
// We now support two types of metadata format: scalar TBAA and struct-path
|
|
// aware TBAA. After all testing cases are upgraded to use struct-path aware
|
|
// TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
|
|
// can be dropped.
|
|
//
|
|
// The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
|
|
// three fields, e.g.:
|
|
// !0 = metadata !{ metadata !"an example type tree" }
|
|
// !1 = metadata !{ metadata !"int", metadata !0 }
|
|
// !2 = metadata !{ metadata !"float", metadata !0 }
|
|
// !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
|
|
//
|
|
// The first field is an identity field. It can be any value, usually
|
|
// an MDString, which uniquely identifies the type. The most important
|
|
// name in the tree is the name of the root node. Two trees with
|
|
// different root node names are entirely disjoint, even if they
|
|
// have leaves with common names.
|
|
//
|
|
// The second field identifies the type's parent node in the tree, or
|
|
// is null or omitted for a root node. A type is considered to alias
|
|
// all of its descendants and all of its ancestors in the tree. Also,
|
|
// a type is considered to alias all types in other trees, so that
|
|
// bitcode produced from multiple front-ends is handled conservatively.
|
|
//
|
|
// If the third field is present, it's an integer which if equal to 1
|
|
// indicates that the type is "constant" (meaning pointsToConstantMemory
|
|
// should return true; see
|
|
// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
|
|
//
|
|
// With struct-path aware TBAA, the MDNodes attached to an instruction using
|
|
// "!tbaa" are called path tag nodes.
|
|
//
|
|
// The path tag node has 4 fields with the last field being optional.
|
|
//
|
|
// The first field is the base type node, it can be a struct type node
|
|
// or a scalar type node. The second field is the access type node, it
|
|
// must be a scalar type node. The third field is the offset into the base type.
|
|
// The last field has the same meaning as the last field of our scalar TBAA:
|
|
// it's an integer which if equal to 1 indicates that the access is "constant".
|
|
//
|
|
// The struct type node has a name and a list of pairs, one pair for each member
|
|
// of the struct. The first element of each pair is a type node (a struct type
|
|
// node or a sclar type node), specifying the type of the member, the second
|
|
// element of each pair is the offset of the member.
|
|
//
|
|
// Given an example
|
|
// typedef struct {
|
|
// short s;
|
|
// } A;
|
|
// typedef struct {
|
|
// uint16_t s;
|
|
// A a;
|
|
// } B;
|
|
//
|
|
// For an access to B.a.s, we attach !5 (a path tag node) to the load/store
|
|
// instruction. The base type is !4 (struct B), the access type is !2 (scalar
|
|
// type short) and the offset is 4.
|
|
//
|
|
// !0 = metadata !{metadata !"Simple C/C++ TBAA"}
|
|
// !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
|
|
// !2 = metadata !{metadata !"short", metadata !1} // Scalar type node
|
|
// !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node
|
|
// !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
|
|
// // Struct type node
|
|
// !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node
|
|
//
|
|
// The struct type nodes and the scalar type nodes form a type DAG.
|
|
// Root (!0)
|
|
// char (!1) -- edge to Root
|
|
// short (!2) -- edge to char
|
|
// A (!3) -- edge with offset 0 to short
|
|
// B (!4) -- edge with offset 0 to short and edge with offset 4 to A
|
|
//
|
|
// To check if two tags (tagX and tagY) can alias, we start from the base type
|
|
// of tagX, follow the edge with the correct offset in the type DAG and adjust
|
|
// the offset until we reach the base type of tagY or until we reach the Root
|
|
// node.
|
|
// If we reach the base type of tagY, compare the adjusted offset with
|
|
// offset of tagY, return Alias if the offsets are the same, return NoAlias
|
|
// otherwise.
|
|
// If we reach the Root node, perform the above starting from base type of tagY
|
|
// to see if we reach base type of tagX.
|
|
//
|
|
// If they have different roots, they're part of different potentially
|
|
// unrelated type systems, so we return Alias to be conservative.
|
|
// If neither node is an ancestor of the other and they have the same root,
|
|
// then we say NoAlias.
|
|
//
|
|
// TODO: The current metadata format doesn't support struct
|
|
// fields. For example:
|
|
// struct X {
|
|
// double d;
|
|
// int i;
|
|
// };
|
|
// void foo(struct X *x, struct X *y, double *p) {
|
|
// *x = *y;
|
|
// *p = 0.0;
|
|
// }
|
|
// Struct X has a double member, so the store to *x can alias the store to *p.
|
|
// Currently it's not possible to precisely describe all the things struct X
|
|
// aliases, so struct assignments must use conservative TBAA nodes. There's
|
|
// no scheme for attaching metadata to @llvm.memcpy yet either.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace llvm;
|
|
|
|
// A handy option for disabling TBAA functionality. The same effect can also be
|
|
// achieved by stripping the !tbaa tags from IR, but this option is sometimes
|
|
// more convenient.
|
|
static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
|
|
|
|
namespace {
|
|
/// This is a simple wrapper around an MDNode which provides a higher-level
|
|
/// interface by hiding the details of how alias analysis information is encoded
|
|
/// in its operands.
|
|
template<typename MDNodeTy>
|
|
class TBAANodeImpl {
|
|
MDNodeTy *Node;
|
|
|
|
public:
|
|
TBAANodeImpl() : Node(nullptr) {}
|
|
explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
|
|
|
|
/// getNode - Get the MDNode for this TBAANode.
|
|
MDNodeTy *getNode() const { return Node; }
|
|
|
|
/// getParent - Get this TBAANode's Alias tree parent.
|
|
TBAANodeImpl<MDNodeTy> getParent() const {
|
|
if (Node->getNumOperands() < 2)
|
|
return TBAANodeImpl<MDNodeTy>();
|
|
MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
|
|
if (!P)
|
|
return TBAANodeImpl<MDNodeTy>();
|
|
// Ok, this node has a valid parent. Return it.
|
|
return TBAANodeImpl<MDNodeTy>(P);
|
|
}
|
|
|
|
/// Test if this TBAANode represents a type for objects which are
|
|
/// not modified (by any means) in the context where this
|
|
/// AliasAnalysis is relevant.
|
|
bool isTypeImmutable() const {
|
|
if (Node->getNumOperands() < 3)
|
|
return false;
|
|
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
|
|
if (!CI)
|
|
return false;
|
|
return CI->getValue()[0];
|
|
}
|
|
};
|
|
|
|
/// \name Specializations of \c TBAANodeImpl for const and non const qualified
|
|
/// \c MDNode.
|
|
/// @{
|
|
typedef TBAANodeImpl<const MDNode> TBAANode;
|
|
typedef TBAANodeImpl<MDNode> MutableTBAANode;
|
|
/// @}
|
|
|
|
/// This is a simple wrapper around an MDNode which provides a
|
|
/// higher-level interface by hiding the details of how alias analysis
|
|
/// information is encoded in its operands.
|
|
template<typename MDNodeTy>
|
|
class TBAAStructTagNodeImpl {
|
|
/// This node should be created with createTBAAStructTagNode.
|
|
MDNodeTy *Node;
|
|
|
|
public:
|
|
explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
|
|
|
|
/// Get the MDNode for this TBAAStructTagNode.
|
|
MDNodeTy *getNode() const { return Node; }
|
|
|
|
MDNodeTy *getBaseType() const {
|
|
return dyn_cast_or_null<MDNode>(Node->getOperand(0));
|
|
}
|
|
MDNodeTy *getAccessType() const {
|
|
return dyn_cast_or_null<MDNode>(Node->getOperand(1));
|
|
}
|
|
uint64_t getOffset() const {
|
|
return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
|
|
}
|
|
/// Test if this TBAAStructTagNode represents a type for objects
|
|
/// which are not modified (by any means) in the context where this
|
|
/// AliasAnalysis is relevant.
|
|
bool isTypeImmutable() const {
|
|
if (Node->getNumOperands() < 4)
|
|
return false;
|
|
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
|
|
if (!CI)
|
|
return false;
|
|
return CI->getValue()[0];
|
|
}
|
|
};
|
|
|
|
/// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
|
|
/// qualified \c MDNods.
|
|
/// @{
|
|
typedef TBAAStructTagNodeImpl<const MDNode> TBAAStructTagNode;
|
|
typedef TBAAStructTagNodeImpl<MDNode> MutableTBAAStructTagNode;
|
|
/// @}
|
|
|
|
/// This is a simple wrapper around an MDNode which provides a
|
|
/// higher-level interface by hiding the details of how alias analysis
|
|
/// information is encoded in its operands.
|
|
class TBAAStructTypeNode {
|
|
/// This node should be created with createTBAAStructTypeNode.
|
|
const MDNode *Node;
|
|
|
|
public:
|
|
TBAAStructTypeNode() : Node(nullptr) {}
|
|
explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
|
|
|
|
/// Get the MDNode for this TBAAStructTypeNode.
|
|
const MDNode *getNode() const { return Node; }
|
|
|
|
/// Get this TBAAStructTypeNode's field in the type DAG with
|
|
/// given offset. Update the offset to be relative to the field type.
|
|
TBAAStructTypeNode getParent(uint64_t &Offset) const {
|
|
// Parent can be omitted for the root node.
|
|
if (Node->getNumOperands() < 2)
|
|
return TBAAStructTypeNode();
|
|
|
|
// Fast path for a scalar type node and a struct type node with a single
|
|
// field.
|
|
if (Node->getNumOperands() <= 3) {
|
|
uint64_t Cur = Node->getNumOperands() == 2
|
|
? 0
|
|
: mdconst::extract<ConstantInt>(Node->getOperand(2))
|
|
->getZExtValue();
|
|
Offset -= Cur;
|
|
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
|
|
if (!P)
|
|
return TBAAStructTypeNode();
|
|
return TBAAStructTypeNode(P);
|
|
}
|
|
|
|
// Assume the offsets are in order. We return the previous field if
|
|
// the current offset is bigger than the given offset.
|
|
unsigned TheIdx = 0;
|
|
for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
|
|
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
|
|
->getZExtValue();
|
|
if (Cur > Offset) {
|
|
assert(Idx >= 3 &&
|
|
"TBAAStructTypeNode::getParent should have an offset match!");
|
|
TheIdx = Idx - 2;
|
|
break;
|
|
}
|
|
}
|
|
// Move along the last field.
|
|
if (TheIdx == 0)
|
|
TheIdx = Node->getNumOperands() - 2;
|
|
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
|
|
->getZExtValue();
|
|
Offset -= Cur;
|
|
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
|
|
if (!P)
|
|
return TBAAStructTypeNode();
|
|
return TBAAStructTypeNode(P);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
|
|
/// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
|
|
/// format.
|
|
static bool isStructPathTBAA(const MDNode *MD) {
|
|
// Anonymous TBAA root starts with a MDNode and dragonegg uses it as
|
|
// a TBAA tag.
|
|
return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
|
|
}
|
|
|
|
AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::alias(LocA, LocB);
|
|
|
|
// Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
|
|
// be conservative.
|
|
const MDNode *AM = LocA.AATags.TBAA;
|
|
if (!AM)
|
|
return AAResultBase::alias(LocA, LocB);
|
|
const MDNode *BM = LocB.AATags.TBAA;
|
|
if (!BM)
|
|
return AAResultBase::alias(LocA, LocB);
|
|
|
|
// If they may alias, chain to the next AliasAnalysis.
|
|
if (Aliases(AM, BM))
|
|
return AAResultBase::alias(LocA, LocB);
|
|
|
|
// Otherwise return a definitive result.
|
|
return NoAlias;
|
|
}
|
|
|
|
bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
|
|
bool OrLocal) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
|
|
|
|
const MDNode *M = Loc.AATags.TBAA;
|
|
if (!M)
|
|
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
|
|
|
|
// If this is an "immutable" type, we can assume the pointer is pointing
|
|
// to constant memory.
|
|
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
|
|
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
|
|
return true;
|
|
|
|
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
|
|
}
|
|
|
|
FunctionModRefBehavior
|
|
TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::getModRefBehavior(CS);
|
|
|
|
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
|
|
|
|
// If this is an "immutable" type, we can assume the call doesn't write
|
|
// to memory.
|
|
if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
|
|
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
|
|
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
|
|
Min = FMRB_OnlyReadsMemory;
|
|
|
|
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
|
|
}
|
|
|
|
FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
|
|
// Functions don't have metadata. Just chain to the next implementation.
|
|
return AAResultBase::getModRefBehavior(F);
|
|
}
|
|
|
|
ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
|
|
const MemoryLocation &Loc) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::getModRefInfo(CS, Loc);
|
|
|
|
if (const MDNode *L = Loc.AATags.TBAA)
|
|
if (const MDNode *M =
|
|
CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
|
|
if (!Aliases(L, M))
|
|
return MRI_NoModRef;
|
|
|
|
return AAResultBase::getModRefInfo(CS, Loc);
|
|
}
|
|
|
|
ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
|
|
ImmutableCallSite CS2) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::getModRefInfo(CS1, CS2);
|
|
|
|
if (const MDNode *M1 =
|
|
CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
|
|
if (const MDNode *M2 =
|
|
CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
|
|
if (!Aliases(M1, M2))
|
|
return MRI_NoModRef;
|
|
|
|
return AAResultBase::getModRefInfo(CS1, CS2);
|
|
}
|
|
|
|
bool MDNode::isTBAAVtableAccess() const {
|
|
if (!isStructPathTBAA(this)) {
|
|
if (getNumOperands() < 1)
|
|
return false;
|
|
if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
|
|
if (Tag1->getString() == "vtable pointer")
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// For struct-path aware TBAA, we use the access type of the tag.
|
|
if (getNumOperands() < 2)
|
|
return false;
|
|
MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
|
|
if (!Tag)
|
|
return false;
|
|
if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
|
|
if (Tag1->getString() == "vtable pointer")
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
if (A == B)
|
|
return A;
|
|
|
|
// For struct-path aware TBAA, we use the access type of the tag.
|
|
assert(isStructPathTBAA(A) && isStructPathTBAA(B) &&
|
|
"Auto upgrade should have taken care of this!");
|
|
A = cast_or_null<MDNode>(MutableTBAAStructTagNode(A).getAccessType());
|
|
if (!A)
|
|
return nullptr;
|
|
B = cast_or_null<MDNode>(MutableTBAAStructTagNode(B).getAccessType());
|
|
if (!B)
|
|
return nullptr;
|
|
|
|
SmallSetVector<MDNode *, 4> PathA;
|
|
MutableTBAANode TA(A);
|
|
while (TA.getNode()) {
|
|
if (PathA.count(TA.getNode()))
|
|
report_fatal_error("Cycle found in TBAA metadata.");
|
|
PathA.insert(TA.getNode());
|
|
TA = TA.getParent();
|
|
}
|
|
|
|
SmallSetVector<MDNode *, 4> PathB;
|
|
MutableTBAANode TB(B);
|
|
while (TB.getNode()) {
|
|
if (PathB.count(TB.getNode()))
|
|
report_fatal_error("Cycle found in TBAA metadata.");
|
|
PathB.insert(TB.getNode());
|
|
TB = TB.getParent();
|
|
}
|
|
|
|
int IA = PathA.size() - 1;
|
|
int IB = PathB.size() - 1;
|
|
|
|
MDNode *Ret = nullptr;
|
|
while (IA >= 0 && IB >= 0) {
|
|
if (PathA[IA] == PathB[IB])
|
|
Ret = PathA[IA];
|
|
else
|
|
break;
|
|
--IA;
|
|
--IB;
|
|
}
|
|
|
|
// We either did not find a match, or the only common base "type" is
|
|
// the root node. In either case, we don't have any useful TBAA
|
|
// metadata to attach.
|
|
if (!Ret || Ret->getNumOperands() < 2)
|
|
return nullptr;
|
|
|
|
// We need to convert from a type node to a tag node.
|
|
Type *Int64 = IntegerType::get(A->getContext(), 64);
|
|
Metadata *Ops[3] = {Ret, Ret,
|
|
ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
|
|
return MDNode::get(A->getContext(), Ops);
|
|
}
|
|
|
|
void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
|
|
if (Merge)
|
|
N.TBAA =
|
|
MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
|
|
else
|
|
N.TBAA = getMetadata(LLVMContext::MD_tbaa);
|
|
|
|
if (Merge)
|
|
N.Scope = MDNode::getMostGenericAliasScope(
|
|
N.Scope, getMetadata(LLVMContext::MD_alias_scope));
|
|
else
|
|
N.Scope = getMetadata(LLVMContext::MD_alias_scope);
|
|
|
|
if (Merge)
|
|
N.NoAlias =
|
|
MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
|
|
else
|
|
N.NoAlias = getMetadata(LLVMContext::MD_noalias);
|
|
}
|
|
|
|
/// Aliases - Test whether the type represented by A may alias the
|
|
/// type represented by B.
|
|
bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
|
|
// Verify that both input nodes are struct-path aware. Auto-upgrade should
|
|
// have taken care of this.
|
|
assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
|
|
assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
|
|
|
|
// Keep track of the root node for A and B.
|
|
TBAAStructTypeNode RootA, RootB;
|
|
TBAAStructTagNode TagA(A), TagB(B);
|
|
|
|
// TODO: We need to check if AccessType of TagA encloses AccessType of
|
|
// TagB to support aggregate AccessType. If yes, return true.
|
|
|
|
// Start from the base type of A, follow the edge with the correct offset in
|
|
// the type DAG and adjust the offset until we reach the base type of B or
|
|
// until we reach the Root node.
|
|
// Compare the adjusted offset once we have the same base.
|
|
|
|
// Climb the type DAG from base type of A to see if we reach base type of B.
|
|
const MDNode *BaseA = TagA.getBaseType();
|
|
const MDNode *BaseB = TagB.getBaseType();
|
|
uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
|
|
for (TBAAStructTypeNode T(BaseA);;) {
|
|
if (T.getNode() == BaseB)
|
|
// Base type of A encloses base type of B, check if the offsets match.
|
|
return OffsetA == OffsetB;
|
|
|
|
RootA = T;
|
|
// Follow the edge with the correct offset, OffsetA will be adjusted to
|
|
// be relative to the field type.
|
|
T = T.getParent(OffsetA);
|
|
if (!T.getNode())
|
|
break;
|
|
}
|
|
|
|
// Reset OffsetA and climb the type DAG from base type of B to see if we reach
|
|
// base type of A.
|
|
OffsetA = TagA.getOffset();
|
|
for (TBAAStructTypeNode T(BaseB);;) {
|
|
if (T.getNode() == BaseA)
|
|
// Base type of B encloses base type of A, check if the offsets match.
|
|
return OffsetA == OffsetB;
|
|
|
|
RootB = T;
|
|
// Follow the edge with the correct offset, OffsetB will be adjusted to
|
|
// be relative to the field type.
|
|
T = T.getParent(OffsetB);
|
|
if (!T.getNode())
|
|
break;
|
|
}
|
|
|
|
// Neither node is an ancestor of the other.
|
|
|
|
// If they have different roots, they're part of different potentially
|
|
// unrelated type systems, so we must be conservative.
|
|
if (RootA.getNode() != RootB.getNode())
|
|
return true;
|
|
|
|
// If they have the same root, then we've proved there's no alias.
|
|
return false;
|
|
}
|
|
|
|
AnalysisKey TypeBasedAA::Key;
|
|
|
|
TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
|
|
return TypeBasedAAResult();
|
|
}
|
|
|
|
char TypeBasedAAWrapperPass::ID = 0;
|
|
INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
|
|
false, true)
|
|
|
|
ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
|
|
return new TypeBasedAAWrapperPass();
|
|
}
|
|
|
|
TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
|
|
initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
|
|
Result.reset(new TypeBasedAAResult());
|
|
return false;
|
|
}
|
|
|
|
bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
|
|
Result.reset();
|
|
return false;
|
|
}
|
|
|
|
void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|