llvm/utils/FileCheck/FileCheck.cpp
2009-11-29 08:30:24 +00:00

728 lines
25 KiB
C++

//===- FileCheck.cpp - Check that File's Contents match what is expected --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// FileCheck does a line-by line check of a file that validates whether it
// contains the expected content. This is useful for regression tests etc.
//
// This program exits with an error status of 2 on error, exit status of 0 if
// the file matched the expected contents, and exit status of 1 if it did not
// contain the expected contents.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Signals.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include <algorithm>
using namespace llvm;
static cl::opt<std::string>
CheckFilename(cl::Positional, cl::desc("<check-file>"), cl::Required);
static cl::opt<std::string>
InputFilename("input-file", cl::desc("File to check (defaults to stdin)"),
cl::init("-"), cl::value_desc("filename"));
static cl::opt<std::string>
CheckPrefix("check-prefix", cl::init("CHECK"),
cl::desc("Prefix to use from check file (defaults to 'CHECK')"));
static cl::opt<bool>
NoCanonicalizeWhiteSpace("strict-whitespace",
cl::desc("Do not treat all horizontal whitespace as equivalent"));
//===----------------------------------------------------------------------===//
// Pattern Handling Code.
//===----------------------------------------------------------------------===//
class Pattern {
SMLoc PatternLoc;
/// FixedStr - If non-empty, this pattern is a fixed string match with the
/// specified fixed string.
StringRef FixedStr;
/// RegEx - If non-empty, this is a regex pattern.
std::string RegExStr;
/// VariableUses - Entries in this vector map to uses of a variable in the
/// pattern, e.g. "foo[[bar]]baz". In this case, the RegExStr will contain
/// "foobaz" and we'll get an entry in this vector that tells us to insert the
/// value of bar at offset 3.
std::vector<std::pair<StringRef, unsigned> > VariableUses;
/// VariableDefs - Entries in this vector map to definitions of a variable in
/// the pattern, e.g. "foo[[bar:.*]]baz". In this case, the RegExStr will
/// contain "foo(.*)baz" and VariableDefs will contain the pair "bar",1. The
/// index indicates what parenthesized value captures the variable value.
std::vector<std::pair<StringRef, unsigned> > VariableDefs;
public:
Pattern() { }
bool ParsePattern(StringRef PatternStr, SourceMgr &SM);
/// Match - Match the pattern string against the input buffer Buffer. This
/// returns the position that is matched or npos if there is no match. If
/// there is a match, the size of the matched string is returned in MatchLen.
///
/// The VariableTable StringMap provides the current values of filecheck
/// variables and is updated if this match defines new values.
size_t Match(StringRef Buffer, size_t &MatchLen,
StringMap<StringRef> &VariableTable) const;
/// PrintFailureInfo - Print additional information about a failure to match
/// involving this pattern.
void PrintFailureInfo(const SourceMgr &SM, StringRef Buffer,
const StringMap<StringRef> &VariableTable) const;
private:
static void AddFixedStringToRegEx(StringRef FixedStr, std::string &TheStr);
bool AddRegExToRegEx(StringRef RegExStr, unsigned &CurParen, SourceMgr &SM);
/// ComputeMatchDistance - Compute an arbitrary estimate for the quality of
/// matching this pattern at the start of \arg Buffer; a distance of zero
/// should correspond to a perfect match.
unsigned ComputeMatchDistance(StringRef Buffer,
const StringMap<StringRef> &VariableTable) const;
};
bool Pattern::ParsePattern(StringRef PatternStr, SourceMgr &SM) {
PatternLoc = SMLoc::getFromPointer(PatternStr.data());
// Ignore trailing whitespace.
while (!PatternStr.empty() &&
(PatternStr.back() == ' ' || PatternStr.back() == '\t'))
PatternStr = PatternStr.substr(0, PatternStr.size()-1);
// Check that there is something on the line.
if (PatternStr.empty()) {
SM.PrintMessage(PatternLoc, "found empty check string with prefix '" +
CheckPrefix+":'", "error");
return true;
}
// Check to see if this is a fixed string, or if it has regex pieces.
if (PatternStr.size() < 2 ||
(PatternStr.find("{{") == StringRef::npos &&
PatternStr.find("[[") == StringRef::npos)) {
FixedStr = PatternStr;
return false;
}
// Paren value #0 is for the fully matched string. Any new parenthesized
// values add from their.
unsigned CurParen = 1;
// Otherwise, there is at least one regex piece. Build up the regex pattern
// by escaping scary characters in fixed strings, building up one big regex.
while (!PatternStr.empty()) {
// RegEx matches.
if (PatternStr.size() >= 2 &&
PatternStr[0] == '{' && PatternStr[1] == '{') {
// Otherwise, this is the start of a regex match. Scan for the }}.
size_t End = PatternStr.find("}}");
if (End == StringRef::npos) {
SM.PrintMessage(SMLoc::getFromPointer(PatternStr.data()),
"found start of regex string with no end '}}'", "error");
return true;
}
if (AddRegExToRegEx(PatternStr.substr(2, End-2), CurParen, SM))
return true;
PatternStr = PatternStr.substr(End+2);
continue;
}
// Named RegEx matches. These are of two forms: [[foo:.*]] which matches .*
// (or some other regex) and assigns it to the FileCheck variable 'foo'. The
// second form is [[foo]] which is a reference to foo. The variable name
// itself must be of the form "[a-zA-Z_][0-9a-zA-Z_]*", otherwise we reject
// it. This is to catch some common errors.
if (PatternStr.size() >= 2 &&
PatternStr[0] == '[' && PatternStr[1] == '[') {
// Verify that it is terminated properly.
size_t End = PatternStr.find("]]");
if (End == StringRef::npos) {
SM.PrintMessage(SMLoc::getFromPointer(PatternStr.data()),
"invalid named regex reference, no ]] found", "error");
return true;
}
StringRef MatchStr = PatternStr.substr(2, End-2);
PatternStr = PatternStr.substr(End+2);
// Get the regex name (e.g. "foo").
size_t NameEnd = MatchStr.find(':');
StringRef Name = MatchStr.substr(0, NameEnd);
if (Name.empty()) {
SM.PrintMessage(SMLoc::getFromPointer(Name.data()),
"invalid name in named regex: empty name", "error");
return true;
}
// Verify that the name is well formed.
for (unsigned i = 0, e = Name.size(); i != e; ++i)
if (Name[i] != '_' &&
(Name[i] < 'a' || Name[i] > 'z') &&
(Name[i] < 'A' || Name[i] > 'Z') &&
(Name[i] < '0' || Name[i] > '9')) {
SM.PrintMessage(SMLoc::getFromPointer(Name.data()+i),
"invalid name in named regex", "error");
return true;
}
// Name can't start with a digit.
if (isdigit(Name[0])) {
SM.PrintMessage(SMLoc::getFromPointer(Name.data()),
"invalid name in named regex", "error");
return true;
}
// Handle [[foo]].
if (NameEnd == StringRef::npos) {
VariableUses.push_back(std::make_pair(Name, RegExStr.size()));
continue;
}
// Handle [[foo:.*]].
VariableDefs.push_back(std::make_pair(Name, CurParen));
RegExStr += '(';
++CurParen;
if (AddRegExToRegEx(MatchStr.substr(NameEnd+1), CurParen, SM))
return true;
RegExStr += ')';
}
// Handle fixed string matches.
// Find the end, which is the start of the next regex.
size_t FixedMatchEnd = PatternStr.find("{{");
FixedMatchEnd = std::min(FixedMatchEnd, PatternStr.find("[["));
AddFixedStringToRegEx(PatternStr.substr(0, FixedMatchEnd), RegExStr);
PatternStr = PatternStr.substr(FixedMatchEnd);
continue;
}
return false;
}
void Pattern::AddFixedStringToRegEx(StringRef FixedStr, std::string &TheStr) {
// Add the characters from FixedStr to the regex, escaping as needed. This
// avoids "leaning toothpicks" in common patterns.
for (unsigned i = 0, e = FixedStr.size(); i != e; ++i) {
switch (FixedStr[i]) {
// These are the special characters matched in "p_ere_exp".
case '(':
case ')':
case '^':
case '$':
case '|':
case '*':
case '+':
case '?':
case '.':
case '[':
case '\\':
case '{':
TheStr += '\\';
// FALL THROUGH.
default:
TheStr += FixedStr[i];
break;
}
}
}
bool Pattern::AddRegExToRegEx(StringRef RegexStr, unsigned &CurParen,
SourceMgr &SM) {
Regex R(RegexStr);
std::string Error;
if (!R.isValid(Error)) {
SM.PrintMessage(SMLoc::getFromPointer(RegexStr.data()),
"invalid regex: " + Error, "error");
return true;
}
RegExStr += RegexStr.str();
CurParen += R.getNumMatches();
return false;
}
/// Match - Match the pattern string against the input buffer Buffer. This
/// returns the position that is matched or npos if there is no match. If
/// there is a match, the size of the matched string is returned in MatchLen.
size_t Pattern::Match(StringRef Buffer, size_t &MatchLen,
StringMap<StringRef> &VariableTable) const {
// If this is a fixed string pattern, just match it now.
if (!FixedStr.empty()) {
MatchLen = FixedStr.size();
return Buffer.find(FixedStr);
}
// Regex match.
// If there are variable uses, we need to create a temporary string with the
// actual value.
StringRef RegExToMatch = RegExStr;
std::string TmpStr;
if (!VariableUses.empty()) {
TmpStr = RegExStr;
unsigned InsertOffset = 0;
for (unsigned i = 0, e = VariableUses.size(); i != e; ++i) {
StringMap<StringRef>::iterator it =
VariableTable.find(VariableUses[i].first);
// If the variable is undefined, return an error.
if (it == VariableTable.end())
return StringRef::npos;
// Look up the value and escape it so that we can plop it into the regex.
std::string Value;
AddFixedStringToRegEx(it->second, Value);
// Plop it into the regex at the adjusted offset.
TmpStr.insert(TmpStr.begin()+VariableUses[i].second+InsertOffset,
Value.begin(), Value.end());
InsertOffset += Value.size();
}
// Match the newly constructed regex.
RegExToMatch = TmpStr;
}
SmallVector<StringRef, 4> MatchInfo;
if (!Regex(RegExToMatch, Regex::Newline).match(Buffer, &MatchInfo))
return StringRef::npos;
// Successful regex match.
assert(!MatchInfo.empty() && "Didn't get any match");
StringRef FullMatch = MatchInfo[0];
// If this defines any variables, remember their values.
for (unsigned i = 0, e = VariableDefs.size(); i != e; ++i) {
assert(VariableDefs[i].second < MatchInfo.size() &&
"Internal paren error");
VariableTable[VariableDefs[i].first] = MatchInfo[VariableDefs[i].second];
}
MatchLen = FullMatch.size();
return FullMatch.data()-Buffer.data();
}
unsigned Pattern::ComputeMatchDistance(StringRef Buffer,
const StringMap<StringRef> &VariableTable) const {
// Just compute the number of matching characters. For regular expressions, we
// just compare against the regex itself and hope for the best.
//
// FIXME: One easy improvement here is have the regex lib generate a single
// example regular expression which matches, and use that as the example
// string.
StringRef ExampleString(FixedStr);
if (ExampleString.empty())
ExampleString = RegExStr;
unsigned Distance = 0;
for (unsigned i = 0, e = ExampleString.size(); i != e; ++i)
if (Buffer.substr(i, 1) != ExampleString.substr(i, 1))
++Distance;
return Distance;
}
void Pattern::PrintFailureInfo(const SourceMgr &SM, StringRef Buffer,
const StringMap<StringRef> &VariableTable) const{
// If this was a regular expression using variables, print the current
// variable values.
if (!VariableUses.empty()) {
for (unsigned i = 0, e = VariableUses.size(); i != e; ++i) {
StringRef Var = VariableUses[i].first;
StringMap<StringRef>::const_iterator it = VariableTable.find(Var);
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
// Check for undefined variable references.
if (it == VariableTable.end()) {
OS << "uses undefined variable \"";
OS.write_escaped(Var) << "\"";;
} else {
OS << "with variable \"";
OS.write_escaped(Var) << "\" equal to \"";
OS.write_escaped(it->second) << "\"";
}
SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), OS.str(), "note",
/*ShowLine=*/false);
}
}
// Attempt to find the closest/best fuzzy match. Usually an error happens
// because some string in the output didn't exactly match. In these cases, we
// would like to show the user a best guess at what "should have" matched, to
// save them having to actually check the input manually.
size_t NumLinesForward = 0;
size_t Best = StringRef::npos;
double BestQuality = 0;
// Use an arbitrary 4k limit on how far we will search.
for (size_t i = 0, e = std::min(4096, int(Buffer.size())); i != e; ++i) {
if (Buffer[i] == '\n')
++NumLinesForward;
// Compute the "quality" of this match as an arbitrary combination of the
// match distance and the number of lines skipped to get to this match.
unsigned Distance = ComputeMatchDistance(Buffer.substr(i), VariableTable);
double Quality = Distance + (NumLinesForward / 100.);
if (Quality < BestQuality || Best == StringRef::npos) {
Best = i;
BestQuality = Quality;
}
}
if (Best != StringRef::npos && BestQuality < 50) {
// Print the "possible intended match here" line if we found something
// reasonable.
SM.PrintMessage(SMLoc::getFromPointer(Buffer.data() + Best),
"possible intended match here", "note");
// FIXME: If we wanted to be really friendly we would show why the match
// failed, as it can be hard to spot simple one character differences.
}
}
//===----------------------------------------------------------------------===//
// Check Strings.
//===----------------------------------------------------------------------===//
/// CheckString - This is a check that we found in the input file.
struct CheckString {
/// Pat - The pattern to match.
Pattern Pat;
/// Loc - The location in the match file that the check string was specified.
SMLoc Loc;
/// IsCheckNext - This is true if this is a CHECK-NEXT: directive (as opposed
/// to a CHECK: directive.
bool IsCheckNext;
/// NotStrings - These are all of the strings that are disallowed from
/// occurring between this match string and the previous one (or start of
/// file).
std::vector<std::pair<SMLoc, Pattern> > NotStrings;
CheckString(const Pattern &P, SMLoc L, bool isCheckNext)
: Pat(P), Loc(L), IsCheckNext(isCheckNext) {}
};
/// CanonicalizeInputFile - Remove duplicate horizontal space from the specified
/// memory buffer, free it, and return a new one.
static MemoryBuffer *CanonicalizeInputFile(MemoryBuffer *MB) {
SmallVector<char, 16> NewFile;
NewFile.reserve(MB->getBufferSize());
for (const char *Ptr = MB->getBufferStart(), *End = MB->getBufferEnd();
Ptr != End; ++Ptr) {
// If C is not a horizontal whitespace, skip it.
if (*Ptr != ' ' && *Ptr != '\t') {
NewFile.push_back(*Ptr);
continue;
}
// Otherwise, add one space and advance over neighboring space.
NewFile.push_back(' ');
while (Ptr+1 != End &&
(Ptr[1] == ' ' || Ptr[1] == '\t'))
++Ptr;
}
// Free the old buffer and return a new one.
MemoryBuffer *MB2 =
MemoryBuffer::getMemBufferCopy(NewFile.data(),
NewFile.data() + NewFile.size(),
MB->getBufferIdentifier());
delete MB;
return MB2;
}
/// ReadCheckFile - Read the check file, which specifies the sequence of
/// expected strings. The strings are added to the CheckStrings vector.
static bool ReadCheckFile(SourceMgr &SM,
std::vector<CheckString> &CheckStrings) {
// Open the check file, and tell SourceMgr about it.
std::string ErrorStr;
MemoryBuffer *F =
MemoryBuffer::getFileOrSTDIN(CheckFilename.c_str(), &ErrorStr);
if (F == 0) {
errs() << "Could not open check file '" << CheckFilename << "': "
<< ErrorStr << '\n';
return true;
}
// If we want to canonicalize whitespace, strip excess whitespace from the
// buffer containing the CHECK lines.
if (!NoCanonicalizeWhiteSpace)
F = CanonicalizeInputFile(F);
SM.AddNewSourceBuffer(F, SMLoc());
// Find all instances of CheckPrefix followed by : in the file.
StringRef Buffer = F->getBuffer();
std::vector<std::pair<SMLoc, Pattern> > NotMatches;
while (1) {
// See if Prefix occurs in the memory buffer.
Buffer = Buffer.substr(Buffer.find(CheckPrefix));
// If we didn't find a match, we're done.
if (Buffer.empty())
break;
const char *CheckPrefixStart = Buffer.data();
// When we find a check prefix, keep track of whether we find CHECK: or
// CHECK-NEXT:
bool IsCheckNext = false, IsCheckNot = false;
// Verify that the : is present after the prefix.
if (Buffer[CheckPrefix.size()] == ':') {
Buffer = Buffer.substr(CheckPrefix.size()+1);
} else if (Buffer.size() > CheckPrefix.size()+6 &&
memcmp(Buffer.data()+CheckPrefix.size(), "-NEXT:", 6) == 0) {
Buffer = Buffer.substr(CheckPrefix.size()+7);
IsCheckNext = true;
} else if (Buffer.size() > CheckPrefix.size()+5 &&
memcmp(Buffer.data()+CheckPrefix.size(), "-NOT:", 5) == 0) {
Buffer = Buffer.substr(CheckPrefix.size()+6);
IsCheckNot = true;
} else {
Buffer = Buffer.substr(1);
continue;
}
// Okay, we found the prefix, yay. Remember the rest of the line, but
// ignore leading and trailing whitespace.
Buffer = Buffer.substr(Buffer.find_first_not_of(" \t"));
// Scan ahead to the end of line.
size_t EOL = Buffer.find_first_of("\n\r");
// Parse the pattern.
Pattern P;
if (P.ParsePattern(Buffer.substr(0, EOL), SM))
return true;
Buffer = Buffer.substr(EOL);
// Verify that CHECK-NEXT lines have at least one CHECK line before them.
if (IsCheckNext && CheckStrings.empty()) {
SM.PrintMessage(SMLoc::getFromPointer(CheckPrefixStart),
"found '"+CheckPrefix+"-NEXT:' without previous '"+
CheckPrefix+ ": line", "error");
return true;
}
// Handle CHECK-NOT.
if (IsCheckNot) {
NotMatches.push_back(std::make_pair(SMLoc::getFromPointer(Buffer.data()),
P));
continue;
}
// Okay, add the string we captured to the output vector and move on.
CheckStrings.push_back(CheckString(P,
SMLoc::getFromPointer(Buffer.data()),
IsCheckNext));
std::swap(NotMatches, CheckStrings.back().NotStrings);
}
if (CheckStrings.empty()) {
errs() << "error: no check strings found with prefix '" << CheckPrefix
<< ":'\n";
return true;
}
if (!NotMatches.empty()) {
errs() << "error: '" << CheckPrefix
<< "-NOT:' not supported after last check line.\n";
return true;
}
return false;
}
static void PrintCheckFailed(const SourceMgr &SM, const CheckString &CheckStr,
StringRef Buffer,
StringMap<StringRef> &VariableTable) {
// Otherwise, we have an error, emit an error message.
SM.PrintMessage(CheckStr.Loc, "expected string not found in input",
"error");
// Print the "scanning from here" line. If the current position is at the
// end of a line, advance to the start of the next line.
Buffer = Buffer.substr(Buffer.find_first_not_of(" \t\n\r"));
SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), "scanning from here",
"note");
// Allow the pattern to print additional information if desired.
CheckStr.Pat.PrintFailureInfo(SM, Buffer, VariableTable);
}
/// CountNumNewlinesBetween - Count the number of newlines in the specified
/// range.
static unsigned CountNumNewlinesBetween(StringRef Range) {
unsigned NumNewLines = 0;
while (1) {
// Scan for newline.
Range = Range.substr(Range.find_first_of("\n\r"));
if (Range.empty()) return NumNewLines;
++NumNewLines;
// Handle \n\r and \r\n as a single newline.
if (Range.size() > 1 &&
(Range[1] == '\n' || Range[1] == '\r') &&
(Range[0] != Range[1]))
Range = Range.substr(1);
Range = Range.substr(1);
}
}
int main(int argc, char **argv) {
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
cl::ParseCommandLineOptions(argc, argv);
SourceMgr SM;
// Read the expected strings from the check file.
std::vector<CheckString> CheckStrings;
if (ReadCheckFile(SM, CheckStrings))
return 2;
// Open the file to check and add it to SourceMgr.
std::string ErrorStr;
MemoryBuffer *F =
MemoryBuffer::getFileOrSTDIN(InputFilename.c_str(), &ErrorStr);
if (F == 0) {
errs() << "Could not open input file '" << InputFilename << "': "
<< ErrorStr << '\n';
return true;
}
// Remove duplicate spaces in the input file if requested.
if (!NoCanonicalizeWhiteSpace)
F = CanonicalizeInputFile(F);
SM.AddNewSourceBuffer(F, SMLoc());
/// VariableTable - This holds all the current filecheck variables.
StringMap<StringRef> VariableTable;
// Check that we have all of the expected strings, in order, in the input
// file.
StringRef Buffer = F->getBuffer();
const char *LastMatch = Buffer.data();
for (unsigned StrNo = 0, e = CheckStrings.size(); StrNo != e; ++StrNo) {
const CheckString &CheckStr = CheckStrings[StrNo];
StringRef SearchFrom = Buffer;
// Find StrNo in the file.
size_t MatchLen = 0;
Buffer = Buffer.substr(CheckStr.Pat.Match(Buffer, MatchLen, VariableTable));
// If we didn't find a match, reject the input.
if (Buffer.empty()) {
PrintCheckFailed(SM, CheckStr, SearchFrom, VariableTable);
return 1;
}
StringRef SkippedRegion(LastMatch, Buffer.data()-LastMatch);
// If this check is a "CHECK-NEXT", verify that the previous match was on
// the previous line (i.e. that there is one newline between them).
if (CheckStr.IsCheckNext) {
// Count the number of newlines between the previous match and this one.
assert(LastMatch != F->getBufferStart() &&
"CHECK-NEXT can't be the first check in a file");
unsigned NumNewLines = CountNumNewlinesBetween(SkippedRegion);
if (NumNewLines == 0) {
SM.PrintMessage(CheckStr.Loc,
CheckPrefix+"-NEXT: is on the same line as previous match",
"error");
SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()),
"'next' match was here", "note");
SM.PrintMessage(SMLoc::getFromPointer(LastMatch),
"previous match was here", "note");
return 1;
}
if (NumNewLines != 1) {
SM.PrintMessage(CheckStr.Loc,
CheckPrefix+
"-NEXT: is not on the line after the previous match",
"error");
SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()),
"'next' match was here", "note");
SM.PrintMessage(SMLoc::getFromPointer(LastMatch),
"previous match was here", "note");
return 1;
}
}
// If this match had "not strings", verify that they don't exist in the
// skipped region.
for (unsigned ChunkNo = 0, e = CheckStr.NotStrings.size();
ChunkNo != e; ++ChunkNo) {
size_t MatchLen = 0;
size_t Pos = CheckStr.NotStrings[ChunkNo].second.Match(SkippedRegion,
MatchLen,
VariableTable);
if (Pos == StringRef::npos) continue;
SM.PrintMessage(SMLoc::getFromPointer(LastMatch+Pos),
CheckPrefix+"-NOT: string occurred!", "error");
SM.PrintMessage(CheckStr.NotStrings[ChunkNo].first,
CheckPrefix+"-NOT: pattern specified here", "note");
return 1;
}
// Otherwise, everything is good. Step over the matched text and remember
// the position after the match as the end of the last match.
Buffer = Buffer.substr(MatchLen);
LastMatch = Buffer.data();
}
return 0;
}