mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-10 06:00:30 +00:00
a87c35420b
clearly only exactly equal width ptrtoint and inttoptr casts are no-op casts, it says so right there in the langref. Make the code agree. Original log from r220277: Teach the load analysis to allow finding available values which require inttoptr or ptrtoint cast provided there is datalayout available. Eventually, the datalayout can just be required but in practice it will always be there today. To go with the ability to expose available values requiring a ptrtoint or inttoptr cast, helpers are added to perform one of these three casts. These smarts are necessary to finish canonicalizing loads and stores to the operational type requirements without regressing fundamental combines. I've added some test cases. These should actually improve as the load combining and store combining improves, but they may fundamentally be highlighting some missing combines for select in addition to exercising the specific added logic to load analysis. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222739 91177308-0d34-0410-b5e6-96231b3b80d8
268 lines
10 KiB
C++
268 lines
10 KiB
C++
//===- Loads.cpp - Local load analysis ------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines simple local analyses for load instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Operator.h"
|
|
using namespace llvm;
|
|
|
|
/// \brief Test if A and B will obviously have the same value.
|
|
///
|
|
/// This includes recognizing that %t0 and %t1 will have the same
|
|
/// value in code like this:
|
|
/// \code
|
|
/// %t0 = getelementptr \@a, 0, 3
|
|
/// store i32 0, i32* %t0
|
|
/// %t1 = getelementptr \@a, 0, 3
|
|
/// %t2 = load i32* %t1
|
|
/// \endcode
|
|
///
|
|
static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
|
|
// Test if the values are trivially equivalent.
|
|
if (A == B)
|
|
return true;
|
|
|
|
// Test if the values come from identical arithmetic instructions.
|
|
// Use isIdenticalToWhenDefined instead of isIdenticalTo because
|
|
// this function is only used when one address use dominates the
|
|
// other, which means that they'll always either have the same
|
|
// value or one of them will have an undefined value.
|
|
if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
|
|
isa<GetElementPtrInst>(A))
|
|
if (const Instruction *BI = dyn_cast<Instruction>(B))
|
|
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
|
|
return true;
|
|
|
|
// Otherwise they may not be equivalent.
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check if executing a load of this pointer value cannot trap.
|
|
///
|
|
/// If it is not obviously safe to load from the specified pointer, we do
|
|
/// a quick local scan of the basic block containing \c ScanFrom, to determine
|
|
/// if the address is already accessed.
|
|
///
|
|
/// This uses the pointee type to determine how many bytes need to be safe to
|
|
/// load from the pointer.
|
|
bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
|
|
unsigned Align, const DataLayout *DL) {
|
|
int64_t ByteOffset = 0;
|
|
Value *Base = V;
|
|
Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
|
|
|
|
if (ByteOffset < 0) // out of bounds
|
|
return false;
|
|
|
|
Type *BaseType = nullptr;
|
|
unsigned BaseAlign = 0;
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
|
|
// An alloca is safe to load from as load as it is suitably aligned.
|
|
BaseType = AI->getAllocatedType();
|
|
BaseAlign = AI->getAlignment();
|
|
} else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
|
|
// Global variables are not necessarily safe to load from if they are
|
|
// overridden. Their size may change or they may be weak and require a test
|
|
// to determine if they were in fact provided.
|
|
if (!GV->mayBeOverridden()) {
|
|
BaseType = GV->getType()->getElementType();
|
|
BaseAlign = GV->getAlignment();
|
|
}
|
|
}
|
|
|
|
PointerType *AddrTy = cast<PointerType>(V->getType());
|
|
uint64_t LoadSize = DL ? DL->getTypeStoreSize(AddrTy->getElementType()) : 0;
|
|
|
|
// If we found a base allocated type from either an alloca or global variable,
|
|
// try to see if we are definitively within the allocated region. We need to
|
|
// know the size of the base type and the loaded type to do anything in this
|
|
// case, so only try this when we have the DataLayout available.
|
|
if (BaseType && BaseType->isSized() && DL) {
|
|
if (BaseAlign == 0)
|
|
BaseAlign = DL->getPrefTypeAlignment(BaseType);
|
|
|
|
if (Align <= BaseAlign) {
|
|
// Check if the load is within the bounds of the underlying object.
|
|
if (ByteOffset + LoadSize <= DL->getTypeAllocSize(BaseType) &&
|
|
(Align == 0 || (ByteOffset % Align) == 0))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Otherwise, be a little bit aggressive by scanning the local block where we
|
|
// want to check to see if the pointer is already being loaded or stored
|
|
// from/to. If so, the previous load or store would have already trapped,
|
|
// so there is no harm doing an extra load (also, CSE will later eliminate
|
|
// the load entirely).
|
|
BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
|
|
|
|
// We can at least always strip pointer casts even though we can't use the
|
|
// base here.
|
|
V = V->stripPointerCasts();
|
|
|
|
while (BBI != E) {
|
|
--BBI;
|
|
|
|
// If we see a free or a call which may write to memory (i.e. which might do
|
|
// a free) the pointer could be marked invalid.
|
|
if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
|
|
!isa<DbgInfoIntrinsic>(BBI))
|
|
return false;
|
|
|
|
Value *AccessedPtr;
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
|
|
AccessedPtr = LI->getPointerOperand();
|
|
else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
|
|
AccessedPtr = SI->getPointerOperand();
|
|
else
|
|
continue;
|
|
|
|
// Handle trivial cases even w/o DataLayout or other work.
|
|
if (AccessedPtr == V)
|
|
return true;
|
|
|
|
if (!DL)
|
|
continue;
|
|
|
|
auto *AccessedTy = cast<PointerType>(AccessedPtr->getType());
|
|
if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
|
|
LoadSize <= DL->getTypeStoreSize(AccessedTy->getElementType()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Scan the ScanBB block backwards to see if we have the value at the
|
|
/// memory address *Ptr locally available within a small number of instructions.
|
|
///
|
|
/// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum
|
|
/// instructions to scan in the block. If it is set to \c 0, it will scan the whole
|
|
/// block.
|
|
///
|
|
/// If the value is available, this function returns it. If not, it returns the
|
|
/// iterator for the last validated instruction that the value would be live
|
|
/// through. If we scanned the entire block and didn't find something that
|
|
/// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last
|
|
/// instruction processed and this returns null.
|
|
///
|
|
/// You can also optionally specify an alias analysis implementation, which
|
|
/// makes this more precise.
|
|
///
|
|
/// If \c AATags is non-null and a load or store is found, the AA tags from the
|
|
/// load or store are recorded there. If there are no AA tags or if no access is
|
|
/// found, it is left unmodified.
|
|
Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
|
|
BasicBlock::iterator &ScanFrom,
|
|
unsigned MaxInstsToScan,
|
|
AliasAnalysis *AA, AAMDNodes *AATags) {
|
|
if (MaxInstsToScan == 0)
|
|
MaxInstsToScan = ~0U;
|
|
|
|
Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
|
|
|
|
// Try to get the DataLayout for this module. This may be null, in which case
|
|
// the optimizations will be limited.
|
|
const DataLayout *DL = ScanBB->getDataLayout();
|
|
|
|
// Try to get the store size for the type.
|
|
uint64_t AccessSize = DL ? DL->getTypeStoreSize(AccessTy)
|
|
: AA ? AA->getTypeStoreSize(AccessTy) : 0;
|
|
|
|
Value *StrippedPtr = Ptr->stripPointerCasts();
|
|
|
|
while (ScanFrom != ScanBB->begin()) {
|
|
// We must ignore debug info directives when counting (otherwise they
|
|
// would affect codegen).
|
|
Instruction *Inst = --ScanFrom;
|
|
if (isa<DbgInfoIntrinsic>(Inst))
|
|
continue;
|
|
|
|
// Restore ScanFrom to expected value in case next test succeeds
|
|
ScanFrom++;
|
|
|
|
// Don't scan huge blocks.
|
|
if (MaxInstsToScan-- == 0)
|
|
return nullptr;
|
|
|
|
--ScanFrom;
|
|
// If this is a load of Ptr, the loaded value is available.
|
|
// (This is true even if the load is volatile or atomic, although
|
|
// those cases are unlikely.)
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
|
|
if (AreEquivalentAddressValues(
|
|
LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
|
|
CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
|
|
if (AATags)
|
|
LI->getAAMetadata(*AATags);
|
|
return LI;
|
|
}
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
|
|
Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
|
|
// If this is a store through Ptr, the value is available!
|
|
// (This is true even if the store is volatile or atomic, although
|
|
// those cases are unlikely.)
|
|
if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
|
|
CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
|
|
AccessTy, DL)) {
|
|
if (AATags)
|
|
SI->getAAMetadata(*AATags);
|
|
return SI->getOperand(0);
|
|
}
|
|
|
|
// If both StrippedPtr and StorePtr reach all the way to an alloca or
|
|
// global and they are different, ignore the store. This is a trivial form
|
|
// of alias analysis that is important for reg2mem'd code.
|
|
if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
|
|
(isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
|
|
StrippedPtr != StorePtr)
|
|
continue;
|
|
|
|
// If we have alias analysis and it says the store won't modify the loaded
|
|
// value, ignore the store.
|
|
if (AA &&
|
|
(AA->getModRefInfo(SI, StrippedPtr, AccessSize) &
|
|
AliasAnalysis::Mod) == 0)
|
|
continue;
|
|
|
|
// Otherwise the store that may or may not alias the pointer, bail out.
|
|
++ScanFrom;
|
|
return nullptr;
|
|
}
|
|
|
|
// If this is some other instruction that may clobber Ptr, bail out.
|
|
if (Inst->mayWriteToMemory()) {
|
|
// If alias analysis claims that it really won't modify the load,
|
|
// ignore it.
|
|
if (AA &&
|
|
(AA->getModRefInfo(Inst, StrippedPtr, AccessSize) &
|
|
AliasAnalysis::Mod) == 0)
|
|
continue;
|
|
|
|
// May modify the pointer, bail out.
|
|
++ScanFrom;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Got to the start of the block, we didn't find it, but are done for this
|
|
// block.
|
|
return nullptr;
|
|
}
|