llvm/lib/CodeGen/XRayInstrumentation.cpp
Dean Michael Berris 875f0a3e72 [XRay] Detect loops in functions being lowered
Summary:
This is an implementation of the loop detection logic that XRay needs to
determine whether a function might take time at runtime. Without this
heuristic, XRay will tend to not instrument short functions that have
loops that might have runtime dependent on inputs or external values.

While this implementation doesn't do any further analysis than just
figuring out whether there is a loop in the MachineFunction being
code-gen'ed, we're paving the way for being able to perform more
sophisticated analysis of the function in the future (for example to
determine whether the trip count for the loop might be constant, and
make a decision on that instead). This enables us to cover more
functions with the default heuristics, and potentially identify ones
that have variable runtime latency just by looking for the presence of
loops.

Reviewers: chandlerc, rnk, pelikan

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D32274

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302103 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-04 01:24:26 +00:00

195 lines
7.3 KiB
C++

//===-- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a MachineFunctionPass that inserts the appropriate
// XRay instrumentation instructions. We look for XRay-specific attributes
// on the function to determine whether we should insert the replacement
// operations.
//
//===---------------------------------------------------------------------===//
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
namespace {
struct XRayInstrumentation : public MachineFunctionPass {
static char ID;
XRayInstrumentation() : MachineFunctionPass(ID) {
initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
// Replace the original RET instruction with the exit sled code ("patchable
// ret" pseudo-instruction), so that at runtime XRay can replace the sled
// with a code jumping to XRay trampoline, which calls the tracing handler
// and, in the end, issues the RET instruction.
// This is the approach to go on CPUs which have a single RET instruction,
// like x86/x86_64.
void replaceRetWithPatchableRet(MachineFunction &MF,
const TargetInstrInfo *TII);
// Prepend the original return instruction with the exit sled code ("patchable
// function exit" pseudo-instruction), preserving the original return
// instruction just after the exit sled code.
// This is the approach to go on CPUs which have multiple options for the
// return instruction, like ARM. For such CPUs we can't just jump into the
// XRay trampoline and issue a single return instruction there. We rather
// have to call the trampoline and return from it to the original return
// instruction of the function being instrumented.
void prependRetWithPatchableExit(MachineFunction &MF,
const TargetInstrInfo *TII);
};
} // anonymous namespace
void XRayInstrumentation::replaceRetWithPatchableRet(
MachineFunction &MF, const TargetInstrInfo *TII) {
// We look for *all* terminators and returns, then replace those with
// PATCHABLE_RET instructions.
SmallVector<MachineInstr *, 4> Terminators;
for (auto &MBB : MF) {
for (auto &T : MBB.terminators()) {
unsigned Opc = 0;
if (T.isReturn() && T.getOpcode() == TII->getReturnOpcode()) {
// Replace return instructions with:
// PATCHABLE_RET <Opcode>, <Operand>...
Opc = TargetOpcode::PATCHABLE_RET;
}
if (TII->isTailCall(T)) {
// Treat the tail call as a return instruction, which has a
// different-looking sled than the normal return case.
Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
}
if (Opc != 0) {
auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc))
.addImm(T.getOpcode());
for (auto &MO : T.operands())
MIB.add(MO);
Terminators.push_back(&T);
}
}
}
for (auto &I : Terminators)
I->eraseFromParent();
}
void XRayInstrumentation::prependRetWithPatchableExit(
MachineFunction &MF, const TargetInstrInfo *TII) {
for (auto &MBB : MF) {
for (auto &T : MBB.terminators()) {
unsigned Opc = 0;
if (T.isReturn()) {
Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT;
}
if (TII->isTailCall(T)) {
Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
}
if (Opc != 0) {
// Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
// PATCHABLE_TAIL_CALL .
BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc));
}
}
}
}
bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
auto &F = *MF.getFunction();
auto InstrAttr = F.getFnAttribute("function-instrument");
bool AlwaysInstrument = !InstrAttr.hasAttribute(Attribute::None) &&
InstrAttr.isStringAttribute() &&
InstrAttr.getValueAsString() == "xray-always";
Attribute Attr = F.getFnAttribute("xray-instruction-threshold");
unsigned XRayThreshold = 0;
if (!AlwaysInstrument) {
if (Attr.hasAttribute(Attribute::None) || !Attr.isStringAttribute())
return false; // XRay threshold attribute not found.
if (Attr.getValueAsString().getAsInteger(10, XRayThreshold))
return false; // Invalid value for threshold.
// Check if we have a loop.
// FIXME: Maybe make this smarter, and see whether the loops are dependent
// on inputs or side-effects?
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
if (MLI.empty() && F.size() < XRayThreshold)
return false; // Function is too small and has no loops.
}
// We look for the first non-empty MachineBasicBlock, so that we can insert
// the function instrumentation in the appropriate place.
auto MBI =
find_if(MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); });
if (MBI == MF.end())
return false; // The function is empty.
auto *TII = MF.getSubtarget().getInstrInfo();
auto &FirstMBB = *MBI;
auto &FirstMI = *FirstMBB.begin();
if (!MF.getSubtarget().isXRaySupported()) {
FirstMI.emitError("An attempt to perform XRay instrumentation for an"
" unsupported target.");
return false;
}
// First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
// MachineFunction.
BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(),
TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER));
switch (MF.getTarget().getTargetTriple().getArch()) {
case Triple::ArchType::arm:
case Triple::ArchType::thumb:
case Triple::ArchType::aarch64:
case Triple::ArchType::ppc64le:
case Triple::ArchType::mips:
case Triple::ArchType::mipsel:
case Triple::ArchType::mips64:
case Triple::ArchType::mips64el:
// For the architectures which don't have a single return instruction
prependRetWithPatchableExit(MF, TII);
break;
default:
// For the architectures that have a single return instruction (such as
// RETQ on x86_64).
replaceRetWithPatchableRet(MF, TII);
break;
}
return true;
}
char XRayInstrumentation::ID = 0;
char &llvm::XRayInstrumentationID = XRayInstrumentation::ID;
INITIALIZE_PASS_BEGIN(XRayInstrumentation, "xray-instrumentation",
"Insert XRay ops", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(XRayInstrumentation, "xray-instrumentation",
"Insert XRay ops", false, false)