llvm/utils/TableGen/AsmWriterEmitter.cpp
Jim Grosbach 0b6a44afb9 Consolidate some TableGen diagnostic helper functions.
TableGen had diagnostic printers sprinkled about in a few places. Pull them
together into a single location in Error.cpp.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133568 91177308-0d34-0410-b5e6-96231b3b80d8
2011-06-21 22:55:50 +00:00

1098 lines
37 KiB
C++

//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is emits an assembly printer for the current target.
// Note that this is currently fairly skeletal, but will grow over time.
//
//===----------------------------------------------------------------------===//
#include "AsmWriterEmitter.h"
#include "AsmWriterInst.h"
#include "Error.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "StringToOffsetTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
using namespace llvm;
static void PrintCases(std::vector<std::pair<std::string,
AsmWriterOperand> > &OpsToPrint, raw_ostream &O) {
O << " case " << OpsToPrint.back().first << ": ";
AsmWriterOperand TheOp = OpsToPrint.back().second;
OpsToPrint.pop_back();
// Check to see if any other operands are identical in this list, and if so,
// emit a case label for them.
for (unsigned i = OpsToPrint.size(); i != 0; --i)
if (OpsToPrint[i-1].second == TheOp) {
O << "\n case " << OpsToPrint[i-1].first << ": ";
OpsToPrint.erase(OpsToPrint.begin()+i-1);
}
// Finally, emit the code.
O << TheOp.getCode();
O << "break;\n";
}
/// EmitInstructions - Emit the last instruction in the vector and any other
/// instructions that are suitably similar to it.
static void EmitInstructions(std::vector<AsmWriterInst> &Insts,
raw_ostream &O) {
AsmWriterInst FirstInst = Insts.back();
Insts.pop_back();
std::vector<AsmWriterInst> SimilarInsts;
unsigned DifferingOperand = ~0;
for (unsigned i = Insts.size(); i != 0; --i) {
unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst);
if (DiffOp != ~1U) {
if (DifferingOperand == ~0U) // First match!
DifferingOperand = DiffOp;
// If this differs in the same operand as the rest of the instructions in
// this class, move it to the SimilarInsts list.
if (DifferingOperand == DiffOp || DiffOp == ~0U) {
SimilarInsts.push_back(Insts[i-1]);
Insts.erase(Insts.begin()+i-1);
}
}
}
O << " case " << FirstInst.CGI->Namespace << "::"
<< FirstInst.CGI->TheDef->getName() << ":\n";
for (unsigned i = 0, e = SimilarInsts.size(); i != e; ++i)
O << " case " << SimilarInsts[i].CGI->Namespace << "::"
<< SimilarInsts[i].CGI->TheDef->getName() << ":\n";
for (unsigned i = 0, e = FirstInst.Operands.size(); i != e; ++i) {
if (i != DifferingOperand) {
// If the operand is the same for all instructions, just print it.
O << " " << FirstInst.Operands[i].getCode();
} else {
// If this is the operand that varies between all of the instructions,
// emit a switch for just this operand now.
O << " switch (MI->getOpcode()) {\n";
std::vector<std::pair<std::string, AsmWriterOperand> > OpsToPrint;
OpsToPrint.push_back(std::make_pair(FirstInst.CGI->Namespace + "::" +
FirstInst.CGI->TheDef->getName(),
FirstInst.Operands[i]));
for (unsigned si = 0, e = SimilarInsts.size(); si != e; ++si) {
AsmWriterInst &AWI = SimilarInsts[si];
OpsToPrint.push_back(std::make_pair(AWI.CGI->Namespace+"::"+
AWI.CGI->TheDef->getName(),
AWI.Operands[i]));
}
std::reverse(OpsToPrint.begin(), OpsToPrint.end());
while (!OpsToPrint.empty())
PrintCases(OpsToPrint, O);
O << " }";
}
O << "\n";
}
O << " break;\n";
}
void AsmWriterEmitter::
FindUniqueOperandCommands(std::vector<std::string> &UniqueOperandCommands,
std::vector<unsigned> &InstIdxs,
std::vector<unsigned> &InstOpsUsed) const {
InstIdxs.assign(NumberedInstructions.size(), ~0U);
// This vector parallels UniqueOperandCommands, keeping track of which
// instructions each case are used for. It is a comma separated string of
// enums.
std::vector<std::string> InstrsForCase;
InstrsForCase.resize(UniqueOperandCommands.size());
InstOpsUsed.assign(UniqueOperandCommands.size(), 0);
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const AsmWriterInst *Inst = getAsmWriterInstByID(i);
if (Inst == 0) continue; // PHI, INLINEASM, PROLOG_LABEL, etc.
std::string Command;
if (Inst->Operands.empty())
continue; // Instruction already done.
Command = " " + Inst->Operands[0].getCode() + "\n";
// Check to see if we already have 'Command' in UniqueOperandCommands.
// If not, add it.
bool FoundIt = false;
for (unsigned idx = 0, e = UniqueOperandCommands.size(); idx != e; ++idx)
if (UniqueOperandCommands[idx] == Command) {
InstIdxs[i] = idx;
InstrsForCase[idx] += ", ";
InstrsForCase[idx] += Inst->CGI->TheDef->getName();
FoundIt = true;
break;
}
if (!FoundIt) {
InstIdxs[i] = UniqueOperandCommands.size();
UniqueOperandCommands.push_back(Command);
InstrsForCase.push_back(Inst->CGI->TheDef->getName());
// This command matches one operand so far.
InstOpsUsed.push_back(1);
}
}
// For each entry of UniqueOperandCommands, there is a set of instructions
// that uses it. If the next command of all instructions in the set are
// identical, fold it into the command.
for (unsigned CommandIdx = 0, e = UniqueOperandCommands.size();
CommandIdx != e; ++CommandIdx) {
for (unsigned Op = 1; ; ++Op) {
// Scan for the first instruction in the set.
std::vector<unsigned>::iterator NIT =
std::find(InstIdxs.begin(), InstIdxs.end(), CommandIdx);
if (NIT == InstIdxs.end()) break; // No commonality.
// If this instruction has no more operands, we isn't anything to merge
// into this command.
const AsmWriterInst *FirstInst =
getAsmWriterInstByID(NIT-InstIdxs.begin());
if (!FirstInst || FirstInst->Operands.size() == Op)
break;
// Otherwise, scan to see if all of the other instructions in this command
// set share the operand.
bool AllSame = true;
// Keep track of the maximum, number of operands or any
// instruction we see in the group.
size_t MaxSize = FirstInst->Operands.size();
for (NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx);
NIT != InstIdxs.end();
NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx)) {
// Okay, found another instruction in this command set. If the operand
// matches, we're ok, otherwise bail out.
const AsmWriterInst *OtherInst =
getAsmWriterInstByID(NIT-InstIdxs.begin());
if (OtherInst &&
OtherInst->Operands.size() > FirstInst->Operands.size())
MaxSize = std::max(MaxSize, OtherInst->Operands.size());
if (!OtherInst || OtherInst->Operands.size() == Op ||
OtherInst->Operands[Op] != FirstInst->Operands[Op]) {
AllSame = false;
break;
}
}
if (!AllSame) break;
// Okay, everything in this command set has the same next operand. Add it
// to UniqueOperandCommands and remember that it was consumed.
std::string Command = " " + FirstInst->Operands[Op].getCode() + "\n";
UniqueOperandCommands[CommandIdx] += Command;
InstOpsUsed[CommandIdx]++;
}
}
// Prepend some of the instructions each case is used for onto the case val.
for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) {
std::string Instrs = InstrsForCase[i];
if (Instrs.size() > 70) {
Instrs.erase(Instrs.begin()+70, Instrs.end());
Instrs += "...";
}
if (!Instrs.empty())
UniqueOperandCommands[i] = " // " + Instrs + "\n" +
UniqueOperandCommands[i];
}
}
static void UnescapeString(std::string &Str) {
for (unsigned i = 0; i != Str.size(); ++i) {
if (Str[i] == '\\' && i != Str.size()-1) {
switch (Str[i+1]) {
default: continue; // Don't execute the code after the switch.
case 'a': Str[i] = '\a'; break;
case 'b': Str[i] = '\b'; break;
case 'e': Str[i] = 27; break;
case 'f': Str[i] = '\f'; break;
case 'n': Str[i] = '\n'; break;
case 'r': Str[i] = '\r'; break;
case 't': Str[i] = '\t'; break;
case 'v': Str[i] = '\v'; break;
case '"': Str[i] = '\"'; break;
case '\'': Str[i] = '\''; break;
case '\\': Str[i] = '\\'; break;
}
// Nuke the second character.
Str.erase(Str.begin()+i+1);
}
}
}
/// EmitPrintInstruction - Generate the code for the "printInstruction" method
/// implementation.
void AsmWriterEmitter::EmitPrintInstruction(raw_ostream &O) {
CodeGenTarget Target(Records);
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
bool isMC = AsmWriter->getValueAsBit("isMCAsmWriter");
const char *MachineInstrClassName = isMC ? "MCInst" : "MachineInstr";
O <<
"/// printInstruction - This method is automatically generated by tablegen\n"
"/// from the instruction set description.\n"
"void " << Target.getName() << ClassName
<< "::printInstruction(const " << MachineInstrClassName
<< " *MI, raw_ostream &O) {\n";
std::vector<AsmWriterInst> Instructions;
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
E = Target.inst_end(); I != E; ++I)
if (!(*I)->AsmString.empty() &&
(*I)->TheDef->getName() != "PHI")
Instructions.push_back(
AsmWriterInst(**I,
AsmWriter->getValueAsInt("Variant"),
AsmWriter->getValueAsInt("FirstOperandColumn"),
AsmWriter->getValueAsInt("OperandSpacing")));
// Get the instruction numbering.
NumberedInstructions = Target.getInstructionsByEnumValue();
// Compute the CodeGenInstruction -> AsmWriterInst mapping. Note that not
// all machine instructions are necessarily being printed, so there may be
// target instructions not in this map.
for (unsigned i = 0, e = Instructions.size(); i != e; ++i)
CGIAWIMap.insert(std::make_pair(Instructions[i].CGI, &Instructions[i]));
// Build an aggregate string, and build a table of offsets into it.
StringToOffsetTable StringTable;
/// OpcodeInfo - This encodes the index of the string to use for the first
/// chunk of the output as well as indices used for operand printing.
std::vector<unsigned> OpcodeInfo;
unsigned MaxStringIdx = 0;
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions[i]];
unsigned Idx;
if (AWI == 0) {
// Something not handled by the asmwriter printer.
Idx = ~0U;
} else if (AWI->Operands[0].OperandType !=
AsmWriterOperand::isLiteralTextOperand ||
AWI->Operands[0].Str.empty()) {
// Something handled by the asmwriter printer, but with no leading string.
Idx = StringTable.GetOrAddStringOffset("");
} else {
std::string Str = AWI->Operands[0].Str;
UnescapeString(Str);
Idx = StringTable.GetOrAddStringOffset(Str);
MaxStringIdx = std::max(MaxStringIdx, Idx);
// Nuke the string from the operand list. It is now handled!
AWI->Operands.erase(AWI->Operands.begin());
}
// Bias offset by one since we want 0 as a sentinel.
OpcodeInfo.push_back(Idx+1);
}
// Figure out how many bits we used for the string index.
unsigned AsmStrBits = Log2_32_Ceil(MaxStringIdx+2);
// To reduce code size, we compactify common instructions into a few bits
// in the opcode-indexed table.
unsigned BitsLeft = 32-AsmStrBits;
std::vector<std::vector<std::string> > TableDrivenOperandPrinters;
while (1) {
std::vector<std::string> UniqueOperandCommands;
std::vector<unsigned> InstIdxs;
std::vector<unsigned> NumInstOpsHandled;
FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs,
NumInstOpsHandled);
// If we ran out of operands to print, we're done.
if (UniqueOperandCommands.empty()) break;
// Compute the number of bits we need to represent these cases, this is
// ceil(log2(numentries)).
unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size());
// If we don't have enough bits for this operand, don't include it.
if (NumBits > BitsLeft) {
DEBUG(errs() << "Not enough bits to densely encode " << NumBits
<< " more bits\n");
break;
}
// Otherwise, we can include this in the initial lookup table. Add it in.
BitsLeft -= NumBits;
for (unsigned i = 0, e = InstIdxs.size(); i != e; ++i)
if (InstIdxs[i] != ~0U)
OpcodeInfo[i] |= InstIdxs[i] << (BitsLeft+AsmStrBits);
// Remove the info about this operand.
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
if (AsmWriterInst *Inst = getAsmWriterInstByID(i))
if (!Inst->Operands.empty()) {
unsigned NumOps = NumInstOpsHandled[InstIdxs[i]];
assert(NumOps <= Inst->Operands.size() &&
"Can't remove this many ops!");
Inst->Operands.erase(Inst->Operands.begin(),
Inst->Operands.begin()+NumOps);
}
}
// Remember the handlers for this set of operands.
TableDrivenOperandPrinters.push_back(UniqueOperandCommands);
}
O<<" static const unsigned OpInfo[] = {\n";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
O << " " << OpcodeInfo[i] << "U,\t// "
<< NumberedInstructions[i]->TheDef->getName() << "\n";
}
// Add a dummy entry so the array init doesn't end with a comma.
O << " 0U\n";
O << " };\n\n";
// Emit the string itself.
O << " const char *AsmStrs = \n";
StringTable.EmitString(O);
O << ";\n\n";
O << " O << \"\\t\";\n\n";
O << " // Emit the opcode for the instruction.\n"
<< " unsigned Bits = OpInfo[MI->getOpcode()];\n"
<< " assert(Bits != 0 && \"Cannot print this instruction.\");\n"
<< " O << AsmStrs+(Bits & " << (1 << AsmStrBits)-1 << ")-1;\n\n";
// Output the table driven operand information.
BitsLeft = 32-AsmStrBits;
for (unsigned i = 0, e = TableDrivenOperandPrinters.size(); i != e; ++i) {
std::vector<std::string> &Commands = TableDrivenOperandPrinters[i];
// Compute the number of bits we need to represent these cases, this is
// ceil(log2(numentries)).
unsigned NumBits = Log2_32_Ceil(Commands.size());
assert(NumBits <= BitsLeft && "consistency error");
// Emit code to extract this field from Bits.
BitsLeft -= NumBits;
O << "\n // Fragment " << i << " encoded into " << NumBits
<< " bits for " << Commands.size() << " unique commands.\n";
if (Commands.size() == 2) {
// Emit two possibilitys with if/else.
O << " if ((Bits >> " << (BitsLeft+AsmStrBits) << ") & "
<< ((1 << NumBits)-1) << ") {\n"
<< Commands[1]
<< " } else {\n"
<< Commands[0]
<< " }\n\n";
} else if (Commands.size() == 1) {
// Emit a single possibility.
O << Commands[0] << "\n\n";
} else {
O << " switch ((Bits >> " << (BitsLeft+AsmStrBits) << ") & "
<< ((1 << NumBits)-1) << ") {\n"
<< " default: // unreachable.\n";
// Print out all the cases.
for (unsigned i = 0, e = Commands.size(); i != e; ++i) {
O << " case " << i << ":\n";
O << Commands[i];
O << " break;\n";
}
O << " }\n\n";
}
}
// Okay, delete instructions with no operand info left.
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
// Entire instruction has been emitted?
AsmWriterInst &Inst = Instructions[i];
if (Inst.Operands.empty()) {
Instructions.erase(Instructions.begin()+i);
--i; --e;
}
}
// Because this is a vector, we want to emit from the end. Reverse all of the
// elements in the vector.
std::reverse(Instructions.begin(), Instructions.end());
// Now that we've emitted all of the operand info that fit into 32 bits, emit
// information for those instructions that are left. This is a less dense
// encoding, but we expect the main 32-bit table to handle the majority of
// instructions.
if (!Instructions.empty()) {
// Find the opcode # of inline asm.
O << " switch (MI->getOpcode()) {\n";
while (!Instructions.empty())
EmitInstructions(Instructions, O);
O << " }\n";
O << " return;\n";
}
O << "}\n";
}
void AsmWriterEmitter::EmitGetRegisterName(raw_ostream &O) {
CodeGenTarget Target(Records);
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
const std::vector<CodeGenRegister*> &Registers =
Target.getRegBank().getRegisters();
StringToOffsetTable StringTable;
O <<
"\n\n/// getRegisterName - This method is automatically generated by tblgen\n"
"/// from the register set description. This returns the assembler name\n"
"/// for the specified register.\n"
"const char *" << Target.getName() << ClassName
<< "::getRegisterName(unsigned RegNo) {\n"
<< " assert(RegNo && RegNo < " << (Registers.size()+1)
<< " && \"Invalid register number!\");\n"
<< "\n"
<< " static const unsigned RegAsmOffset[] = {";
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
const CodeGenRegister &Reg = *Registers[i];
std::string AsmName = Reg.TheDef->getValueAsString("AsmName");
if (AsmName.empty())
AsmName = Reg.getName();
if ((i % 14) == 0)
O << "\n ";
O << StringTable.GetOrAddStringOffset(AsmName) << ", ";
}
O << "0\n"
<< " };\n"
<< "\n";
O << " const char *AsmStrs =\n";
StringTable.EmitString(O);
O << ";\n";
O << " return AsmStrs+RegAsmOffset[RegNo-1];\n"
<< "}\n";
}
void AsmWriterEmitter::EmitGetInstructionName(raw_ostream &O) {
CodeGenTarget Target(Records);
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
const std::vector<const CodeGenInstruction*> &NumberedInstructions =
Target.getInstructionsByEnumValue();
StringToOffsetTable StringTable;
O <<
"\n\n#ifdef GET_INSTRUCTION_NAME\n"
"#undef GET_INSTRUCTION_NAME\n\n"
"/// getInstructionName: This method is automatically generated by tblgen\n"
"/// from the instruction set description. This returns the enum name of the\n"
"/// specified instruction.\n"
"const char *" << Target.getName() << ClassName
<< "::getInstructionName(unsigned Opcode) {\n"
<< " assert(Opcode < " << NumberedInstructions.size()
<< " && \"Invalid instruction number!\");\n"
<< "\n"
<< " static const unsigned InstAsmOffset[] = {";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const CodeGenInstruction &Inst = *NumberedInstructions[i];
std::string AsmName = Inst.TheDef->getName();
if ((i % 14) == 0)
O << "\n ";
O << StringTable.GetOrAddStringOffset(AsmName) << ", ";
}
O << "0\n"
<< " };\n"
<< "\n";
O << " const char *Strs =\n";
StringTable.EmitString(O);
O << ";\n";
O << " return Strs+InstAsmOffset[Opcode];\n"
<< "}\n\n#endif\n";
}
namespace {
/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
/// feature which participates in instruction matching.
struct SubtargetFeatureInfo {
/// \brief The predicate record for this feature.
const Record *TheDef;
/// \brief An unique index assigned to represent this feature.
unsigned Index;
SubtargetFeatureInfo(const Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
/// \brief The name of the enumerated constant identifying this feature.
std::string getEnumName() const {
return "Feature_" + TheDef->getName();
}
};
struct AsmWriterInfo {
/// Map of Predicate records to their subtarget information.
std::map<const Record*, SubtargetFeatureInfo*> SubtargetFeatures;
/// getSubtargetFeature - Lookup or create the subtarget feature info for the
/// given operand.
SubtargetFeatureInfo *getSubtargetFeature(const Record *Def) const {
assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
std::map<const Record*, SubtargetFeatureInfo*>::const_iterator I =
SubtargetFeatures.find(Def);
return I == SubtargetFeatures.end() ? 0 : I->second;
}
void addReqFeatures(const std::vector<Record*> &Features) {
for (std::vector<Record*>::const_iterator
I = Features.begin(), E = Features.end(); I != E; ++I) {
const Record *Pred = *I;
// Ignore predicates that are not intended for the assembler.
if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
continue;
if (Pred->getName().empty())
throw TGError(Pred->getLoc(), "Predicate has no name!");
// Don't add the predicate again.
if (getSubtargetFeature(Pred))
continue;
unsigned FeatureNo = SubtargetFeatures.size();
SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
assert(FeatureNo < 32 && "Too many subtarget features!");
}
}
const SubtargetFeatureInfo *getFeatureInfo(const Record *R) {
return SubtargetFeatures[R];
}
};
// IAPrinter - Holds information about an InstAlias. Two InstAliases match if
// they both have the same conditionals. In which case, we cannot print out the
// alias for that pattern.
class IAPrinter {
AsmWriterInfo &AWI;
std::vector<std::string> Conds;
std::map<StringRef, unsigned> OpMap;
std::string Result;
std::string AsmString;
std::vector<Record*> ReqFeatures;
public:
IAPrinter(AsmWriterInfo &Info, std::string R, std::string AS)
: AWI(Info), Result(R), AsmString(AS) {}
void addCond(const std::string &C) { Conds.push_back(C); }
void addReqFeatures(const std::vector<Record*> &Features) {
AWI.addReqFeatures(Features);
ReqFeatures = Features;
}
void addOperand(StringRef Op, unsigned Idx) { OpMap[Op] = Idx; }
unsigned getOpIndex(StringRef Op) { return OpMap[Op]; }
bool isOpMapped(StringRef Op) { return OpMap.find(Op) != OpMap.end(); }
bool print(raw_ostream &O) {
if (Conds.empty() && ReqFeatures.empty()) {
O.indent(6) << "return true;\n";
return false;
}
O << "if (";
for (std::vector<std::string>::iterator
I = Conds.begin(), E = Conds.end(); I != E; ++I) {
if (I != Conds.begin()) {
O << " &&\n";
O.indent(8);
}
O << *I;
}
if (!ReqFeatures.empty()) {
if (Conds.begin() != Conds.end()) {
O << " &&\n";
O.indent(8);
} else {
O << "if (";
}
std::string Req;
raw_string_ostream ReqO(Req);
for (std::vector<Record*>::iterator
I = ReqFeatures.begin(), E = ReqFeatures.end(); I != E; ++I) {
if (I != ReqFeatures.begin()) ReqO << " | ";
ReqO << AWI.getFeatureInfo(*I)->getEnumName();
}
O << "(AvailableFeatures & (" << ReqO.str() << ")) == ("
<< ReqO.str() << ')';
}
O << ") {\n";
O.indent(6) << "// " << Result << "\n";
O.indent(6) << "AsmString = \"" << AsmString << "\";\n";
for (std::map<StringRef, unsigned>::iterator
I = OpMap.begin(), E = OpMap.end(); I != E; ++I)
O.indent(6) << "OpMap.push_back(std::make_pair(\"" << I->first << "\", "
<< I->second << "));\n";
O.indent(6) << "break;\n";
O.indent(4) << '}';
return !ReqFeatures.empty();
}
bool operator==(const IAPrinter &RHS) {
if (Conds.size() != RHS.Conds.size())
return false;
unsigned Idx = 0;
for (std::vector<std::string>::iterator
I = Conds.begin(), E = Conds.end(); I != E; ++I)
if (*I != RHS.Conds[Idx++])
return false;
return true;
}
bool operator()(const IAPrinter &RHS) {
if (Conds.size() < RHS.Conds.size())
return true;
unsigned Idx = 0;
for (std::vector<std::string>::iterator
I = Conds.begin(), E = Conds.end(); I != E; ++I)
if (*I != RHS.Conds[Idx++])
return *I < RHS.Conds[Idx++];
return false;
}
};
} // end anonymous namespace
/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
/// definitions.
static void EmitSubtargetFeatureFlagEnumeration(AsmWriterInfo &Info,
raw_ostream &O) {
O << "namespace {\n\n";
O << "// Flags for subtarget features that participate in "
<< "alias instruction matching.\n";
O << "enum SubtargetFeatureFlag {\n";
for (std::map<const Record*, SubtargetFeatureInfo*>::const_iterator
I = Info.SubtargetFeatures.begin(),
E = Info.SubtargetFeatures.end(); I != E; ++I) {
SubtargetFeatureInfo &SFI = *I->second;
O << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
}
O << " Feature_None = 0\n";
O << "};\n\n";
O << "} // end anonymous namespace\n\n";
}
/// EmitComputeAvailableFeatures - Emit the function to compute the list of
/// available features given a subtarget.
static void EmitComputeAvailableFeatures(AsmWriterInfo &Info,
Record *AsmWriter,
CodeGenTarget &Target,
raw_ostream &O) {
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
O << "unsigned " << Target.getName() << ClassName << "::\n"
<< "ComputeAvailableFeatures(const " << Target.getName()
<< "Subtarget *Subtarget) const {\n";
O << " unsigned Features = 0;\n";
for (std::map<const Record*, SubtargetFeatureInfo*>::const_iterator
I = Info.SubtargetFeatures.begin(),
E = Info.SubtargetFeatures.end(); I != E; ++I) {
SubtargetFeatureInfo &SFI = *I->second;
O << " if (" << SFI.TheDef->getValueAsString("CondString")
<< ")\n";
O << " Features |= " << SFI.getEnumName() << ";\n";
}
O << " return Features;\n";
O << "}\n\n";
}
static void EmitGetMapOperandNumber(raw_ostream &O) {
O << "static unsigned getMapOperandNumber("
<< "const SmallVectorImpl<std::pair<StringRef, unsigned> > &OpMap,\n";
O << " StringRef Name) {\n";
O << " for (SmallVectorImpl<std::pair<StringRef, unsigned> >::"
<< "const_iterator\n";
O << " I = OpMap.begin(), E = OpMap.end(); I != E; ++I)\n";
O << " if (I->first == Name)\n";
O << " return I->second;\n";
O << " assert(false && \"Operand not in map!\");\n";
O << " return 0;\n";
O << "}\n\n";
}
void AsmWriterEmitter::EmitRegIsInRegClass(raw_ostream &O) {
CodeGenTarget Target(Records);
// Enumerate the register classes.
const std::vector<CodeGenRegisterClass> &RegisterClasses =
Target.getRegisterClasses();
O << "namespace { // Register classes\n";
O << " enum RegClass {\n";
// Emit the register enum value for each RegisterClass.
for (unsigned I = 0, E = RegisterClasses.size(); I != E; ++I) {
if (I != 0) O << ",\n";
O << " RC_" << RegisterClasses[I].TheDef->getName();
}
O << "\n };\n";
O << "} // end anonymous namespace\n\n";
// Emit a function that returns 'true' if a regsiter is part of a particular
// register class. I.e., RAX is part of GR64 on X86.
O << "static bool regIsInRegisterClass"
<< "(unsigned RegClass, unsigned Reg) {\n";
// Emit the switch that checks if a register belongs to a particular register
// class.
O << " switch (RegClass) {\n";
O << " default: break;\n";
for (unsigned I = 0, E = RegisterClasses.size(); I != E; ++I) {
const CodeGenRegisterClass &RC = RegisterClasses[I];
// Give the register class a legal C name if it's anonymous.
std::string Name = RC.TheDef->getName();
O << " case RC_" << Name << ":\n";
// Emit the register list now.
unsigned IE = RC.getOrder().size();
if (IE == 1) {
O << " if (Reg == " << getQualifiedName(RC.getOrder()[0]) << ")\n";
O << " return true;\n";
} else {
O << " switch (Reg) {\n";
O << " default: break;\n";
for (unsigned II = 0; II != IE; ++II) {
Record *Reg = RC.getOrder()[II];
O << " case " << getQualifiedName(Reg) << ":\n";
}
O << " return true;\n";
O << " }\n";
}
O << " break;\n";
}
O << " }\n\n";
O << " return false;\n";
O << "}\n\n";
}
static unsigned CountNumOperands(StringRef AsmString) {
unsigned NumOps = 0;
std::pair<StringRef, StringRef> ASM = AsmString.split(' ');
while (!ASM.second.empty()) {
++NumOps;
ASM = ASM.second.split(' ');
}
return NumOps;
}
static unsigned CountResultNumOperands(StringRef AsmString) {
unsigned NumOps = 0;
std::pair<StringRef, StringRef> ASM = AsmString.split('\t');
if (!ASM.second.empty()) {
size_t I = ASM.second.find('{');
StringRef Str = ASM.second;
if (I != StringRef::npos)
Str = ASM.second.substr(I, ASM.second.find('|', I));
ASM = Str.split(' ');
do {
++NumOps;
ASM = ASM.second.split(' ');
} while (!ASM.second.empty());
}
return NumOps;
}
void AsmWriterEmitter::EmitPrintAliasInstruction(raw_ostream &O) {
CodeGenTarget Target(Records);
Record *AsmWriter = Target.getAsmWriter();
if (!AsmWriter->getValueAsBit("isMCAsmWriter"))
return;
O << "\n#ifdef PRINT_ALIAS_INSTR\n";
O << "#undef PRINT_ALIAS_INSTR\n\n";
EmitRegIsInRegClass(O);
// Emit the method that prints the alias instruction.
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
std::vector<Record*> AllInstAliases =
Records.getAllDerivedDefinitions("InstAlias");
// Create a map from the qualified name to a list of potential matches.
std::map<std::string, std::vector<CodeGenInstAlias*> > AliasMap;
for (std::vector<Record*>::iterator
I = AllInstAliases.begin(), E = AllInstAliases.end(); I != E; ++I) {
CodeGenInstAlias *Alias = new CodeGenInstAlias(*I, Target);
const Record *R = *I;
if (!R->getValueAsBit("EmitAlias"))
continue; // We were told not to emit the alias, but to emit the aliasee.
const DagInit *DI = R->getValueAsDag("ResultInst");
const DefInit *Op = dynamic_cast<const DefInit*>(DI->getOperator());
AliasMap[getQualifiedName(Op->getDef())].push_back(Alias);
}
// A map of which conditions need to be met for each instruction operand
// before it can be matched to the mnemonic.
std::map<std::string, std::vector<IAPrinter*> > IAPrinterMap;
AsmWriterInfo AWI;
for (std::map<std::string, std::vector<CodeGenInstAlias*> >::iterator
I = AliasMap.begin(), E = AliasMap.end(); I != E; ++I) {
std::vector<CodeGenInstAlias*> &Aliases = I->second;
for (std::vector<CodeGenInstAlias*>::iterator
II = Aliases.begin(), IE = Aliases.end(); II != IE; ++II) {
const CodeGenInstAlias *CGA = *II;
unsigned LastOpNo = CGA->ResultInstOperandIndex.size();
unsigned NumResultOps =
CountResultNumOperands(CGA->ResultInst->AsmString);
// Don't emit the alias if it has more operands than what it's aliasing.
if (NumResultOps < CountNumOperands(CGA->AsmString))
continue;
IAPrinter *IAP = new IAPrinter(AWI, CGA->Result->getAsString(),
CGA->AsmString);
IAP->addReqFeatures(CGA->TheDef->getValueAsListOfDefs("Predicates"));
std::string Cond;
Cond = std::string("MI->getNumOperands() == ") + llvm::utostr(LastOpNo);
IAP->addCond(Cond);
std::map<StringRef, unsigned> OpMap;
bool CantHandle = false;
for (unsigned i = 0, e = LastOpNo; i != e; ++i) {
const CodeGenInstAlias::ResultOperand &RO = CGA->ResultOperands[i];
switch (RO.Kind) {
default: assert(0 && "unexpected InstAlias operand kind");
case CodeGenInstAlias::ResultOperand::K_Record: {
const Record *Rec = RO.getRecord();
StringRef ROName = RO.getName();
if (Rec->isSubClassOf("RegisterClass")) {
Cond = std::string("MI->getOperand(")+llvm::utostr(i)+").isReg()";
IAP->addCond(Cond);
if (!IAP->isOpMapped(ROName)) {
IAP->addOperand(ROName, i);
Cond = std::string("regIsInRegisterClass(RC_") +
CGA->ResultOperands[i].getRecord()->getName() +
", MI->getOperand(" + llvm::utostr(i) + ").getReg())";
IAP->addCond(Cond);
} else {
Cond = std::string("MI->getOperand(") +
llvm::utostr(i) + ").getReg() == MI->getOperand(" +
llvm::utostr(IAP->getOpIndex(ROName)) + ").getReg()";
IAP->addCond(Cond);
}
} else {
assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
// FIXME: We may need to handle these situations.
delete IAP;
IAP = 0;
CantHandle = true;
break;
}
break;
}
case CodeGenInstAlias::ResultOperand::K_Imm:
Cond = std::string("MI->getOperand(") +
llvm::utostr(i) + ").getImm() == " +
llvm::utostr(CGA->ResultOperands[i].getImm());
IAP->addCond(Cond);
break;
case CodeGenInstAlias::ResultOperand::K_Reg:
Cond = std::string("MI->getOperand(") +
llvm::utostr(i) + ").getReg() == " + Target.getName() +
"::" + CGA->ResultOperands[i].getRegister()->getName();
IAP->addCond(Cond);
break;
}
if (!IAP) break;
}
if (CantHandle) continue;
IAPrinterMap[I->first].push_back(IAP);
}
}
EmitSubtargetFeatureFlagEnumeration(AWI, O);
EmitComputeAvailableFeatures(AWI, AsmWriter, Target, O);
std::string Header;
raw_string_ostream HeaderO(Header);
HeaderO << "bool " << Target.getName() << ClassName
<< "::printAliasInstr(const MCInst"
<< " *MI, raw_ostream &OS) {\n";
std::string Cases;
raw_string_ostream CasesO(Cases);
bool NeedAvailableFeatures = false;
for (std::map<std::string, std::vector<IAPrinter*> >::iterator
I = IAPrinterMap.begin(), E = IAPrinterMap.end(); I != E; ++I) {
std::vector<IAPrinter*> &IAPs = I->second;
std::vector<IAPrinter*> UniqueIAPs;
for (std::vector<IAPrinter*>::iterator
II = IAPs.begin(), IE = IAPs.end(); II != IE; ++II) {
IAPrinter *LHS = *II;
bool IsDup = false;
for (std::vector<IAPrinter*>::iterator
III = IAPs.begin(), IIE = IAPs.end(); III != IIE; ++III) {
IAPrinter *RHS = *III;
if (LHS != RHS && *LHS == *RHS) {
IsDup = true;
break;
}
}
if (!IsDup) UniqueIAPs.push_back(LHS);
}
if (UniqueIAPs.empty()) continue;
CasesO.indent(2) << "case " << I->first << ":\n";
for (std::vector<IAPrinter*>::iterator
II = UniqueIAPs.begin(), IE = UniqueIAPs.end(); II != IE; ++II) {
IAPrinter *IAP = *II;
CasesO.indent(4);
NeedAvailableFeatures |= IAP->print(CasesO);
CasesO << '\n';
}
CasesO.indent(4) << "return false;\n";
}
if (CasesO.str().empty()) {
O << HeaderO.str();
O << " return false;\n";
O << "}\n\n";
O << "#endif // PRINT_ALIAS_INSTR\n";
return;
}
EmitGetMapOperandNumber(O);
O << HeaderO.str();
O.indent(2) << "StringRef AsmString;\n";
O.indent(2) << "SmallVector<std::pair<StringRef, unsigned>, 4> OpMap;\n";
if (NeedAvailableFeatures)
O.indent(2) << "unsigned AvailableFeatures = getAvailableFeatures();\n\n";
O.indent(2) << "switch (MI->getOpcode()) {\n";
O.indent(2) << "default: return false;\n";
O << CasesO.str();
O.indent(2) << "}\n\n";
// Code that prints the alias, replacing the operands with the ones from the
// MCInst.
O << " std::pair<StringRef, StringRef> ASM = AsmString.split(' ');\n";
O << " OS << '\\t' << ASM.first;\n";
O << " if (!ASM.second.empty()) {\n";
O << " OS << '\\t';\n";
O << " for (StringRef::iterator\n";
O << " I = ASM.second.begin(), E = ASM.second.end(); I != E; ) {\n";
O << " if (*I == '$') {\n";
O << " StringRef::iterator Start = ++I;\n";
O << " while (I != E &&\n";
O << " ((*I >= 'a' && *I <= 'z') ||\n";
O << " (*I >= 'A' && *I <= 'Z') ||\n";
O << " (*I >= '0' && *I <= '9') ||\n";
O << " *I == '_'))\n";
O << " ++I;\n";
O << " StringRef Name(Start, I - Start);\n";
O << " printOperand(MI, getMapOperandNumber(OpMap, Name), OS);\n";
O << " } else {\n";
O << " OS << *I++;\n";
O << " }\n";
O << " }\n";
O << " }\n\n";
O << " return true;\n";
O << "}\n\n";
O << "#endif // PRINT_ALIAS_INSTR\n";
}
void AsmWriterEmitter::run(raw_ostream &O) {
EmitSourceFileHeader("Assembly Writer Source Fragment", O);
EmitPrintInstruction(O);
EmitGetRegisterName(O);
EmitGetInstructionName(O);
EmitPrintAliasInstruction(O);
}