llvm/lib/Target/X86/X86ISelLowering.cpp
Evan Cheng 184793fc8a Re-apply 56683 with fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56748 91177308-0d34-0410-b5e6-96231b3b80d8
2008-09-27 01:56:22 +00:00

7406 lines
285 KiB
C++

//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86ISelLowering.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/VectorExtras.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;
// Forward declarations.
static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
: TargetLowering(TM) {
Subtarget = &TM.getSubtarget<X86Subtarget>();
X86ScalarSSEf64 = Subtarget->hasSSE2();
X86ScalarSSEf32 = Subtarget->hasSSE1();
X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
bool Fast = false;
RegInfo = TM.getRegisterInfo();
TD = getTargetData();
// Set up the TargetLowering object.
// X86 is weird, it always uses i8 for shift amounts and setcc results.
setShiftAmountType(MVT::i8);
setSetCCResultContents(ZeroOrOneSetCCResult);
setSchedulingPreference(SchedulingForRegPressure);
setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
setStackPointerRegisterToSaveRestore(X86StackPtr);
if (Subtarget->isTargetDarwin()) {
// Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmp(false);
setUseUnderscoreLongJmp(false);
} else if (Subtarget->isTargetMingw()) {
// MS runtime is weird: it exports _setjmp, but longjmp!
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(false);
} else {
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(true);
}
// Set up the register classes.
addRegisterClass(MVT::i8, X86::GR8RegisterClass);
addRegisterClass(MVT::i16, X86::GR16RegisterClass);
addRegisterClass(MVT::i32, X86::GR32RegisterClass);
if (Subtarget->is64Bit())
addRegisterClass(MVT::i64, X86::GR64RegisterClass);
setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
// We don't accept any truncstore of integer registers.
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
setTruncStoreAction(MVT::i32, MVT::i16, Expand);
setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
// Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
// operation.
setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
} else {
if (X86ScalarSSEf64)
// If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
else
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
}
// Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
// this operation.
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
// SSE has no i16 to fp conversion, only i32
if (X86ScalarSSEf32) {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
// f32 and f64 cases are Legal, f80 case is not
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
} else {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
}
// In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
// are Legal, f80 is custom lowered.
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
// Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
// this operation.
setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
if (X86ScalarSSEf32) {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
// f32 and f64 cases are Legal, f80 case is not
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
} else {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
}
// Handle FP_TO_UINT by promoting the destination to a larger signed
// conversion.
setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
} else {
if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
// Expand FP_TO_UINT into a select.
// FIXME: We would like to use a Custom expander here eventually to do
// the optimal thing for SSE vs. the default expansion in the legalizer.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
else
// With SSE3 we can use fisttpll to convert to a signed i64.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
}
// TODO: when we have SSE, these could be more efficient, by using movd/movq.
if (!X86ScalarSSEf64) {
setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
}
// Scalar integer divide and remainder are lowered to use operations that
// produce two results, to match the available instructions. This exposes
// the two-result form to trivial CSE, which is able to combine x/y and x%y
// into a single instruction.
//
// Scalar integer multiply-high is also lowered to use two-result
// operations, to match the available instructions. However, plain multiply
// (low) operations are left as Legal, as there are single-result
// instructions for this in x86. Using the two-result multiply instructions
// when both high and low results are needed must be arranged by dagcombine.
setOperationAction(ISD::MULHS , MVT::i8 , Expand);
setOperationAction(ISD::MULHU , MVT::i8 , Expand);
setOperationAction(ISD::SDIV , MVT::i8 , Expand);
setOperationAction(ISD::UDIV , MVT::i8 , Expand);
setOperationAction(ISD::SREM , MVT::i8 , Expand);
setOperationAction(ISD::UREM , MVT::i8 , Expand);
setOperationAction(ISD::MULHS , MVT::i16 , Expand);
setOperationAction(ISD::MULHU , MVT::i16 , Expand);
setOperationAction(ISD::SDIV , MVT::i16 , Expand);
setOperationAction(ISD::UDIV , MVT::i16 , Expand);
setOperationAction(ISD::SREM , MVT::i16 , Expand);
setOperationAction(ISD::UREM , MVT::i16 , Expand);
setOperationAction(ISD::MULHS , MVT::i32 , Expand);
setOperationAction(ISD::MULHU , MVT::i32 , Expand);
setOperationAction(ISD::SDIV , MVT::i32 , Expand);
setOperationAction(ISD::UDIV , MVT::i32 , Expand);
setOperationAction(ISD::SREM , MVT::i32 , Expand);
setOperationAction(ISD::UREM , MVT::i32 , Expand);
setOperationAction(ISD::MULHS , MVT::i64 , Expand);
setOperationAction(ISD::MULHU , MVT::i64 , Expand);
setOperationAction(ISD::SDIV , MVT::i64 , Expand);
setOperationAction(ISD::UDIV , MVT::i64 , Expand);
setOperationAction(ISD::SREM , MVT::i64 , Expand);
setOperationAction(ISD::UREM , MVT::i64 , Expand);
setOperationAction(ISD::BR_JT , MVT::Other, Expand);
setOperationAction(ISD::BRCOND , MVT::Other, Custom);
setOperationAction(ISD::BR_CC , MVT::Other, Expand);
setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
if (Subtarget->is64Bit())
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f64 , Expand);
setOperationAction(ISD::FREM , MVT::f80 , Expand);
setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
}
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
// These should be promoted to a larger select which is supported.
setOperationAction(ISD::SELECT , MVT::i1 , Promote);
setOperationAction(ISD::SELECT , MVT::i8 , Promote);
// X86 wants to expand cmov itself.
setOperationAction(ISD::SELECT , MVT::i16 , Custom);
setOperationAction(ISD::SELECT , MVT::i32 , Custom);
setOperationAction(ISD::SELECT , MVT::f32 , Custom);
setOperationAction(ISD::SELECT , MVT::f64 , Custom);
setOperationAction(ISD::SELECT , MVT::f80 , Custom);
setOperationAction(ISD::SETCC , MVT::i8 , Custom);
setOperationAction(ISD::SETCC , MVT::i16 , Custom);
setOperationAction(ISD::SETCC , MVT::i32 , Custom);
setOperationAction(ISD::SETCC , MVT::f32 , Custom);
setOperationAction(ISD::SETCC , MVT::f64 , Custom);
setOperationAction(ISD::SETCC , MVT::f80 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::SELECT , MVT::i64 , Custom);
setOperationAction(ISD::SETCC , MVT::i64 , Custom);
}
// X86 ret instruction may pop stack.
setOperationAction(ISD::RET , MVT::Other, Custom);
setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
// Darwin ABI issue.
setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
if (Subtarget->is64Bit())
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
}
// 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
}
if (Subtarget->hasSSE1())
setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
if (!Subtarget->hasSSE2())
setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand);
// Expand certain atomics
setOperationAction(ISD::ATOMIC_CMP_SWAP_8 , MVT::i8, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP_16, MVT::i16, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP_32, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP_64, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB_8, MVT::i8, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB_16, MVT::i16, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB_32, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Expand);
// Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
// FIXME - use subtarget debug flags
if (!Subtarget->isTargetDarwin() &&
!Subtarget->isTargetELF() &&
!Subtarget->isTargetCygMing()) {
setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
}
setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
if (Subtarget->is64Bit()) {
setExceptionPointerRegister(X86::RAX);
setExceptionSelectorRegister(X86::RDX);
} else {
setExceptionPointerRegister(X86::EAX);
setExceptionSelectorRegister(X86::EDX);
}
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::VAARG , MVT::Other, Custom);
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
} else {
setOperationAction(ISD::VAARG , MVT::Other, Expand);
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
}
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
if (Subtarget->is64Bit())
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
if (Subtarget->isTargetCygMing())
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
else
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
if (X86ScalarSSEf64) {
// f32 and f64 use SSE.
// Set up the FP register classes.
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
addRegisterClass(MVT::f64, X86::FR64RegisterClass);
// Use ANDPD to simulate FABS.
setOperationAction(ISD::FABS , MVT::f64, Custom);
setOperationAction(ISD::FABS , MVT::f32, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG , MVT::f64, Custom);
setOperationAction(ISD::FNEG , MVT::f32, Custom);
// Use ANDPD and ORPD to simulate FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
// Expand FP immediates into loads from the stack, except for the special
// cases we handle.
addLegalFPImmediate(APFloat(+0.0)); // xorpd
addLegalFPImmediate(APFloat(+0.0f)); // xorps
// Floating truncations from f80 and extensions to f80 go through memory.
// If optimizing, we lie about this though and handle it in
// InstructionSelectPreprocess so that dagcombine2 can hack on these.
if (Fast) {
setConvertAction(MVT::f32, MVT::f80, Expand);
setConvertAction(MVT::f64, MVT::f80, Expand);
setConvertAction(MVT::f80, MVT::f32, Expand);
setConvertAction(MVT::f80, MVT::f64, Expand);
}
} else if (X86ScalarSSEf32) {
// Use SSE for f32, x87 for f64.
// Set up the FP register classes.
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
// Use ANDPS to simulate FABS.
setOperationAction(ISD::FABS , MVT::f32, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG , MVT::f32, Custom);
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
// Use ANDPS and ORPS to simulate FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
// Special cases we handle for FP constants.
addLegalFPImmediate(APFloat(+0.0f)); // xorps
addLegalFPImmediate(APFloat(+0.0)); // FLD0
addLegalFPImmediate(APFloat(+1.0)); // FLD1
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
// SSE <-> X87 conversions go through memory. If optimizing, we lie about
// this though and handle it in InstructionSelectPreprocess so that
// dagcombine2 can hack on these.
if (Fast) {
setConvertAction(MVT::f32, MVT::f64, Expand);
setConvertAction(MVT::f32, MVT::f80, Expand);
setConvertAction(MVT::f80, MVT::f32, Expand);
setConvertAction(MVT::f64, MVT::f32, Expand);
// And x87->x87 truncations also.
setConvertAction(MVT::f80, MVT::f64, Expand);
}
if (!UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
}
} else {
// f32 and f64 in x87.
// Set up the FP register classes.
addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
setOperationAction(ISD::UNDEF, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
// Floating truncations go through memory. If optimizing, we lie about
// this though and handle it in InstructionSelectPreprocess so that
// dagcombine2 can hack on these.
if (Fast) {
setConvertAction(MVT::f80, MVT::f32, Expand);
setConvertAction(MVT::f64, MVT::f32, Expand);
setConvertAction(MVT::f80, MVT::f64, Expand);
}
if (!UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
}
addLegalFPImmediate(APFloat(+0.0)); // FLD0
addLegalFPImmediate(APFloat(+1.0)); // FLD1
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
addLegalFPImmediate(APFloat(+0.0f)); // FLD0
addLegalFPImmediate(APFloat(+1.0f)); // FLD1
addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
}
// Long double always uses X87.
addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
setOperationAction(ISD::UNDEF, MVT::f80, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
{
APFloat TmpFlt(+0.0);
TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
addLegalFPImmediate(TmpFlt); // FLD0
TmpFlt.changeSign();
addLegalFPImmediate(TmpFlt); // FLD0/FCHS
APFloat TmpFlt2(+1.0);
TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
addLegalFPImmediate(TmpFlt2); // FLD1
TmpFlt2.changeSign();
addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
}
if (!UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f80 , Expand);
setOperationAction(ISD::FCOS , MVT::f80 , Expand);
}
// Always use a library call for pow.
setOperationAction(ISD::FPOW , MVT::f32 , Expand);
setOperationAction(ISD::FPOW , MVT::f64 , Expand);
setOperationAction(ISD::FPOW , MVT::f80 , Expand);
setOperationAction(ISD::FLOG, MVT::f80, Expand);
setOperationAction(ISD::FLOG2, MVT::f80, Expand);
setOperationAction(ISD::FLOG10, MVT::f80, Expand);
setOperationAction(ISD::FEXP, MVT::f80, Expand);
setOperationAction(ISD::FEXP2, MVT::f80, Expand);
// First set operation action for all vector types to expand. Then we
// will selectively turn on ones that can be effectively codegen'd.
for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
}
if (Subtarget->hasMMX()) {
addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
// FIXME: add MMX packed arithmetics
setOperationAction(ISD::ADD, MVT::v8i8, Legal);
setOperationAction(ISD::ADD, MVT::v4i16, Legal);
setOperationAction(ISD::ADD, MVT::v2i32, Legal);
setOperationAction(ISD::ADD, MVT::v1i64, Legal);
setOperationAction(ISD::SUB, MVT::v8i8, Legal);
setOperationAction(ISD::SUB, MVT::v4i16, Legal);
setOperationAction(ISD::SUB, MVT::v2i32, Legal);
setOperationAction(ISD::SUB, MVT::v1i64, Legal);
setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
setOperationAction(ISD::MUL, MVT::v4i16, Legal);
setOperationAction(ISD::AND, MVT::v8i8, Promote);
AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
setOperationAction(ISD::AND, MVT::v4i16, Promote);
AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
setOperationAction(ISD::AND, MVT::v2i32, Promote);
AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
setOperationAction(ISD::AND, MVT::v1i64, Legal);
setOperationAction(ISD::OR, MVT::v8i8, Promote);
AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
setOperationAction(ISD::OR, MVT::v4i16, Promote);
AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
setOperationAction(ISD::OR, MVT::v2i32, Promote);
AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
setOperationAction(ISD::OR, MVT::v1i64, Legal);
setOperationAction(ISD::XOR, MVT::v8i8, Promote);
AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
setOperationAction(ISD::XOR, MVT::v4i16, Promote);
AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
setOperationAction(ISD::XOR, MVT::v2i32, Promote);
AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
setOperationAction(ISD::XOR, MVT::v1i64, Legal);
setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64);
setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
}
if (Subtarget->hasSSE1()) {
addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
setOperationAction(ISD::VSETCC, MVT::v4f32, Custom);
}
if (Subtarget->hasSSE2()) {
addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
setOperationAction(ISD::ADD, MVT::v16i8, Legal);
setOperationAction(ISD::ADD, MVT::v8i16, Legal);
setOperationAction(ISD::ADD, MVT::v4i32, Legal);
setOperationAction(ISD::ADD, MVT::v2i64, Legal);
setOperationAction(ISD::SUB, MVT::v16i8, Legal);
setOperationAction(ISD::SUB, MVT::v8i16, Legal);
setOperationAction(ISD::SUB, MVT::v4i32, Legal);
setOperationAction(ISD::SUB, MVT::v2i64, Legal);
setOperationAction(ISD::MUL, MVT::v8i16, Legal);
setOperationAction(ISD::FADD, MVT::v2f64, Legal);
setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
setOperationAction(ISD::VSETCC, MVT::v2f64, Custom);
setOperationAction(ISD::VSETCC, MVT::v16i8, Custom);
setOperationAction(ISD::VSETCC, MVT::v8i16, Custom);
setOperationAction(ISD::VSETCC, MVT::v4i32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
MVT VT = (MVT::SimpleValueType)i;
// Do not attempt to custom lower non-power-of-2 vectors
if (!isPowerOf2_32(VT.getVectorNumElements()))
continue;
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
}
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
}
// Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
setOperationAction(ISD::AND, (MVT::SimpleValueType)VT, Promote);
AddPromotedToType (ISD::AND, (MVT::SimpleValueType)VT, MVT::v2i64);
setOperationAction(ISD::OR, (MVT::SimpleValueType)VT, Promote);
AddPromotedToType (ISD::OR, (MVT::SimpleValueType)VT, MVT::v2i64);
setOperationAction(ISD::XOR, (MVT::SimpleValueType)VT, Promote);
AddPromotedToType (ISD::XOR, (MVT::SimpleValueType)VT, MVT::v2i64);
setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Promote);
AddPromotedToType (ISD::LOAD, (MVT::SimpleValueType)VT, MVT::v2i64);
setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
}
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Custom lower v2i64 and v2f64 selects.
setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
}
if (Subtarget->hasSSE41()) {
// FIXME: Do we need to handle scalar-to-vector here?
setOperationAction(ISD::MUL, MVT::v4i32, Legal);
setOperationAction(ISD::MUL, MVT::v2i64, Legal);
// i8 and i16 vectors are custom , because the source register and source
// source memory operand types are not the same width. f32 vectors are
// custom since the immediate controlling the insert encodes additional
// information.
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
}
}
if (Subtarget->hasSSE42()) {
setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
}
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
setTargetDAGCombine(ISD::BUILD_VECTOR);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::STORE);
computeRegisterProperties();
// FIXME: These should be based on subtarget info. Plus, the values should
// be smaller when we are in optimizing for size mode.
maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
allowUnalignedMemoryAccesses = true; // x86 supports it!
setPrefLoopAlignment(16);
}
MVT X86TargetLowering::getSetCCResultType(const SDValue &) const {
return MVT::i8;
}
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
if (MaxAlign == 16)
return;
if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
if (VTy->getBitWidth() == 128)
MaxAlign = 16;
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
unsigned EltAlign = 0;
getMaxByValAlign(ATy->getElementType(), EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
unsigned EltAlign = 0;
getMaxByValAlign(STy->getElementType(i), EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
if (MaxAlign == 16)
break;
}
}
return;
}
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
/// are at 4-byte boundaries.
unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
if (Subtarget->is64Bit()) {
// Max of 8 and alignment of type.
unsigned TyAlign = TD->getABITypeAlignment(Ty);
if (TyAlign > 8)
return TyAlign;
return 8;
}
unsigned Align = 4;
if (Subtarget->hasSSE1())
getMaxByValAlign(Ty, Align);
return Align;
}
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
/// determining it.
MVT
X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
bool isSrcConst, bool isSrcStr) const {
if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
return MVT::v4i32;
if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
return MVT::v4f32;
if (Subtarget->is64Bit() && Size >= 8)
return MVT::i64;
return MVT::i32;
}
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
/// jumptable.
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
if (usesGlobalOffsetTable())
return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
if (!Subtarget->isPICStyleRIPRel())
return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
return Table;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "X86GenCallingConv.inc"
/// LowerRET - Lower an ISD::RET node.
SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
SmallVector<CCValAssign, 16> RVLocs;
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc())
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDValue Chain = Op.getOperand(0);
// Handle tail call return.
Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
if (Chain.getOpcode() == X86ISD::TAILCALL) {
SDValue TailCall = Chain;
SDValue TargetAddress = TailCall.getOperand(1);
SDValue StackAdjustment = TailCall.getOperand(2);
assert(((TargetAddress.getOpcode() == ISD::Register &&
(cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
"Expecting an global address, external symbol, or register");
assert(StackAdjustment.getOpcode() == ISD::Constant &&
"Expecting a const value");
SmallVector<SDValue,8> Operands;
Operands.push_back(Chain.getOperand(0));
Operands.push_back(TargetAddress);
Operands.push_back(StackAdjustment);
// Copy registers used by the call. Last operand is a flag so it is not
// copied.
for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
Operands.push_back(Chain.getOperand(i));
}
return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
Operands.size());
}
// Regular return.
SDValue Flag;
SmallVector<SDValue, 6> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Operand #1 = Bytes To Pop
RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue ValToCopy = Op.getOperand(i*2+1);
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
// the RET instruction and handled by the FP Stackifier.
if (RVLocs[i].getLocReg() == X86::ST0 ||
RVLocs[i].getLocReg() == X86::ST1) {
// If this is a copy from an xmm register to ST(0), use an FPExtend to
// change the value to the FP stack register class.
if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
RetOps.push_back(ValToCopy);
// Don't emit a copytoreg.
continue;
}
Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
Flag = Chain.getValue(1);
}
// The x86-64 ABI for returning structs by value requires that we copy
// the sret argument into %rax for the return. We saved the argument into
// a virtual register in the entry block, so now we copy the value out
// and into %rax.
if (Subtarget->is64Bit() &&
DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
FuncInfo->setSRetReturnReg(Reg);
}
SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
Flag = Chain.getValue(1);
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
}
/// LowerCallResult - Lower the result values of an ISD::CALL into the
/// appropriate copies out of appropriate physical registers. This assumes that
/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
/// being lowered. The returns a SDNode with the same number of values as the
/// ISD::CALL.
SDNode *X86TargetLowering::
LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
unsigned CallingConv, SelectionDAG &DAG) {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
bool isVarArg = TheCall->isVarArg();
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
SmallVector<SDValue, 8> ResultVals;
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
MVT CopyVT = RVLocs[i].getValVT();
// If this is a call to a function that returns an fp value on the floating
// point stack, but where we prefer to use the value in xmm registers, copy
// it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
if ((RVLocs[i].getLocReg() == X86::ST0 ||
RVLocs[i].getLocReg() == X86::ST1) &&
isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
CopyVT = MVT::f80;
}
Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
CopyVT, InFlag).getValue(1);
SDValue Val = Chain.getValue(0);
InFlag = Chain.getValue(2);
if (CopyVT != RVLocs[i].getValVT()) {
// Round the F80 the right size, which also moves to the appropriate xmm
// register.
Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
// This truncation won't change the value.
DAG.getIntPtrConstant(1));
}
ResultVals.push_back(Val);
}
// Merge everything together with a MERGE_VALUES node.
ResultVals.push_back(Chain);
return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
ResultVals.size()).getNode();
}
//===----------------------------------------------------------------------===//
// C & StdCall & Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
// StdCall calling convention seems to be standard for many Windows' API
// routines and around. It differs from C calling convention just a little:
// callee should clean up the stack, not caller. Symbols should be also
// decorated in some fancy way :) It doesn't support any vector arguments.
// For info on fast calling convention see Fast Calling Convention (tail call)
// implementation LowerX86_32FastCCCallTo.
/// AddLiveIn - This helper function adds the specified physical register to the
/// MachineFunction as a live in value. It also creates a corresponding virtual
/// register for it.
static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
const TargetRegisterClass *RC) {
assert(RC->contains(PReg) && "Not the correct regclass!");
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
MF.getRegInfo().addLiveIn(PReg, VReg);
return VReg;
}
/// CallIsStructReturn - Determines whether a CALL node uses struct return
/// semantics.
static bool CallIsStructReturn(CallSDNode *TheCall) {
unsigned NumOps = TheCall->getNumArgs();
if (!NumOps)
return false;
return TheCall->getArgFlags(0).isSRet();
}
/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
/// return semantics.
static bool ArgsAreStructReturn(SDValue Op) {
unsigned NumArgs = Op.getNode()->getNumValues() - 1;
if (!NumArgs)
return false;
return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
}
/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
/// the callee to pop its own arguments. Callee pop is necessary to support tail
/// calls.
bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
if (IsVarArg)
return false;
switch (CallingConv) {
default:
return false;
case CallingConv::X86_StdCall:
return !Subtarget->is64Bit();
case CallingConv::X86_FastCall:
return !Subtarget->is64Bit();
case CallingConv::Fast:
return PerformTailCallOpt;
}
}
/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
/// given CallingConvention value.
CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
if (Subtarget->is64Bit()) {
if (Subtarget->isTargetWin64())
return CC_X86_Win64_C;
else if (CC == CallingConv::Fast && PerformTailCallOpt)
return CC_X86_64_TailCall;
else
return CC_X86_64_C;
}
if (CC == CallingConv::X86_FastCall)
return CC_X86_32_FastCall;
else if (CC == CallingConv::Fast)
return CC_X86_32_FastCC;
else
return CC_X86_32_C;
}
/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
NameDecorationStyle
X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (CC == CallingConv::X86_FastCall)
return FastCall;
else if (CC == CallingConv::X86_StdCall)
return StdCall;
return None;
}
/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
/// in a register before calling.
bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
return !IsTailCall && !Is64Bit &&
getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Subtarget->isPICStyleGOT();
}
/// CallRequiresFnAddressInReg - Check whether the call requires the function
/// address to be loaded in a register.
bool
X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
return !Is64Bit && IsTailCall &&
getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Subtarget->isPICStyleGOT();
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" with size and alignment information specified by
/// the specific parameter attribute. The copy will be passed as a byval
/// function parameter.
static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
/*AlwaysInline=*/true, NULL, 0, NULL, 0);
}
SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
const CCValAssign &VA,
MachineFrameInfo *MFI,
unsigned CC,
SDValue Root, unsigned i) {
// Create the nodes corresponding to a load from this parameter slot.
ISD::ArgFlagsTy Flags =
cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
// FIXME: For now, all byval parameter objects are marked mutable. This can be
// changed with more analysis.
// In case of tail call optimization mark all arguments mutable. Since they
// could be overwritten by lowering of arguments in case of a tail call.
int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
VA.getLocMemOffset(), isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
if (Flags.isByVal())
return FIN;
return DAG.getLoad(VA.getValVT(), Root, FIN,
PseudoSourceValue::getFixedStack(FI), 0);
}
SDValue
X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const Function* Fn = MF.getFunction();
if (Fn->hasExternalLinkage() &&
Subtarget->isTargetCygMing() &&
Fn->getName() == "main")
FuncInfo->setForceFramePointer(true);
// Decorate the function name.
FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
MachineFrameInfo *MFI = MF.getFrameInfo();
SDValue Root = Op.getOperand(0);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
unsigned CC = MF.getFunction()->getCallingConv();
bool Is64Bit = Subtarget->is64Bit();
bool IsWin64 = Subtarget->isTargetWin64();
assert(!(isVarArg && CC == CallingConv::Fast) &&
"Var args not supported with calling convention fastcc");
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
SmallVector<SDValue, 8> ArgValues;
unsigned LastVal = ~0U;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// TODO: If an arg is passed in two places (e.g. reg and stack), skip later
// places.
assert(VA.getValNo() != LastVal &&
"Don't support value assigned to multiple locs yet");
LastVal = VA.getValNo();
if (VA.isRegLoc()) {
MVT RegVT = VA.getLocVT();
TargetRegisterClass *RC;
if (RegVT == MVT::i32)
RC = X86::GR32RegisterClass;
else if (Is64Bit && RegVT == MVT::i64)
RC = X86::GR64RegisterClass;
else if (RegVT == MVT::f32)
RC = X86::FR32RegisterClass;
else if (RegVT == MVT::f64)
RC = X86::FR64RegisterClass;
else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
RC = X86::VR128RegisterClass;
else if (RegVT.isVector()) {
assert(RegVT.getSizeInBits() == 64);
if (!Is64Bit)
RC = X86::VR64RegisterClass; // MMX values are passed in MMXs.
else {
// Darwin calling convention passes MMX values in either GPRs or
// XMMs in x86-64. Other targets pass them in memory.
if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
RC = X86::VR128RegisterClass; // MMX values are passed in XMMs.
RegVT = MVT::v2i64;
} else {
RC = X86::GR64RegisterClass; // v1i64 values are passed in GPRs.
RegVT = MVT::i64;
}
}
} else {
assert(0 && "Unknown argument type!");
}
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
// If this is an 8 or 16-bit value, it is really passed promoted to 32
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
if (VA.getLocInfo() != CCValAssign::Full)
ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
// Handle MMX values passed in GPRs.
if (Is64Bit && RegVT != VA.getLocVT()) {
if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
else if (RC == X86::VR128RegisterClass) {
ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
DAG.getConstant(0, MVT::i64));
ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
}
}
ArgValues.push_back(ArgValue);
} else {
assert(VA.isMemLoc());
ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
}
}
// The x86-64 ABI for returning structs by value requires that we copy
// the sret argument into %rax for the return. Save the argument into
// a virtual register so that we can access it from the return points.
if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
FuncInfo->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
}
unsigned StackSize = CCInfo.getNextStackOffset();
// align stack specially for tail calls
if (PerformTailCallOpt && CC == CallingConv::Fast)
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
if (Is64Bit || CC != CallingConv::X86_FastCall) {
VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
}
if (Is64Bit) {
unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
// FIXME: We should really autogenerate these arrays
static const unsigned GPR64ArgRegsWin64[] = {
X86::RCX, X86::RDX, X86::R8, X86::R9
};
static const unsigned XMMArgRegsWin64[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
};
static const unsigned GPR64ArgRegs64Bit[] = {
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
};
static const unsigned XMMArgRegs64Bit[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
const unsigned *GPR64ArgRegs, *XMMArgRegs;
if (IsWin64) {
TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
GPR64ArgRegs = GPR64ArgRegsWin64;
XMMArgRegs = XMMArgRegsWin64;
} else {
TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
GPR64ArgRegs = GPR64ArgRegs64Bit;
XMMArgRegs = XMMArgRegs64Bit;
}
unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
TotalNumIntRegs);
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
TotalNumXMMRegs);
// For X86-64, if there are vararg parameters that are passed via
// registers, then we must store them to their spots on the stack so they
// may be loaded by deferencing the result of va_next.
VarArgsGPOffset = NumIntRegs * 8;
VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
TotalNumXMMRegs * 16, 16);
// Store the integer parameter registers.
SmallVector<SDValue, 8> MemOps;
SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
DAG.getIntPtrConstant(VarArgsGPOffset));
for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
X86::GR64RegisterClass);
SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
SDValue Store =
DAG.getStore(Val.getValue(1), Val, FIN,
PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getIntPtrConstant(8));
}
// Now store the XMM (fp + vector) parameter registers.
FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
DAG.getIntPtrConstant(VarArgsFPOffset));
for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
X86::VR128RegisterClass);
SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
SDValue Store =
DAG.getStore(Val.getValue(1), Val, FIN,
PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getIntPtrConstant(16));
}
if (!MemOps.empty())
Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOps[0], MemOps.size());
}
}
ArgValues.push_back(Root);
// Some CCs need callee pop.
if (IsCalleePop(isVarArg, CC)) {
BytesToPopOnReturn = StackSize; // Callee pops everything.
BytesCallerReserves = 0;
} else {
BytesToPopOnReturn = 0; // Callee pops nothing.
// If this is an sret function, the return should pop the hidden pointer.
if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
BytesToPopOnReturn = 4;
BytesCallerReserves = StackSize;
}
if (!Is64Bit) {
RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
if (CC == CallingConv::X86_FastCall)
VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
}
FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
// Return the new list of results.
return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0],
ArgValues.size()).getValue(Op.getResNo());
}
SDValue
X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
const SDValue &StackPtr,
const CCValAssign &VA,
SDValue Chain,
SDValue Arg, ISD::ArgFlagsTy Flags) {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
if (Flags.isByVal()) {
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
}
return DAG.getStore(Chain, Arg, PtrOff,
PseudoSourceValue::getStack(), LocMemOffset);
}
/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
/// optimization is performed and it is required.
SDValue
X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
SDValue &OutRetAddr,
SDValue Chain,
bool IsTailCall,
bool Is64Bit,
int FPDiff) {
if (!IsTailCall || FPDiff==0) return Chain;
// Adjust the Return address stack slot.
MVT VT = getPointerTy();
OutRetAddr = getReturnAddressFrameIndex(DAG);
// Load the "old" Return address.
OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
return SDValue(OutRetAddr.getNode(), 1);
}
/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
/// optimization is performed and it is required (FPDiff!=0).
static SDValue
EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
SDValue Chain, SDValue RetAddrFrIdx,
bool Is64Bit, int FPDiff) {
// Store the return address to the appropriate stack slot.
if (!FPDiff) return Chain;
// Calculate the new stack slot for the return address.
int SlotSize = Is64Bit ? 8 : 4;
int NewReturnAddrFI =
MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
return Chain;
}
SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
SDValue Chain = TheCall->getChain();
unsigned CC = TheCall->getCallingConv();
bool isVarArg = TheCall->isVarArg();
bool IsTailCall = TheCall->isTailCall() &&
CC == CallingConv::Fast && PerformTailCallOpt;
SDValue Callee = TheCall->getCallee();
bool Is64Bit = Subtarget->is64Bit();
bool IsStructRet = CallIsStructReturn(TheCall);
assert(!(isVarArg && CC == CallingConv::Fast) &&
"Var args not supported with calling convention fastcc");
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
if (PerformTailCallOpt && CC == CallingConv::Fast)
NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
int FPDiff = 0;
if (IsTailCall) {
// Lower arguments at fp - stackoffset + fpdiff.
unsigned NumBytesCallerPushed =
MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
FPDiff = NumBytesCallerPushed - NumBytes;
// Set the delta of movement of the returnaddr stackslot.
// But only set if delta is greater than previous delta.
if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
}
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
SDValue RetAddrFrIdx;
// Load return adress for tail calls.
Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
FPDiff);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization arguments are handle later.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = TheCall->getArg(i);
ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
bool isByVal = Flags.isByVal();
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: assert(0 && "Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
break;
}
if (VA.isRegLoc()) {
if (Is64Bit) {
MVT RegVT = VA.getLocVT();
if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
switch (VA.getLocReg()) {
default:
break;
case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
case X86::R8: {
// Special case: passing MMX values in GPR registers.
Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
break;
}
case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
// Special case: passing MMX values in XMM registers.
Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
getMOVLMask(2, DAG));
break;
}
}
}
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
if (!IsTailCall || (IsTailCall && isByVal)) {
assert(VA.isMemLoc());
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
Chain, Arg, Flags));
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDValue InFlag;
// Tail call byval lowering might overwrite argument registers so in case of
// tail call optimization the copies to registers are lowered later.
if (!IsTailCall)
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
// ELF / PIC requires GOT in the EBX register before function calls via PLT
// GOT pointer.
if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
Chain = DAG.getCopyToReg(Chain, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
InFlag);
InFlag = Chain.getValue(1);
}
// If we are tail calling and generating PIC/GOT style code load the address
// of the callee into ecx. The value in ecx is used as target of the tail
// jump. This is done to circumvent the ebx/callee-saved problem for tail
// calls on PIC/GOT architectures. Normally we would just put the address of
// GOT into ebx and then call target@PLT. But for tail callss ebx would be
// restored (since ebx is callee saved) before jumping to the target@PLT.
if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
// Note: The actual moving to ecx is done further down.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
if (G && !G->getGlobal()->hasHiddenVisibility() &&
!G->getGlobal()->hasProtectedVisibility())
Callee = LowerGlobalAddress(Callee, DAG);
else if (isa<ExternalSymbolSDNode>(Callee))
Callee = LowerExternalSymbol(Callee,DAG);
}
if (Is64Bit && isVarArg) {
// From AMD64 ABI document:
// For calls that may call functions that use varargs or stdargs
// (prototype-less calls or calls to functions containing ellipsis (...) in
// the declaration) %al is used as hidden argument to specify the number
// of SSE registers used. The contents of %al do not need to match exactly
// the number of registers, but must be an ubound on the number of SSE
// registers used and is in the range 0 - 8 inclusive.
// FIXME: Verify this on Win64
// Count the number of XMM registers allocated.
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
Chain = DAG.getCopyToReg(Chain, X86::AL,
DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
InFlag = Chain.getValue(1);
}
// For tail calls lower the arguments to the 'real' stack slot.
if (IsTailCall) {
SmallVector<SDValue, 8> MemOpChains2;
SDValue FIN;
int FI = 0;
// Do not flag preceeding copytoreg stuff together with the following stuff.
InFlag = SDValue();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (!VA.isRegLoc()) {
assert(VA.isMemLoc());
SDValue Arg = TheCall->getArg(i);
ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
// Create frame index.
int32_t Offset = VA.getLocMemOffset()+FPDiff;
uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
FIN = DAG.getFrameIndex(FI, getPointerTy());
if (Flags.isByVal()) {
// Copy relative to framepointer.
SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
Flags, DAG));
} else {
// Store relative to framepointer.
MemOpChains2.push_back(
DAG.getStore(Chain, Arg, FIN,
PseudoSourceValue::getFixedStack(FI), 0));
}
}
}
if (!MemOpChains2.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains2[0], MemOpChains2.size());
// Copy arguments to their registers.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
InFlag =SDValue();
// Store the return address to the appropriate stack slot.
Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
FPDiff);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// We should use extra load for direct calls to dllimported functions in
// non-JIT mode.
if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
getTargetMachine(), true))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
} else if (IsTailCall) {
unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
Chain = DAG.getCopyToReg(Chain,
DAG.getRegister(Opc, getPointerTy()),
Callee,InFlag);
Callee = DAG.getRegister(Opc, getPointerTy());
// Add register as live out.
DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
}
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
SmallVector<SDValue, 8> Ops;
if (IsTailCall) {
Ops.push_back(Chain);
Ops.push_back(DAG.getIntPtrConstant(NumBytes));
Ops.push_back(DAG.getIntPtrConstant(0));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Returns a chain & a flag for retval copy to use.
NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
Ops.clear();
}
Ops.push_back(Chain);
Ops.push_back(Callee);
if (IsTailCall)
Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add an implicit use GOT pointer in EBX.
if (!IsTailCall && !Is64Bit &&
getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Subtarget->isPICStyleGOT())
Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
// Add an implicit use of AL for x86 vararg functions.
if (Is64Bit && isVarArg)
Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
if (InFlag.getNode())
Ops.push_back(InFlag);
if (IsTailCall) {
assert(InFlag.getNode() &&
"Flag must be set. Depend on flag being set in LowerRET");
Chain = DAG.getNode(X86ISD::TAILCALL,
TheCall->getVTList(), &Ops[0], Ops.size());
return SDValue(Chain.getNode(), Op.getResNo());
}
Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
unsigned NumBytesForCalleeToPush;
if (IsCalleePop(isVarArg, CC))
NumBytesForCalleeToPush = NumBytes; // Callee pops everything
else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
// If this is is a call to a struct-return function, the callee
// pops the hidden struct pointer, so we have to push it back.
// This is common for Darwin/X86, Linux & Mingw32 targets.
NumBytesForCalleeToPush = 4;
else
NumBytesForCalleeToPush = 0; // Callee pops nothing.
// Returns a flag for retval copy to use.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NumBytes),
DAG.getIntPtrConstant(NumBytesForCalleeToPush),
InFlag);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
Op.getResNo());
}
//===----------------------------------------------------------------------===//
// Fast Calling Convention (tail call) implementation
//===----------------------------------------------------------------------===//
// Like std call, callee cleans arguments, convention except that ECX is
// reserved for storing the tail called function address. Only 2 registers are
// free for argument passing (inreg). Tail call optimization is performed
// provided:
// * tailcallopt is enabled
// * caller/callee are fastcc
// On X86_64 architecture with GOT-style position independent code only local
// (within module) calls are supported at the moment.
// To keep the stack aligned according to platform abi the function
// GetAlignedArgumentStackSize ensures that argument delta is always multiples
// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
// If a tail called function callee has more arguments than the caller the
// caller needs to make sure that there is room to move the RETADDR to. This is
// achieved by reserving an area the size of the argument delta right after the
// original REtADDR, but before the saved framepointer or the spilled registers
// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
// stack layout:
// arg1
// arg2
// RETADDR
// [ new RETADDR
// move area ]
// (possible EBP)
// ESI
// EDI
// local1 ..
/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
/// for a 16 byte align requirement.
unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
SelectionDAG& DAG) {
MachineFunction &MF = DAG.getMachineFunction();
const TargetMachine &TM = MF.getTarget();
const TargetFrameInfo &TFI = *TM.getFrameInfo();
unsigned StackAlignment = TFI.getStackAlignment();
uint64_t AlignMask = StackAlignment - 1;
int64_t Offset = StackSize;
uint64_t SlotSize = TD->getPointerSize();
if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
// Number smaller than 12 so just add the difference.
Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
} else {
// Mask out lower bits, add stackalignment once plus the 12 bytes.
Offset = ((~AlignMask) & Offset) + StackAlignment +
(StackAlignment-SlotSize);
}
return Offset;
}
/// IsEligibleForTailCallElimination - Check to see whether the next instruction
/// following the call is a return. A function is eligible if caller/callee
/// calling conventions match, currently only fastcc supports tail calls, and
/// the function CALL is immediatly followed by a RET.
bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
SDValue Ret,
SelectionDAG& DAG) const {
if (!PerformTailCallOpt)
return false;
if (CheckTailCallReturnConstraints(TheCall, Ret)) {
MachineFunction &MF = DAG.getMachineFunction();
unsigned CallerCC = MF.getFunction()->getCallingConv();
unsigned CalleeCC= TheCall->getCallingConv();
if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
SDValue Callee = TheCall->getCallee();
// On x86/32Bit PIC/GOT tail calls are supported.
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
!Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
return true;
// Can only do local tail calls (in same module, hidden or protected) on
// x86_64 PIC/GOT at the moment.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
return G->getGlobal()->hasHiddenVisibility()
|| G->getGlobal()->hasProtectedVisibility();
}
}
return false;
}
FastISel *
X86TargetLowering::createFastISel(MachineFunction &mf,
MachineModuleInfo *mmo,
DenseMap<const Value *, unsigned> &vm,
DenseMap<const BasicBlock *,
MachineBasicBlock *> &bm,
DenseMap<const AllocaInst *, int> &am) {
return X86::createFastISel(mf, mmo, vm, bm, am);
}
//===----------------------------------------------------------------------===//
// Other Lowering Hooks
//===----------------------------------------------------------------------===//
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
int ReturnAddrIndex = FuncInfo->getRAIndex();
uint64_t SlotSize = TD->getPointerSize();
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
FuncInfo->setRAIndex(ReturnAddrIndex);
}
return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
}
/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
/// specific condition code. It returns a false if it cannot do a direct
/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
/// needed.
static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
unsigned &X86CC, SDValue &LHS, SDValue &RHS,
SelectionDAG &DAG) {
X86CC = X86::COND_INVALID;
if (!isFP) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
// X > -1 -> X == 0, jump !sign.
RHS = DAG.getConstant(0, RHS.getValueType());
X86CC = X86::COND_NS;
return true;
} else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
// X < 0 -> X == 0, jump on sign.
X86CC = X86::COND_S;
return true;
} else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
// X < 1 -> X <= 0
RHS = DAG.getConstant(0, RHS.getValueType());
X86CC = X86::COND_LE;
return true;
}
}
switch (SetCCOpcode) {
default: break;
case ISD::SETEQ: X86CC = X86::COND_E; break;
case ISD::SETGT: X86CC = X86::COND_G; break;
case ISD::SETGE: X86CC = X86::COND_GE; break;
case ISD::SETLT: X86CC = X86::COND_L; break;
case ISD::SETLE: X86CC = X86::COND_LE; break;
case ISD::SETNE: X86CC = X86::COND_NE; break;
case ISD::SETULT: X86CC = X86::COND_B; break;
case ISD::SETUGT: X86CC = X86::COND_A; break;
case ISD::SETULE: X86CC = X86::COND_BE; break;
case ISD::SETUGE: X86CC = X86::COND_AE; break;
}
} else {
// First determine if it requires or is profitable to flip the operands.
bool Flip = false;
switch (SetCCOpcode) {
default: break;
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETUGT:
case ISD::SETUGE:
Flip = true;
break;
}
// If LHS is a foldable load, but RHS is not, flip the condition.
if (!Flip &&
(ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
!(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
Flip = true;
}
if (Flip)
std::swap(LHS, RHS);
// On a floating point condition, the flags are set as follows:
// ZF PF CF op
// 0 | 0 | 0 | X > Y
// 0 | 0 | 1 | X < Y
// 1 | 0 | 0 | X == Y
// 1 | 1 | 1 | unordered
switch (SetCCOpcode) {
default: break;
case ISD::SETUEQ:
case ISD::SETEQ:
X86CC = X86::COND_E;
break;
case ISD::SETOLT: // flipped
case ISD::SETOGT:
case ISD::SETGT:
X86CC = X86::COND_A;
break;
case ISD::SETOLE: // flipped
case ISD::SETOGE:
case ISD::SETGE:
X86CC = X86::COND_AE;
break;
case ISD::SETUGT: // flipped
case ISD::SETULT:
case ISD::SETLT:
X86CC = X86::COND_B;
break;
case ISD::SETUGE: // flipped
case ISD::SETULE:
case ISD::SETLE:
X86CC = X86::COND_BE;
break;
case ISD::SETONE:
case ISD::SETNE:
X86CC = X86::COND_NE;
break;
case ISD::SETUO:
X86CC = X86::COND_P;
break;
case ISD::SETO:
X86CC = X86::COND_NP;
break;
}
}
return X86CC != X86::COND_INVALID;
}
/// hasFPCMov - is there a floating point cmov for the specific X86 condition
/// code. Current x86 isa includes the following FP cmov instructions:
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
static bool hasFPCMov(unsigned X86CC) {
switch (X86CC) {
default:
return false;
case X86::COND_B:
case X86::COND_BE:
case X86::COND_E:
case X86::COND_P:
case X86::COND_A:
case X86::COND_AE:
case X86::COND_NE:
case X86::COND_NP:
return true;
}
}
/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
/// true if Op is undef or if its value falls within the specified range (L, H].
static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
if (Op.getOpcode() == ISD::UNDEF)
return true;
unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
return (Val >= Low && Val < Hi);
}
/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
/// true if Op is undef or if its value equal to the specified value.
static bool isUndefOrEqual(SDValue Op, unsigned Val) {
if (Op.getOpcode() == ISD::UNDEF)
return true;
return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
}
/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
bool X86::isPSHUFDMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
return false;
// Check if the value doesn't reference the second vector.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
return false;
}
return true;
}
/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
bool X86::isPSHUFHWMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 8)
return false;
// Lower quadword copied in order.
for (unsigned i = 0; i != 4; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
return false;
}
// Upper quadword shuffled.
for (unsigned i = 4; i != 8; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val < 4 || Val > 7)
return false;
}
return true;
}
/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
bool X86::isPSHUFLWMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 8)
return false;
// Upper quadword copied in order.
for (unsigned i = 4; i != 8; ++i)
if (!isUndefOrEqual(N->getOperand(i), i))
return false;
// Lower quadword shuffled.
for (unsigned i = 0; i != 4; ++i)
if (!isUndefOrInRange(N->getOperand(i), 0, 4))
return false;
return true;
}
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to SHUFP*.
static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
if (NumElems != 2 && NumElems != 4) return false;
unsigned Half = NumElems / 2;
for (unsigned i = 0; i < Half; ++i)
if (!isUndefOrInRange(Elems[i], 0, NumElems))
return false;
for (unsigned i = Half; i < NumElems; ++i)
if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
return false;
return true;
}
bool X86::isSHUFPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
}
/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
/// half elements to come from vector 1 (which would equal the dest.) and
/// the upper half to come from vector 2.
static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
if (NumOps != 2 && NumOps != 4) return false;
unsigned Half = NumOps / 2;
for (unsigned i = 0; i < Half; ++i)
if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
return false;
for (unsigned i = Half; i < NumOps; ++i)
if (!isUndefOrInRange(Ops[i], 0, NumOps))
return false;
return true;
}
static bool isCommutedSHUFP(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
}
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
bool X86::isMOVHLPSMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 4)
return false;
// Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
return isUndefOrEqual(N->getOperand(0), 6) &&
isUndefOrEqual(N->getOperand(1), 7) &&
isUndefOrEqual(N->getOperand(2), 2) &&
isUndefOrEqual(N->getOperand(3), 3);
}
/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
/// <2, 3, 2, 3>
bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 4)
return false;
// Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
return isUndefOrEqual(N->getOperand(0), 2) &&
isUndefOrEqual(N->getOperand(1), 3) &&
isUndefOrEqual(N->getOperand(2), 2) &&
isUndefOrEqual(N->getOperand(3), 3);
}
/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
bool X86::isMOVLPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
unsigned NumElems = N->getNumOperands();
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0; i < NumElems/2; ++i)
if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
return false;
for (unsigned i = NumElems/2; i < NumElems; ++i)
if (!isUndefOrEqual(N->getOperand(i), i))
return false;
return true;
}
/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
/// and MOVLHPS.
bool X86::isMOVHPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
unsigned NumElems = N->getNumOperands();
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0; i < NumElems/2; ++i)
if (!isUndefOrEqual(N->getOperand(i), i))
return false;
for (unsigned i = 0; i < NumElems/2; ++i) {
SDValue Arg = N->getOperand(i + NumElems/2);
if (!isUndefOrEqual(Arg, i + NumElems))
return false;
}
return true;
}
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
bool V2IsSplat = false) {
if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
return false;
for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
SDValue BitI = Elts[i];
SDValue BitI1 = Elts[i+1];
if (!isUndefOrEqual(BitI, j))
return false;
if (V2IsSplat) {
if (isUndefOrEqual(BitI1, NumElts))
return false;
} else {
if (!isUndefOrEqual(BitI1, j + NumElts))
return false;
}
}
return true;
}
bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
}
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
bool V2IsSplat = false) {
if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
return false;
for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
SDValue BitI = Elts[i];
SDValue BitI1 = Elts[i+1];
if (!isUndefOrEqual(BitI, j + NumElts/2))
return false;
if (V2IsSplat) {
if (isUndefOrEqual(BitI1, NumElts))
return false;
} else {
if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
return false;
}
}
return true;
}
bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
}
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
/// <0, 0, 1, 1>
bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
unsigned NumElems = N->getNumOperands();
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
return false;
for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
SDValue BitI = N->getOperand(i);
SDValue BitI1 = N->getOperand(i+1);
if (!isUndefOrEqual(BitI, j))
return false;
if (!isUndefOrEqual(BitI1, j))
return false;
}
return true;
}
/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
/// <2, 2, 3, 3>
bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
unsigned NumElems = N->getNumOperands();
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
return false;
for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
SDValue BitI = N->getOperand(i);
SDValue BitI1 = N->getOperand(i + 1);
if (!isUndefOrEqual(BitI, j))
return false;
if (!isUndefOrEqual(BitI1, j))
return false;
}
return true;
}
/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSS,
/// MOVSD, and MOVD, i.e. setting the lowest element.
static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
if (NumElts != 2 && NumElts != 4)
return false;
if (!isUndefOrEqual(Elts[0], NumElts))
return false;
for (unsigned i = 1; i < NumElts; ++i) {
if (!isUndefOrEqual(Elts[i], i))
return false;
}
return true;
}
bool X86::isMOVLMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
return ::isMOVLMask(N->op_begin(), N->getNumOperands());
}
/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
/// of what x86 movss want. X86 movs requires the lowest element to be lowest
/// element of vector 2 and the other elements to come from vector 1 in order.
static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
bool V2IsSplat = false,
bool V2IsUndef = false) {
if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
return false;
if (!isUndefOrEqual(Ops[0], 0))
return false;
for (unsigned i = 1; i < NumOps; ++i) {
SDValue Arg = Ops[i];
if (!(isUndefOrEqual(Arg, i+NumOps) ||
(V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
(V2IsSplat && isUndefOrEqual(Arg, NumOps))))
return false;
}
return true;
}
static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
bool V2IsUndef = false) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
V2IsSplat, V2IsUndef);
}
/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
bool X86::isMOVSHDUPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 4)
return false;
// Expect 1, 1, 3, 3
for (unsigned i = 0; i < 2; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val != 1) return false;
}
bool HasHi = false;
for (unsigned i = 2; i < 4; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val != 3) return false;
HasHi = true;
}
// Don't use movshdup if it can be done with a shufps.
return HasHi;
}
/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
bool X86::isMOVSLDUPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 4)
return false;
// Expect 0, 0, 2, 2
for (unsigned i = 0; i < 2; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val != 0) return false;
}
bool HasHi = false;
for (unsigned i = 2; i < 4; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val != 2) return false;
HasHi = true;
}
// Don't use movshdup if it can be done with a shufps.
return HasHi;
}
/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a identity operation on the LHS or RHS.
static bool isIdentityMask(SDNode *N, bool RHS = false) {
unsigned NumElems = N->getNumOperands();
for (unsigned i = 0; i < NumElems; ++i)
if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
return false;
return true;
}
/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
/// a splat of a single element.
static bool isSplatMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
// This is a splat operation if each element of the permute is the same, and
// if the value doesn't reference the second vector.
unsigned NumElems = N->getNumOperands();
SDValue ElementBase;
unsigned i = 0;
for (; i != NumElems; ++i) {
SDValue Elt = N->getOperand(i);
if (isa<ConstantSDNode>(Elt)) {
ElementBase = Elt;
break;
}
}
if (!ElementBase.getNode())
return false;
for (; i != NumElems; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
if (Arg != ElementBase) return false;
}
// Make sure it is a splat of the first vector operand.
return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
}
/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
/// a splat of a single element and it's a 2 or 4 element mask.
bool X86::isSplatMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
// We can only splat 64-bit, and 32-bit quantities with a single instruction.
if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
return false;
return ::isSplatMask(N);
}
/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of zero element.
bool X86::isSplatLoMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
if (!isUndefOrEqual(N->getOperand(i), 0))
return false;
return true;
}
/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
bool X86::isMOVDDUPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
unsigned e = N->getNumOperands() / 2;
for (unsigned i = 0; i < e; ++i)
if (!isUndefOrEqual(N->getOperand(i), i))
return false;
for (unsigned i = 0; i < e; ++i)
if (!isUndefOrEqual(N->getOperand(e+i), i))
return false;
return true;
}
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
/// instructions.
unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
unsigned NumOperands = N->getNumOperands();
unsigned Shift = (NumOperands == 4) ? 2 : 1;
unsigned Mask = 0;
for (unsigned i = 0; i < NumOperands; ++i) {
unsigned Val = 0;
SDValue Arg = N->getOperand(NumOperands-i-1);
if (Arg.getOpcode() != ISD::UNDEF)
Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val >= NumOperands) Val -= NumOperands;
Mask |= Val;
if (i != NumOperands - 1)
Mask <<= Shift;
}
return Mask;
}
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
/// instructions.
unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
unsigned Mask = 0;
// 8 nodes, but we only care about the last 4.
for (unsigned i = 7; i >= 4; --i) {
unsigned Val = 0;
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() != ISD::UNDEF)
Val = cast<ConstantSDNode>(Arg)->getZExtValue();
Mask |= (Val - 4);
if (i != 4)
Mask <<= 2;
}
return Mask;
}
/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
/// instructions.
unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
unsigned Mask = 0;
// 8 nodes, but we only care about the first 4.
for (int i = 3; i >= 0; --i) {
unsigned Val = 0;
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() != ISD::UNDEF)
Val = cast<ConstantSDNode>(Arg)->getZExtValue();
Mask |= Val;
if (i != 0)
Mask <<= 2;
}
return Mask;
}
/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
/// specifies a 8 element shuffle that can be broken into a pair of
/// PSHUFHW and PSHUFLW.
static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 8)
return false;
// Lower quadword shuffled.
for (unsigned i = 0; i != 4; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val >= 4)
return false;
}
// Upper quadword shuffled.
for (unsigned i = 4; i != 8; ++i) {
SDValue Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val < 4 || Val > 7)
return false;
}
return true;
}
/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
/// values in ther permute mask.
static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
SDValue &V2, SDValue &Mask,
SelectionDAG &DAG) {
MVT VT = Op.getValueType();
MVT MaskVT = Mask.getValueType();
MVT EltVT = MaskVT.getVectorElementType();
unsigned NumElems = Mask.getNumOperands();
SmallVector<SDValue, 8> MaskVec;
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Arg = Mask.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) {
MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
continue;
}
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val < NumElems)
MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
else
MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
}
std::swap(V1, V2);
Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
}
/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
/// the two vector operands have swapped position.
static
SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
MVT MaskVT = Mask.getValueType();
MVT EltVT = MaskVT.getVectorElementType();
unsigned NumElems = Mask.getNumOperands();
SmallVector<SDValue, 8> MaskVec;
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Arg = Mask.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) {
MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
continue;
}
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val < NumElems)
MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
else
MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
}
/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
/// match movhlps. The lower half elements should come from upper half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order).
static bool ShouldXformToMOVHLPS(SDNode *Mask) {
unsigned NumElems = Mask->getNumOperands();
if (NumElems != 4)
return false;
for (unsigned i = 0, e = 2; i != e; ++i)
if (!isUndefOrEqual(Mask->getOperand(i), i+2))
return false;
for (unsigned i = 2; i != 4; ++i)
if (!isUndefOrEqual(Mask->getOperand(i), i+4))
return false;
return true;
}
/// isScalarLoadToVector - Returns true if the node is a scalar load that
/// is promoted to a vector. It also returns the LoadSDNode by reference if
/// required.
static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
return false;
N = N->getOperand(0).getNode();
if (!ISD::isNON_EXTLoad(N))
return false;
if (LD)
*LD = cast<LoadSDNode>(N);
return true;
}
/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
/// match movlp{s|d}. The lower half elements should come from lower half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order). And since V1 will become the source of the
/// MOVLP, it must be either a vector load or a scalar load to vector.
static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
return false;
// Is V2 is a vector load, don't do this transformation. We will try to use
// load folding shufps op.
if (ISD::isNON_EXTLoad(V2))
return false;
unsigned NumElems = Mask->getNumOperands();
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
if (!isUndefOrEqual(Mask->getOperand(i), i))
return false;
for (unsigned i = NumElems/2; i != NumElems; ++i)
if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
return false;
return true;
}
/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
/// all the same.
static bool isSplatVector(SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
SDValue SplatValue = N->getOperand(0);
for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
if (N->getOperand(i) != SplatValue)
return false;
return true;
}
/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
/// to an undef.
static bool isUndefShuffle(SDNode *N) {
if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
return false;
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
SDValue Mask = N->getOperand(2);
unsigned NumElems = Mask.getNumOperands();
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Arg = Mask.getOperand(i);
if (Arg.getOpcode() != ISD::UNDEF) {
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
return false;
else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
return false;
}
}
return true;
}
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
/// constant +0.0.
static inline bool isZeroNode(SDValue Elt) {
return ((isa<ConstantSDNode>(Elt) &&
cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
(isa<ConstantFPSDNode>(Elt) &&
cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
}
/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
/// to an zero vector.
static bool isZeroShuffle(SDNode *N) {
if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
return false;
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
SDValue Mask = N->getOperand(2);
unsigned NumElems = Mask.getNumOperands();
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Arg = Mask.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF)
continue;
unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Idx < NumElems) {
unsigned Opc = V1.getNode()->getOpcode();
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
continue;
if (Opc != ISD::BUILD_VECTOR ||
!isZeroNode(V1.getNode()->getOperand(Idx)))
return false;
} else if (Idx >= NumElems) {
unsigned Opc = V2.getNode()->getOpcode();
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
continue;
if (Opc != ISD::BUILD_VECTOR ||
!isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
return false;
}
}
return true;
}
/// getZeroVector - Returns a vector of specified type with all zero elements.
///
static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
assert(VT.isVector() && "Expected a vector type");
// Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
// type. This ensures they get CSE'd.
SDValue Vec;
if (VT.getSizeInBits() == 64) { // MMX
SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
} else if (HasSSE2) { // SSE2
SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
} else { // SSE1
SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
}
return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
}
/// getOnesVector - Returns a vector of specified type with all bits set.
///
static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
assert(VT.isVector() && "Expected a vector type");
// Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
// type. This ensures they get CSE'd.
SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
SDValue Vec;
if (VT.getSizeInBits() == 64) // MMX
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
else // SSE
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
}
/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
/// that point to V2 points to its first element.
static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
bool Changed = false;
SmallVector<SDValue, 8> MaskVec;
unsigned NumElems = Mask.getNumOperands();
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Arg = Mask.getOperand(i);
if (Arg.getOpcode() != ISD::UNDEF) {
unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Val > NumElems) {
Arg = DAG.getConstant(NumElems, Arg.getValueType());
Changed = true;
}
}
MaskVec.push_back(Arg);
}
if (Changed)
Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
&MaskVec[0], MaskVec.size());
return Mask;
}
/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT BaseVT = MaskVT.getVectorElementType();
SmallVector<SDValue, 8> MaskVec;
MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
for (unsigned i = 1; i != NumElems; ++i)
MaskVec.push_back(DAG.getConstant(i, BaseVT));
return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}
/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
/// of specified width.
static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT BaseVT = MaskVT.getVectorElementType();
SmallVector<SDValue, 8> MaskVec;
for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
MaskVec.push_back(DAG.getConstant(i, BaseVT));
MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}
/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
/// of specified width.
static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT BaseVT = MaskVT.getVectorElementType();
unsigned Half = NumElems/2;
SmallVector<SDValue, 8> MaskVec;
for (unsigned i = 0; i != Half; ++i) {
MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}
/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
/// element #0 of a vector with the specified index, leaving the rest of the
/// elements in place.
static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
SelectionDAG &DAG) {
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT BaseVT = MaskVT.getVectorElementType();
SmallVector<SDValue, 8> MaskVec;
// Element #0 of the result gets the elt we are replacing.
MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
for (unsigned i = 1; i != NumElems; ++i)
MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}
/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
MVT VT = Op.getValueType();
if (PVT == VT)
return Op;
SDValue V1 = Op.getOperand(0);
SDValue Mask = Op.getOperand(2);
unsigned NumElems = Mask.getNumOperands();
// Special handling of v4f32 -> v4i32.
if (VT != MVT::v4f32) {
Mask = getUnpacklMask(NumElems, DAG);
while (NumElems > 4) {
V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
NumElems >>= 1;
}
Mask = getZeroVector(MVT::v4i32, true, DAG);
}
V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
DAG.getNode(ISD::UNDEF, PVT), Mask);
return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
}
/// isVectorLoad - Returns true if the node is a vector load, a scalar
/// load that's promoted to vector, or a load bitcasted.
static bool isVectorLoad(SDValue Op) {
assert(Op.getValueType().isVector() && "Expected a vector type");
if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
Op.getOpcode() == ISD::BIT_CONVERT) {
return isa<LoadSDNode>(Op.getOperand(0));
}
return isa<LoadSDNode>(Op);
}
/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
///
static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
SelectionDAG &DAG, bool HasSSE3) {
// If we have sse3 and shuffle has more than one use or input is a load, then
// use movddup. Otherwise, use movlhps.
bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
MVT VT = Op.getValueType();
if (VT == PVT)
return Op;
unsigned NumElems = PVT.getVectorNumElements();
if (NumElems == 2) {
SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
} else {
assert(NumElems == 4);
SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst0, Cst1, Cst0, Cst1);
}
V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
DAG.getNode(ISD::UNDEF, PVT), Mask);
return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
}
/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
/// vector of zero or undef vector. This produces a shuffle where the low
/// element of V2 is swizzled into the zero/undef vector, landing at element
/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
bool isZero, bool HasSSE2,
SelectionDAG &DAG) {
MVT VT = V2.getValueType();
SDValue V1 = isZero
? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
unsigned NumElems = V2.getValueType().getVectorNumElements();
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT EVT = MaskVT.getVectorElementType();
SmallVector<SDValue, 16> MaskVec;
for (unsigned i = 0; i != NumElems; ++i)
if (i == Idx) // If this is the insertion idx, put the low elt of V2 here.
MaskVec.push_back(DAG.getConstant(NumElems, EVT));
else
MaskVec.push_back(DAG.getConstant(i, EVT));
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size());
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
}
/// getNumOfConsecutiveZeros - Return the number of elements in a result of
/// a shuffle that is zero.
static
unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
unsigned NumElems, bool Low,
SelectionDAG &DAG) {
unsigned NumZeros = 0;
for (unsigned i = 0; i < NumElems; ++i) {
unsigned Index = Low ? i : NumElems-i-1;
SDValue Idx = Mask.getOperand(Index);
if (Idx.getOpcode() == ISD::UNDEF) {
++NumZeros;
continue;
}
SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
if (Elt.getNode() && isZeroNode(Elt))
++NumZeros;
else
break;
}
return NumZeros;
}
/// isVectorShift - Returns true if the shuffle can be implemented as a
/// logical left or right shift of a vector.
static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
unsigned NumElems = Mask.getNumOperands();
isLeft = true;
unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
if (!NumZeros) {
isLeft = false;
NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
if (!NumZeros)
return false;
}
bool SeenV1 = false;
bool SeenV2 = false;
for (unsigned i = NumZeros; i < NumElems; ++i) {
unsigned Val = isLeft ? (i - NumZeros) : i;
SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
if (Idx.getOpcode() == ISD::UNDEF)
continue;
unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
if (Index < NumElems)
SeenV1 = true;
else {
Index -= NumElems;
SeenV2 = true;
}
if (Index != Val)
return false;
}
if (SeenV1 && SeenV2)
return false;
ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
ShAmt = NumZeros;
return true;
}
/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
///
static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG, TargetLowering &TLI) {
if (NumNonZero > 8)
return SDValue();
SDValue V(0, 0);
bool First = true;
for (unsigned i = 0; i < 16; ++i) {
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
if (ThisIsNonZero && First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, true, DAG);
else
V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
First = false;
}
if ((i & 1) != 0) {
SDValue ThisElt(0, 0), LastElt(0, 0);
bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
if (LastIsNonZero) {
LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
}
if (ThisIsNonZero) {
ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
ThisElt, DAG.getConstant(8, MVT::i8));
if (LastIsNonZero)
ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
} else
ThisElt = LastElt;
if (ThisElt.getNode())
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
DAG.getIntPtrConstant(i/2));
}
}
return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
}
/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
///
static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG, TargetLowering &TLI) {
if (NumNonZero > 4)
return SDValue();
SDValue V(0, 0);
bool First = true;
for (unsigned i = 0; i < 8; ++i) {
bool isNonZero = (NonZeros & (1 << i)) != 0;
if (isNonZero) {
if (First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, true, DAG);
else
V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
First = false;
}
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
DAG.getIntPtrConstant(i));
}
}
return V;
}
/// getVShift - Return a vector logical shift node.
///
static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
unsigned NumBits, SelectionDAG &DAG,
const TargetLowering &TLI) {
bool isMMX = VT.getSizeInBits() == 64;
MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
return DAG.getNode(ISD::BIT_CONVERT, VT,
DAG.getNode(Opc, ShVT, SrcOp,
DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
}
SDValue
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
// All zero's are handled with pxor, all one's are handled with pcmpeqd.
if (ISD::isBuildVectorAllZeros(Op.getNode())
|| ISD::isBuildVectorAllOnes(Op.getNode())) {
// Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
// 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
// eliminated on x86-32 hosts.
if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
return Op;
if (ISD::isBuildVectorAllOnes(Op.getNode()))
return getOnesVector(Op.getValueType(), DAG);
return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
}
MVT VT = Op.getValueType();
MVT EVT = VT.getVectorElementType();
unsigned EVTBits = EVT.getSizeInBits();
unsigned NumElems = Op.getNumOperands();
unsigned NumZero = 0;
unsigned NumNonZero = 0;
unsigned NonZeros = 0;
bool IsAllConstants = true;
SmallSet<SDValue, 8> Values;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Elt = Op.getOperand(i);
if (Elt.getOpcode() == ISD::UNDEF)
continue;
Values.insert(Elt);
if (Elt.getOpcode() != ISD::Constant &&
Elt.getOpcode() != ISD::ConstantFP)
IsAllConstants = false;
if (isZeroNode(Elt))
NumZero++;
else {
NonZeros |= (1 << i);
NumNonZero++;
}
}
if (NumNonZero == 0) {
// All undef vector. Return an UNDEF. All zero vectors were handled above.
return DAG.getNode(ISD::UNDEF, VT);
}
// Special case for single non-zero, non-undef, element.
if (NumNonZero == 1 && NumElems <= 4) {
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDValue Item = Op.getOperand(Idx);
// If this is an insertion of an i64 value on x86-32, and if the top bits of
// the value are obviously zero, truncate the value to i32 and do the
// insertion that way. Only do this if the value is non-constant or if the
// value is a constant being inserted into element 0. It is cheaper to do
// a constant pool load than it is to do a movd + shuffle.
if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
(!IsAllConstants || Idx == 0)) {
if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
// Handle MMX and SSE both.
MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
// Truncate the value (which may itself be a constant) to i32, and
// convert it to a vector with movd (S2V+shuffle to zero extend).
Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
Subtarget->hasSSE2(), DAG);
// Now we have our 32-bit value zero extended in the low element of
// a vector. If Idx != 0, swizzle it into place.
if (Idx != 0) {
SDValue Ops[] = {
Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
getSwapEltZeroMask(VecElts, Idx, DAG)
};
Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
}
return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
}
}
// If we have a constant or non-constant insertion into the low element of
// a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
// the rest of the elements. This will be matched as movd/movq/movss/movsd
// depending on what the source datatype is. Because we can only get here
// when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
if (Idx == 0 &&
// Don't do this for i64 values on x86-32.
(EVT != MVT::i64 || Subtarget->is64Bit())) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
Subtarget->hasSSE2(), DAG);
}
// Is it a vector logical left shift?
if (NumElems == 2 && Idx == 1 &&
isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
unsigned NumBits = VT.getSizeInBits();
return getVShift(true, VT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
NumBits/2, DAG, *this);
}
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
return SDValue();
// Otherwise, if this is a vector with i32 or f32 elements, and the element
// is a non-constant being inserted into an element other than the low one,
// we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
// movd/movss) to move this into the low element, then shuffle it into
// place.
if (EVTBits == 32) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
// Turn it into a shuffle of zero and zero-extended scalar to vector.
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
Subtarget->hasSSE2(), DAG);
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT MaskEVT = MaskVT.getVectorElementType();
SmallVector<SDValue, 8> MaskVec;
for (unsigned i = 0; i < NumElems; i++)
MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size());
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
DAG.getNode(ISD::UNDEF, VT), Mask);
}
}
// Splat is obviously ok. Let legalizer expand it to a shuffle.
if (Values.size() == 1)
return SDValue();
// A vector full of immediates; various special cases are already
// handled, so this is best done with a single constant-pool load.
if (IsAllConstants)
return SDValue();
// Let legalizer expand 2-wide build_vectors.
if (EVTBits == 64) {
if (NumNonZero == 1) {
// One half is zero or undef.
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
Op.getOperand(Idx));
return getShuffleVectorZeroOrUndef(V2, Idx, true,
Subtarget->hasSSE2(), DAG);
}
return SDValue();
}
// If element VT is < 32 bits, convert it to inserts into a zero vector.
if (EVTBits == 8 && NumElems == 16) {
SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
*this);
if (V.getNode()) return V;
}
if (EVTBits == 16 && NumElems == 8) {
SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
*this);
if (V.getNode()) return V;
}
// If element VT is == 32 bits, turn it into a number of shuffles.
SmallVector<SDValue, 8> V;
V.resize(NumElems);
if (NumElems == 4 && NumZero > 0) {
for (unsigned i = 0; i < 4; ++i) {
bool isZero = !(NonZeros & (1 << i));
if (isZero)
V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
else
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
}
for (unsigned i = 0; i < 2; ++i) {
switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
default: break;
case 0:
V[i] = V[i*2]; // Must be a zero vector.
break;
case 1:
V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
getMOVLMask(NumElems, DAG));
break;
case 2:
V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
getMOVLMask(NumElems, DAG));
break;
case 3:
V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
getUnpacklMask(NumElems, DAG));
break;
}
}
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT EVT = MaskVT.getVectorElementType();
SmallVector<SDValue, 8> MaskVec;
bool Reverse = (NonZeros & 0x3) == 2;
for (unsigned i = 0; i < 2; ++i)
if (Reverse)
MaskVec.push_back(DAG.getConstant(1-i, EVT));
else
MaskVec.push_back(DAG.getConstant(i, EVT));
Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
for (unsigned i = 0; i < 2; ++i)
if (Reverse)
MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
else
MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size());
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
}
if (Values.size() > 2) {
// Expand into a number of unpckl*.
// e.g. for v4f32
// Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
// : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
// Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
for (unsigned i = 0; i < NumElems; ++i)
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
NumElems >>= 1;
while (NumElems != 0) {
for (unsigned i = 0; i < NumElems; ++i)
V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
UnpckMask);
NumElems >>= 1;
}
return V[0];
}
return SDValue();
}
static
SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
SDValue PermMask, SelectionDAG &DAG,
TargetLowering &TLI) {
SDValue NewV;
MVT MaskVT = MVT::getIntVectorWithNumElements(8);
MVT MaskEVT = MaskVT.getVectorElementType();
MVT PtrVT = TLI.getPointerTy();
SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
PermMask.getNode()->op_end());
// First record which half of which vector the low elements come from.
SmallVector<unsigned, 4> LowQuad(4);
for (unsigned i = 0; i < 4; ++i) {
SDValue Elt = MaskElts[i];
if (Elt.getOpcode() == ISD::UNDEF)
continue;
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
int QuadIdx = EltIdx / 4;
++LowQuad[QuadIdx];
}
int BestLowQuad = -1;
unsigned MaxQuad = 1;
for (unsigned i = 0; i < 4; ++i) {
if (LowQuad[i] > MaxQuad) {
BestLowQuad = i;
MaxQuad = LowQuad[i];
}
}
// Record which half of which vector the high elements come from.
SmallVector<unsigned, 4> HighQuad(4);
for (unsigned i = 4; i < 8; ++i) {
SDValue Elt = MaskElts[i];
if (Elt.getOpcode() == ISD::UNDEF)
continue;
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
int QuadIdx = EltIdx / 4;
++HighQuad[QuadIdx];
}
int BestHighQuad = -1;
MaxQuad = 1;
for (unsigned i = 0; i < 4; ++i) {
if (HighQuad[i] > MaxQuad) {
BestHighQuad = i;
MaxQuad = HighQuad[i];
}
}
// If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
if (BestLowQuad != -1 || BestHighQuad != -1) {
// First sort the 4 chunks in order using shufpd.
SmallVector<SDValue, 8> MaskVec;
if (BestLowQuad != -1)
MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
else
MaskVec.push_back(DAG.getConstant(0, MVT::i32));
if (BestHighQuad != -1)
MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
else
MaskVec.push_back(DAG.getConstant(1, MVT::i32));
SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
// Now sort high and low parts separately.
BitVector InOrder(8);
if (BestLowQuad != -1) {
// Sort lower half in order using PSHUFLW.
MaskVec.clear();
bool AnyOutOrder = false;
for (unsigned i = 0; i != 4; ++i) {
SDValue Elt = MaskElts[i];
if (Elt.getOpcode() == ISD::UNDEF) {
MaskVec.push_back(Elt);
InOrder.set(i);
} else {
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
if (EltIdx != i)
AnyOutOrder = true;
MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
// If this element is in the right place after this shuffle, then
// remember it.
if ((int)(EltIdx / 4) == BestLowQuad)
InOrder.set(i);
}
}
if (AnyOutOrder) {
for (unsigned i = 4; i != 8; ++i)
MaskVec.push_back(DAG.getConstant(i, MaskEVT));
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
}
}
if (BestHighQuad != -1) {
// Sort high half in order using PSHUFHW if possible.
MaskVec.clear();
for (unsigned i = 0; i != 4; ++i)
MaskVec.push_back(DAG.getConstant(i, MaskEVT));
bool AnyOutOrder = false;
for (unsigned i = 4; i != 8; ++i) {
SDValue Elt = MaskElts[i];
if (Elt.getOpcode() == ISD::UNDEF) {
MaskVec.push_back(Elt);
InOrder.set(i);
} else {
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
if (EltIdx != i)
AnyOutOrder = true;
MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
// If this element is in the right place after this shuffle, then
// remember it.
if ((int)(EltIdx / 4) == BestHighQuad)
InOrder.set(i);
}
}
if (AnyOutOrder) {
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
}
}
// The other elements are put in the right place using pextrw and pinsrw.
for (unsigned i = 0; i != 8; ++i) {
if (InOrder[i])
continue;
SDValue Elt = MaskElts[i];
if (Elt.getOpcode() == ISD::UNDEF)
continue;
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
SDValue ExtOp = (EltIdx < 8)
? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
DAG.getConstant(EltIdx, PtrVT))
: DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
DAG.getConstant(EltIdx - 8, PtrVT));
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
DAG.getConstant(i, PtrVT));
}
return NewV;
}
// PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as
// few as possible. First, let's find out how many elements are already in the
// right order.
unsigned V1InOrder = 0;
unsigned V1FromV1 = 0;
unsigned V2InOrder = 0;
unsigned V2FromV2 = 0;
SmallVector<SDValue, 8> V1Elts;
SmallVector<SDValue, 8> V2Elts;
for (unsigned i = 0; i < 8; ++i) {
SDValue Elt = MaskElts[i];
if (Elt.getOpcode() == ISD::UNDEF) {
V1Elts.push_back(Elt);
V2Elts.push_back(Elt);
++V1InOrder;
++V2InOrder;
continue;
}
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
if (EltIdx == i) {
V1Elts.push_back(Elt);
V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
++V1InOrder;
} else if (EltIdx == i+8) {
V1Elts.push_back(Elt);
V2Elts.push_back(DAG.getConstant(i, MaskEVT));
++V2InOrder;
} else if (EltIdx < 8) {
V1Elts.push_back(Elt);
++V1FromV1;
} else {
V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
++V2FromV2;
}
}
if (V2InOrder > V1InOrder) {
PermMask = CommuteVectorShuffleMask(PermMask, DAG);
std::swap(V1, V2);
std::swap(V1Elts, V2Elts);
std::swap(V1FromV1, V2FromV2);
}
if ((V1FromV1 + V1InOrder) != 8) {
// Some elements are from V2.
if (V1FromV1) {
// If there are elements that are from V1 but out of place,
// then first sort them in place
SmallVector<SDValue, 8> MaskVec;
for (unsigned i = 0; i < 8; ++i) {
SDValue Elt = V1Elts[i];
if (Elt.getOpcode() == ISD::UNDEF) {
MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
continue;
}
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
if (EltIdx >= 8)
MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
else
MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
}
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
}
NewV = V1;
for (unsigned i = 0; i < 8; ++i) {
SDValue Elt = V1Elts[i];
if (Elt.getOpcode() == ISD::UNDEF)
continue;
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
if (EltIdx < 8)
continue;
SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
DAG.getConstant(EltIdx - 8, PtrVT));
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
DAG.getConstant(i, PtrVT));
}
return NewV;
} else {
// All elements are from V1.
NewV = V1;
for (unsigned i = 0; i < 8; ++i) {
SDValue Elt = V1Elts[i];
if (Elt.getOpcode() == ISD::UNDEF)
continue;
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
DAG.getConstant(EltIdx, PtrVT));
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
DAG.getConstant(i, PtrVT));
}
return NewV;
}
}
/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
/// done when every pair / quad of shuffle mask elements point to elements in
/// the right sequence. e.g.
/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
static
SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
MVT VT,
SDValue PermMask, SelectionDAG &DAG,
TargetLowering &TLI) {
unsigned NumElems = PermMask.getNumOperands();
unsigned NewWidth = (NumElems == 4) ? 2 : 4;
MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
MVT MaskEltVT = MaskVT.getVectorElementType();
MVT NewVT = MaskVT;
switch (VT.getSimpleVT()) {
default: assert(false && "Unexpected!");
case MVT::v4f32: NewVT = MVT::v2f64; break;
case MVT::v4i32: NewVT = MVT::v2i64; break;
case MVT::v8i16: NewVT = MVT::v4i32; break;
case MVT::v16i8: NewVT = MVT::v4i32; break;
}
if (NewWidth == 2) {
if (VT.isInteger())
NewVT = MVT::v2i64;
else
NewVT = MVT::v2f64;
}
unsigned Scale = NumElems / NewWidth;
SmallVector<SDValue, 8> MaskVec;
for (unsigned i = 0; i < NumElems; i += Scale) {
unsigned StartIdx = ~0U;
for (unsigned j = 0; j < Scale; ++j) {
SDValue Elt = PermMask.getOperand(i+j);
if (Elt.getOpcode() == ISD::UNDEF)
continue;
unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
if (StartIdx == ~0U)
StartIdx = EltIdx - (EltIdx % Scale);
if (EltIdx != StartIdx + j)
return SDValue();
}
if (StartIdx == ~0U)
MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
else
MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
}
V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size()));
}
/// getVZextMovL - Return a zero-extending vector move low node.
///
static SDValue getVZextMovL(MVT VT, MVT OpVT,
SDValue SrcOp, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
if (VT == MVT::v2f64 || VT == MVT::v4f32) {
LoadSDNode *LD = NULL;
if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
LD = dyn_cast<LoadSDNode>(SrcOp);
if (!LD) {
// movssrr and movsdrr do not clear top bits. Try to use movd, movq
// instead.
MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
// PR2108
OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
return DAG.getNode(ISD::BIT_CONVERT, VT,
DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
SrcOp.getOperand(0)
.getOperand(0))));
}
}
}
return DAG.getNode(ISD::BIT_CONVERT, VT,
DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
}
/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
/// shuffles.
static SDValue
LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
SDValue PermMask, MVT VT, SelectionDAG &DAG) {
MVT MaskVT = PermMask.getValueType();
MVT MaskEVT = MaskVT.getVectorElementType();
SmallVector<std::pair<int, int>, 8> Locs;
Locs.resize(4);
SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
unsigned NumHi = 0;
unsigned NumLo = 0;
for (unsigned i = 0; i != 4; ++i) {
SDValue Elt = PermMask.getOperand(i);
if (Elt.getOpcode() == ISD::UNDEF) {
Locs[i] = std::make_pair(-1, -1);
} else {
unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
if (Val < 4) {
Locs[i] = std::make_pair(0, NumLo);
Mask1[NumLo] = Elt;
NumLo++;
} else {
Locs[i] = std::make_pair(1, NumHi);
if (2+NumHi < 4)
Mask1[2+NumHi] = Elt;
NumHi++;
}
}
}
if (NumLo <= 2 && NumHi <= 2) {
// If no more than two elements come from either vector. This can be
// implemented with two shuffles. First shuffle gather the elements.
// The second shuffle, which takes the first shuffle as both of its
// vector operands, put the elements into the right order.
V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&Mask1[0], Mask1.size()));
SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
for (unsigned i = 0; i != 4; ++i) {
if (Locs[i].first == -1)
continue;
else {
unsigned Idx = (i < 2) ? 0 : 4;
Idx += Locs[i].first * 2 + Locs[i].second;
Mask2[i] = DAG.getConstant(Idx, MaskEVT);
}
}
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&Mask2[0], Mask2.size()));
} else if (NumLo == 3 || NumHi == 3) {
// Otherwise, we must have three elements from one vector, call it X, and
// one element from the other, call it Y. First, use a shufps to build an
// intermediate vector with the one element from Y and the element from X
// that will be in the same half in the final destination (the indexes don't
// matter). Then, use a shufps to build the final vector, taking the half
// containing the element from Y from the intermediate, and the other half
// from X.
if (NumHi == 3) {
// Normalize it so the 3 elements come from V1.
PermMask = CommuteVectorShuffleMask(PermMask, DAG);
std::swap(V1, V2);
}
// Find the element from V2.
unsigned HiIndex;
for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
SDValue Elt = PermMask.getOperand(HiIndex);
if (Elt.getOpcode() == ISD::UNDEF)
continue;
unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
if (Val >= 4)
break;
}
Mask1[0] = PermMask.getOperand(HiIndex);
Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
Mask1[2] = PermMask.getOperand(HiIndex^1);
Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
if (HiIndex >= 2) {
Mask1[0] = PermMask.getOperand(0);
Mask1[1] = PermMask.getOperand(1);
Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
} else {
Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
Mask1[2] = PermMask.getOperand(2);
Mask1[3] = PermMask.getOperand(3);
if (Mask1[2].getOpcode() != ISD::UNDEF)
Mask1[2] =
DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
MaskEVT);
if (Mask1[3].getOpcode() != ISD::UNDEF)
Mask1[3] =
DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
MaskEVT);
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
}
}
// Break it into (shuffle shuffle_hi, shuffle_lo).
Locs.clear();
SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
SmallVector<SDValue,8> *MaskPtr = &LoMask;
unsigned MaskIdx = 0;
unsigned LoIdx = 0;
unsigned HiIdx = 2;
for (unsigned i = 0; i != 4; ++i) {
if (i == 2) {
MaskPtr = &HiMask;
MaskIdx = 1;
LoIdx = 0;
HiIdx = 2;
}
SDValue Elt = PermMask.getOperand(i);
if (Elt.getOpcode() == ISD::UNDEF) {
Locs[i] = std::make_pair(-1, -1);
} else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
Locs[i] = std::make_pair(MaskIdx, LoIdx);
(*MaskPtr)[LoIdx] = Elt;
LoIdx++;
} else {
Locs[i] = std::make_pair(MaskIdx, HiIdx);
(*MaskPtr)[HiIdx] = Elt;
HiIdx++;
}
}
SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&LoMask[0], LoMask.size()));
SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&HiMask[0], HiMask.size()));
SmallVector<SDValue, 8> MaskOps;
for (unsigned i = 0; i != 4; ++i) {
if (Locs[i].first == -1) {
MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
} else {
unsigned Idx = Locs[i].first * 4 + Locs[i].second;
MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
}
}
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskOps[0], MaskOps.size()));
}
SDValue
X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDValue PermMask = Op.getOperand(2);
MVT VT = Op.getValueType();
unsigned NumElems = PermMask.getNumOperands();
bool isMMX = VT.getSizeInBits() == 64;
bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
bool V1IsSplat = false;
bool V2IsSplat = false;
if (isUndefShuffle(Op.getNode()))
return DAG.getNode(ISD::UNDEF, VT);
if (isZeroShuffle(Op.getNode()))
return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
if (isIdentityMask(PermMask.getNode()))
return V1;
else if (isIdentityMask(PermMask.getNode(), true))
return V2;
// Canonicalize movddup shuffles.
if (V2IsUndef && Subtarget->hasSSE2() &&
X86::isMOVDDUPMask(PermMask.getNode()))
return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
if (isSplatMask(PermMask.getNode())) {
if (isMMX || NumElems < 4) return Op;
// Promote it to a v4{if}32 splat.
return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
}
// If the shuffle can be profitably rewritten as a narrower shuffle, then
// do it!
if (VT == MVT::v8i16 || VT == MVT::v16i8) {
SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
if (NewOp.getNode())
return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
} else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
// FIXME: Figure out a cleaner way to do this.
// Try to make use of movq to zero out the top part.
if (ISD::isBuildVectorAllZeros(V2.getNode())) {
SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
DAG, *this);
if (NewOp.getNode()) {
SDValue NewV1 = NewOp.getOperand(0);
SDValue NewV2 = NewOp.getOperand(1);
SDValue NewMask = NewOp.getOperand(2);
if (isCommutedMOVL(NewMask.getNode(), true, false)) {
NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
}
}
} else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
DAG, *this);
if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
DAG, Subtarget);
}
}
// Check if this can be converted into a logical shift.
bool isLeft = false;
unsigned ShAmt = 0;
SDValue ShVal;
bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
if (isShift && ShVal.hasOneUse()) {
// If the shifted value has multiple uses, it may be cheaper to use
// v_set0 + movlhps or movhlps, etc.
MVT EVT = VT.getVectorElementType();
ShAmt *= EVT.getSizeInBits();
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
}
if (X86::isMOVLMask(PermMask.getNode())) {
if (V1IsUndef)
return V2;
if (ISD::isBuildVectorAllZeros(V1.getNode()))
return getVZextMovL(VT, VT, V2, DAG, Subtarget);
if (!isMMX)
return Op;
}
if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
X86::isMOVSLDUPMask(PermMask.getNode()) ||
X86::isMOVHLPSMask(PermMask.getNode()) ||
X86::isMOVHPMask(PermMask.getNode()) ||
X86::isMOVLPMask(PermMask.getNode())))
return Op;
if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
if (isShift) {
// No better options. Use a vshl / vsrl.
MVT EVT = VT.getVectorElementType();
ShAmt *= EVT.getSizeInBits();
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
}
bool Commuted = false;
// FIXME: This should also accept a bitcast of a splat? Be careful, not
// 1,1,1,1 -> v8i16 though.
V1IsSplat = isSplatVector(V1.getNode());
V2IsSplat = isSplatVector(V2.getNode());
// Canonicalize the splat or undef, if present, to be on the RHS.
if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
std::swap(V1IsSplat, V2IsSplat);
std::swap(V1IsUndef, V2IsUndef);
Commuted = true;
}
// FIXME: Figure out a cleaner way to do this.
if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
if (V2IsUndef) return V1;
Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
if (V2IsSplat) {
// V2 is a splat, so the mask may be malformed. That is, it may point
// to any V2 element. The instruction selectior won't like this. Get
// a corrected mask and commute to form a proper MOVS{S|D}.
SDValue NewMask = getMOVLMask(NumElems, DAG);
if (NewMask.getNode() != PermMask.getNode())
Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
}
return Op;
}
if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
X86::isUNPCKLMask(PermMask.getNode()) ||
X86::isUNPCKHMask(PermMask.getNode()))
return Op;
if (V2IsSplat) {
// Normalize mask so all entries that point to V2 points to its first
// element then try to match unpck{h|l} again. If match, return a
// new vector_shuffle with the corrected mask.
SDValue NewMask = NormalizeMask(PermMask, DAG);
if (NewMask.getNode() != PermMask.getNode()) {
if (X86::isUNPCKLMask(PermMask.getNode(), true)) {
SDValue NewMask = getUnpacklMask(NumElems, DAG);
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
} else if (X86::isUNPCKHMask(PermMask.getNode(), true)) {
SDValue NewMask = getUnpackhMask(NumElems, DAG);
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
}
}
}
// Normalize the node to match x86 shuffle ops if needed
if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
if (Commuted) {
// Commute is back and try unpck* again.
Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
X86::isUNPCKLMask(PermMask.getNode()) ||
X86::isUNPCKHMask(PermMask.getNode()))
return Op;
}
// Try PSHUF* first, then SHUFP*.
// MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
// possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
if (V2.getOpcode() != ISD::UNDEF)
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
DAG.getNode(ISD::UNDEF, VT), PermMask);
return Op;
}
if (!isMMX) {
if (Subtarget->hasSSE2() &&
(X86::isPSHUFDMask(PermMask.getNode()) ||
X86::isPSHUFHWMask(PermMask.getNode()) ||
X86::isPSHUFLWMask(PermMask.getNode()))) {
MVT RVT = VT;
if (VT == MVT::v4f32) {
RVT = MVT::v4i32;
Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
DAG.getNode(ISD::UNDEF, RVT), PermMask);
} else if (V2.getOpcode() != ISD::UNDEF)
Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
DAG.getNode(ISD::UNDEF, RVT), PermMask);
if (RVT != VT)
Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
return Op;
}
// Binary or unary shufps.
if (X86::isSHUFPMask(PermMask.getNode()) ||
(V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
return Op;
}
// Handle v8i16 specifically since SSE can do byte extraction and insertion.
if (VT == MVT::v8i16) {
SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
if (NewOp.getNode())
return NewOp;
}
// Handle all 4 wide cases with a number of shuffles except for MMX.
if (NumElems == 4 && !isMMX)
return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
return SDValue();
}
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
SelectionDAG &DAG) {
MVT VT = Op.getValueType();
if (VT.getSizeInBits() == 8) {
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, VT, Assert);
} else if (VT.getSizeInBits() == 16) {
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, VT, Assert);
} else if (VT == MVT::f32) {
// EXTRACTPS outputs to a GPR32 register which will require a movd to copy
// the result back to FR32 register. It's only worth matching if the
// result has a single use which is a store or a bitcast to i32.
if (!Op.hasOneUse())
return SDValue();
SDNode *User = *Op.getNode()->use_begin();
if (User->getOpcode() != ISD::STORE &&
(User->getOpcode() != ISD::BIT_CONVERT ||
User->getValueType(0) != MVT::i32))
return SDValue();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
Op.getOperand(1));
return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
}
return SDValue();
}
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return SDValue();
if (Subtarget->hasSSE41()) {
SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
if (Res.getNode())
return Res;
}
MVT VT = Op.getValueType();
// TODO: handle v16i8.
if (VT.getSizeInBits() == 16) {
SDValue Vec = Op.getOperand(0);
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
Op.getOperand(1)));
// Transform it so it match pextrw which produces a 32-bit result.
MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, VT, Assert);
} else if (VT.getSizeInBits() == 32) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return Op;
// SHUFPS the element to the lowest double word, then movss.
MVT MaskVT = MVT::getIntVectorWithNumElements(4);
SmallVector<SDValue, 8> IdxVec;
IdxVec.
push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
IdxVec.
push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
IdxVec.
push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
IdxVec.
push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&IdxVec[0], IdxVec.size());
SDValue Vec = Op.getOperand(0);
Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
DAG.getIntPtrConstant(0));
} else if (VT.getSizeInBits() == 64) {
// FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
// FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
// to match extract_elt for f64.
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return Op;
// UNPCKHPD the element to the lowest double word, then movsd.
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
MVT MaskVT = MVT::getIntVectorWithNumElements(2);
SmallVector<SDValue, 8> IdxVec;
IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
IdxVec.
push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&IdxVec[0], IdxVec.size());
SDValue Vec = Op.getOperand(0);
Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
DAG.getIntPtrConstant(0));
}
return SDValue();
}
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
MVT VT = Op.getValueType();
MVT EVT = VT.getVectorElementType();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
isa<ConstantSDNode>(N2)) {
unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
: X86ISD::PINSRW;
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
// argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
return DAG.getNode(Opc, VT, N0, N1, N2);
} else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
// Bits [7:6] of the constant are the source select. This will always be
// zero here. The DAG Combiner may combine an extract_elt index into these
// bits. For example (insert (extract, 3), 2) could be matched by putting
// the '3' into bits [7:6] of X86ISD::INSERTPS.
// Bits [5:4] of the constant are the destination select. This is the
// value of the incoming immediate.
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
// combine either bitwise AND or insert of float 0.0 to set these bits.
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
}
return SDValue();
}
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getValueType();
MVT EVT = VT.getVectorElementType();
if (Subtarget->hasSSE41())
return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
if (EVT == MVT::i8)
return SDValue();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
if (EVT.getSizeInBits() == 16) {
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
// as its second argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
}
return SDValue();
}
SDValue
X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
if (Op.getValueType() == MVT::v2f32)
return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
Op.getOperand(0))));
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
MVT VT = MVT::v2i32;
switch (Op.getValueType().getSimpleVT()) {
default: break;
case MVT::v16i8:
case MVT::v8i16:
VT = MVT::v4i32;
break;
}
return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
SDValue
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
getPointerTy(),
CP->getAlignment());
Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->isPICStyleRIPRel()) {
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
Result);
}
return Result;
}
SDValue
X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
SelectionDAG &DAG) const {
SDValue Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->isPICStyleRIPRel()) {
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
Result);
}
// For Darwin & Mingw32, external and weak symbols are indirect, so we want to
// load the value at address GV, not the value of GV itself. This means that
// the GlobalAddress must be in the base or index register of the address, not
// the GV offset field. Platform check is inside GVRequiresExtraLoad() call
// The same applies for external symbols during PIC codegen
if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
PseudoSourceValue::getGOT(), 0);
return Result;
}
SDValue
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
return LowerGlobalAddress(GV, DAG);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
static SDValue
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const MVT PtrVT) {
SDValue InFlag;
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg,
PtrVT), InFlag);
InFlag = Chain.getValue(1);
// emit leal symbol@TLSGD(,%ebx,1), %eax
SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
GA->getValueType(0),
GA->getOffset());
SDValue Ops[] = { Chain, TGA, InFlag };
SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
InFlag = Result.getValue(2);
Chain = Result.getValue(1);
// call ___tls_get_addr. This function receives its argument in
// the register EAX.
Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
InFlag = Chain.getValue(1);
NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
SDValue Ops1[] = { Chain,
DAG.getTargetExternalSymbol("___tls_get_addr",
PtrVT),
DAG.getRegister(X86::EAX, PtrVT),
DAG.getRegister(X86::EBX, PtrVT),
InFlag };
Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
InFlag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
static SDValue
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const MVT PtrVT) {
SDValue InFlag, Chain;
// emit leaq symbol@TLSGD(%rip), %rdi
SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
GA->getValueType(0),
GA->getOffset());
SDValue Ops[] = { DAG.getEntryNode(), TGA};
SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
Chain = Result.getValue(1);
InFlag = Result.getValue(2);
// call __tls_get_addr. This function receives its argument in
// the register RDI.
Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
InFlag = Chain.getValue(1);
NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
SDValue Ops1[] = { Chain,
DAG.getTargetExternalSymbol("__tls_get_addr",
PtrVT),
DAG.getRegister(X86::RDI, PtrVT),
InFlag };
Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
InFlag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
}
// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
// "local exec" model.
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const MVT PtrVT) {
// Get the Thread Pointer
SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
// emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
// exec)
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
GA->getValueType(0),
GA->getOffset());
SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
PseudoSourceValue::getGOT(), 0);
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
}
SDValue
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
// TODO: implement the "local dynamic" model
// TODO: implement the "initial exec"model for pic executables
assert(Subtarget->isTargetELF() &&
"TLS not implemented for non-ELF targets");
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
// If the relocation model is PIC, use the "General Dynamic" TLS Model,
// otherwise use the "Local Exec"TLS Model
if (Subtarget->is64Bit()) {
return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
} else {
if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
else
return LowerToTLSExecModel(GA, DAG, getPointerTy());
}
}
SDValue
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->isPICStyleRIPRel()) {
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
Result);
}
return Result;
}
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->isPICStyleRIPRel()) {
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
Result);
}
return Result;
}
/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
/// take a 2 x i32 value to shift plus a shift amount.
SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
MVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue Tmp1 = isSRA ?
DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
DAG.getConstant(0, VT);
SDValue Tmp2, Tmp3;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
} else {
Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
}
SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
DAG.getConstant(VTBits, MVT::i8));
SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
AndNode, DAG.getConstant(0, MVT::i8));
SDValue Hi, Lo;
SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
if (Op.getOpcode() == ISD::SHL_PARTS) {
Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
} else {
Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
}
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, 2);
}
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
MVT SrcVT = Op.getOperand(0).getValueType();
assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
// These are really Legal; caller falls through into that case.
if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
return SDValue();
if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
Subtarget->is64Bit())
return SDValue();
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
StackSlot,
PseudoSourceValue::getFixedStack(SSFI), 0);
// Build the FILD
SDVTList Tys;
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
if (useSSE)
Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
else
Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(SrcVT));
SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
Tys, &Ops[0], Ops.size());
if (useSSE) {
Chain = Result.getValue(1);
SDValue InFlag = Result.getValue(2);
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Tys = DAG.getVTList(MVT::Other);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Result);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(Op.getValueType()));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
PseudoSourceValue::getFixedStack(SSFI), 0);
}
return Result;
}
std::pair<SDValue,SDValue> X86TargetLowering::
FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
Op.getValueType().getSimpleVT() >= MVT::i16 &&
"Unknown FP_TO_SINT to lower!");
// These are really Legal.
if (Op.getValueType() == MVT::i32 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
return std::make_pair(SDValue(), SDValue());
if (Subtarget->is64Bit() &&
Op.getValueType() == MVT::i64 &&
Op.getOperand(0).getValueType() != MVT::f80)
return std::make_pair(SDValue(), SDValue());
// We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
// stack slot.
MachineFunction &MF = DAG.getMachineFunction();
unsigned MemSize = Op.getValueType().getSizeInBits()/8;
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
unsigned Opc;
switch (Op.getValueType().getSimpleVT()) {
default: assert(0 && "Invalid FP_TO_SINT to lower!");
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
}
SDValue Chain = DAG.getEntryNode();
SDValue Value = Op.getOperand(0);
if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
Chain = DAG.getStore(Chain, Value, StackSlot,
PseudoSourceValue::getFixedStack(SSFI), 0);
SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
SDValue Ops[] = {
Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
};
Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
Chain = Value.getValue(1);
SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
}
// Build the FP_TO_INT*_IN_MEM
SDValue Ops[] = { Chain, Value, StackSlot };
SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
return std::make_pair(FIST, StackSlot);
}
SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
SDValue FIST = Vals.first, StackSlot = Vals.second;
if (FIST.getNode() == 0) return SDValue();
// Load the result.
return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
}
SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
SDValue FIST = Vals.first, StackSlot = Vals.second;
if (FIST.getNode() == 0) return 0;
MVT VT = N->getValueType(0);
// Return a load from the stack slot.
SDValue Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0);
// Use MERGE_VALUES to drop the chain result value and get a node with one
// result. This requires turning off getMergeValues simplification, since
// otherwise it will give us Res back.
return DAG.getMergeValues(&Res, 1, false).getNode();
}
SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getValueType();
MVT EltVT = VT;
if (VT.isVector())
EltVT = VT.getVectorElementType();
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
CV.push_back(C);
CV.push_back(C);
} else {
Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
}
Constant *C = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
}
SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getValueType();
MVT EltVT = VT;
unsigned EltNum = 1;
if (VT.isVector()) {
EltVT = VT.getVectorElementType();
EltNum = VT.getVectorNumElements();
}
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
CV.push_back(C);
CV.push_back(C);
} else {
Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
}
Constant *C = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
if (VT.isVector()) {
return DAG.getNode(ISD::BIT_CONVERT, VT,
DAG.getNode(ISD::XOR, MVT::v2i64,
DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
} else {
return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
}
}
SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
MVT VT = Op.getValueType();
MVT SrcVT = Op1.getValueType();
// If second operand is smaller, extend it first.
if (SrcVT.bitsLT(VT)) {
Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
SrcVT = VT;
}
// And if it is bigger, shrink it first.
if (SrcVT.bitsGT(VT)) {
Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
SrcVT = VT;
}
// At this point the operands and the result should have the same
// type, and that won't be f80 since that is not custom lowered.
// First get the sign bit of second operand.
std::vector<Constant*> CV;
if (SrcVT == MVT::f64) {
CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
} else {
CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
}
Constant *C = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
// Shift sign bit right or left if the two operands have different types.
if (SrcVT.bitsGT(VT)) {
// Op0 is MVT::f32, Op1 is MVT::f64.
SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
DAG.getConstant(32, MVT::i32));
SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
DAG.getIntPtrConstant(0));
}
// Clear first operand sign bit.
CV.clear();
if (VT == MVT::f64) {
CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
} else {
CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
}
C = ConstantVector::get(CV);
CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
// Or the value with the sign bit.
return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
}
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
SDValue Cond;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
unsigned X86CC;
if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Op0, Op1, DAG)) {
Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
return DAG.getNode(X86ISD::SETCC, MVT::i8,
DAG.getConstant(X86CC, MVT::i8), Cond);
}
assert(isFP && "Illegal integer SetCC!");
Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
switch (SetCCOpcode) {
default: assert(false && "Illegal floating point SetCC!");
case ISD::SETOEQ: { // !PF & ZF
SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
DAG.getConstant(X86::COND_E, MVT::i8), Cond);
return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
}
case ISD::SETUNE: { // PF | !ZF
SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
DAG.getConstant(X86::COND_P, MVT::i8), Cond);
SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
}
}
}
SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
SDValue Cond;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
MVT VT = Op.getValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
if (isFP) {
unsigned SSECC = 8;
MVT VT0 = Op0.getValueType();
assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
bool Swap = false;
switch (SetCCOpcode) {
default: break;
case ISD::SETOEQ:
case ISD::SETEQ: SSECC = 0; break;
case ISD::SETOGT:
case ISD::SETGT: Swap = true; // Fallthrough
case ISD::SETLT:
case ISD::SETOLT: SSECC = 1; break;
case ISD::SETOGE:
case ISD::SETGE: Swap = true; // Fallthrough
case ISD::SETLE:
case ISD::SETOLE: SSECC = 2; break;
case ISD::SETUO: SSECC = 3; break;
case ISD::SETUNE:
case ISD::SETNE: SSECC = 4; break;
case ISD::SETULE: Swap = true;
case ISD::SETUGE: SSECC = 5; break;
case ISD::SETULT: Swap = true;
case ISD::SETUGT: SSECC = 6; break;
case ISD::SETO: SSECC = 7; break;
}
if (Swap)
std::swap(Op0, Op1);
// In the two special cases we can't handle, emit two comparisons.
if (SSECC == 8) {
if (SetCCOpcode == ISD::SETUEQ) {
SDValue UNORD, EQ;
UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
return DAG.getNode(ISD::OR, VT, UNORD, EQ);
}
else if (SetCCOpcode == ISD::SETONE) {
SDValue ORD, NEQ;
ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
return DAG.getNode(ISD::AND, VT, ORD, NEQ);
}
assert(0 && "Illegal FP comparison");
}
// Handle all other FP comparisons here.
return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
}
// We are handling one of the integer comparisons here. Since SSE only has
// GT and EQ comparisons for integer, swapping operands and multiple
// operations may be required for some comparisons.
unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
bool Swap = false, Invert = false, FlipSigns = false;
switch (VT.getSimpleVT()) {
default: break;
case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
}
switch (SetCCOpcode) {
default: break;
case ISD::SETNE: Invert = true;
case ISD::SETEQ: Opc = EQOpc; break;
case ISD::SETLT: Swap = true;
case ISD::SETGT: Opc = GTOpc; break;
case ISD::SETGE: Swap = true;
case ISD::SETLE: Opc = GTOpc; Invert = true; break;
case ISD::SETULT: Swap = true;
case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
case ISD::SETUGE: Swap = true;
case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
}
if (Swap)
std::swap(Op0, Op1);
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations.
if (FlipSigns) {
MVT EltVT = VT.getVectorElementType();
SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
SignBits.size());
Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
}
SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
// If the logical-not of the result is required, perform that now.
if (Invert) {
MVT EltVT = VT.getVectorElementType();
SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT);
std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne);
SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0],
NegOnes.size());
Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV);
}
return Result;
}
SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
bool addTest = true;
SDValue Cond = Op.getOperand(0);
SDValue CC;
if (Cond.getOpcode() == ISD::SETCC)
Cond = LowerSETCC(Cond, DAG);
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
if (Cond.getOpcode() == X86ISD::SETCC) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
MVT VT = Op.getValueType();
bool IllegalFPCMov = false;
if (VT.isFloatingPoint() && !VT.isVector() &&
!isScalarFPTypeInSSEReg(VT)) // FPStack?
IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
if ((Opc == X86ISD::CMP ||
Opc == X86ISD::COMI ||
Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
Cond = Cmp;
addTest = false;
}
}
if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
}
const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
MVT::Flag);
SmallVector<SDValue, 4> Ops;
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
// condition is true.
Ops.push_back(Op.getOperand(2));
Ops.push_back(Op.getOperand(1));
Ops.push_back(CC);
Ops.push_back(Cond);
return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
}
SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
bool addTest = true;
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Dest = Op.getOperand(2);
SDValue CC;
if (Cond.getOpcode() == ISD::SETCC)
Cond = LowerSETCC(Cond, DAG);
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
if (Cond.getOpcode() == X86ISD::SETCC) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
if (Opc == X86ISD::CMP ||
Opc == X86ISD::COMI ||
Opc == X86ISD::UCOMI) {
Cond = Cmp;
addTest = false;
}
}
if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
}
return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Chain, Op.getOperand(2), CC, Cond);
}
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
// Calls to _alloca is needed to probe the stack when allocating more than 4k
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
// that the guard pages used by the OS virtual memory manager are allocated in
// correct sequence.
SDValue
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) {
assert(Subtarget->isTargetCygMing() &&
"This should be used only on Cygwin/Mingw targets");
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
// FIXME: Ensure alignment here
SDValue Flag;
MVT IntPtr = getPointerTy();
MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0));
Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
Flag = Chain.getValue(1);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain,
DAG.getTargetExternalSymbol("_alloca", IntPtr),
DAG.getRegister(X86::EAX, IntPtr),
DAG.getRegister(X86StackPtr, SPTy),
Flag };
Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
Flag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(0),
DAG.getIntPtrConstant(0),
Flag);
Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
SDValue Ops1[2] = { Chain.getValue(0), Chain };
return DAG.getMergeValues(Ops1, 2);
}
SDValue
X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
const Value *DstSV, uint64_t DstSVOff) {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
/// If not DWORD aligned or size is more than the threshold, call the library.
/// The libc version is likely to be faster for these cases. It can use the
/// address value and run time information about the CPU.
if ((Align & 3) != 0 ||
!ConstantSize ||
ConstantSize->getZExtValue() >
getSubtarget()->getMaxInlineSizeThreshold()) {
SDValue InFlag(0, 0);
// Check to see if there is a specialized entry-point for memory zeroing.
ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
if (const char *bzeroEntry =
V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
MVT IntPtr = getPointerTy();
const Type *IntPtrTy = TD->getIntPtrType();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
std::pair<SDValue,SDValue> CallResult =
LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
CallingConv::C, false,
DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG);
return CallResult.second;
}
// Otherwise have the target-independent code call memset.
return SDValue();
}
uint64_t SizeVal = ConstantSize->getZExtValue();
SDValue InFlag(0, 0);
MVT AVT;
SDValue Count;
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
unsigned BytesLeft = 0;
bool TwoRepStos = false;
if (ValC) {
unsigned ValReg;
uint64_t Val = ValC->getZExtValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
ValReg = X86::AX;
Val = (Val << 8) | Val;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
ValReg = X86::EAX;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
AVT = MVT::i64;
ValReg = X86::RAX;
Val = (Val << 32) | Val;
}
break;
default: // Byte aligned
AVT = MVT::i8;
ValReg = X86::AL;
Count = DAG.getIntPtrConstant(SizeVal);
break;
}
if (AVT.bitsGT(MVT::i8)) {
unsigned UBytes = AVT.getSizeInBits() / 8;
Count = DAG.getIntPtrConstant(SizeVal / UBytes);
BytesLeft = SizeVal % UBytes;
}
Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
InFlag);
InFlag = Chain.getValue(1);
} else {
AVT = MVT::i8;
Count = DAG.getIntPtrConstant(SizeVal);
Chain = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
InFlag = Chain.getValue(1);
}
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(DAG.getValueType(AVT));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
if (TwoRepStos) {
InFlag = Chain.getValue(1);
Count = Size;
MVT CVT = Count.getValueType();
SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
Left, InFlag);
InFlag = Chain.getValue(1);
Tys = DAG.getVTList(MVT::Other, MVT::Flag);
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(DAG.getValueType(MVT::i8));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
} else if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
MVT AddrVT = Dst.getValueType();
MVT SizeVT = Size.getValueType();
Chain = DAG.getMemset(Chain,
DAG.getNode(ISD::ADD, AddrVT, Dst,
DAG.getConstant(Offset, AddrVT)),
Src,
DAG.getConstant(BytesLeft, SizeVT),
Align, DstSV, DstSVOff + Offset);
}
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
return Chain;
}
SDValue
X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool AlwaysInline,
const Value *DstSV, uint64_t DstSVOff,
const Value *SrcSV, uint64_t SrcSVOff) {
// This requires the copy size to be a constant, preferrably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
return SDValue();
/// If not DWORD aligned, call the library.
if ((Align & 3) != 0)
return SDValue();
// DWORD aligned
MVT AVT = MVT::i32;
if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned
AVT = MVT::i64;
unsigned UBytes = AVT.getSizeInBits() / 8;
unsigned CountVal = SizeVal / UBytes;
SDValue Count = DAG.getIntPtrConstant(CountVal);
unsigned BytesLeft = SizeVal % UBytes;
SDValue InFlag(0, 0);
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Src, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(DAG.getValueType(AVT));
Ops.push_back(InFlag);
SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
MVT DstVT = Dst.getValueType();
MVT SrcVT = Src.getValueType();
MVT SizeVT = Size.getValueType();
Results.push_back(DAG.getMemcpy(Chain,
DAG.getNode(ISD::ADD, DstVT, Dst,
DAG.getConstant(Offset, DstVT)),
DAG.getNode(ISD::ADD, SrcVT, Src,
DAG.getConstant(Offset, SrcVT)),
DAG.getConstant(BytesLeft, SizeVT),
Align, AlwaysInline,
DstSV, DstSVOff + Offset,
SrcSV, SrcSVOff + Offset));
}
return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
}
/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
SDValue TheChain = N->getOperand(0);
SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
if (Subtarget->is64Bit()) {
SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
MVT::i64, rax.getValue(2));
SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
DAG.getConstant(32, MVT::i8));
SDValue Ops[] = {
DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
};
return DAG.getMergeValues(Ops, 2).getNode();
}
SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
MVT::i32, eax.getValue(2));
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
SDValue Ops[] = { eax, edx };
Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
// Use a MERGE_VALUES to return the value and chain.
Ops[1] = edx.getValue(1);
return DAG.getMergeValues(Ops, 2).getNode();
}
SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
if (!Subtarget->is64Bit()) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
}
// __va_list_tag:
// gp_offset (0 - 6 * 8)
// fp_offset (48 - 48 + 8 * 16)
// overflow_arg_area (point to parameters coming in memory).
// reg_save_area
SmallVector<SDValue, 8> MemOps;
SDValue FIN = Op.getOperand(1);
// Store gp_offset
SDValue Store = DAG.getStore(Op.getOperand(0),
DAG.getConstant(VarArgsGPOffset, MVT::i32),
FIN, SV, 0);
MemOps.push_back(Store);
// Store fp_offset
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
Store = DAG.getStore(Op.getOperand(0),
DAG.getConstant(VarArgsFPOffset, MVT::i32),
FIN, SV, 0);
MemOps.push_back(Store);
// Store ptr to overflow_arg_area
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
MemOps.push_back(Store);
// Store ptr to reg_save_area.
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
MemOps.push_back(Store);
return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
}
SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
// X86-64 va_list is a struct { i32, i32, i8*, i8* }.
assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
SDValue Chain = Op.getOperand(0);
SDValue SrcPtr = Op.getOperand(1);
SDValue SrcSV = Op.getOperand(2);
assert(0 && "VAArgInst is not yet implemented for x86-64!");
abort();
return SDValue();
}
SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
// X86-64 va_list is a struct { i32, i32, i8*, i8* }.
assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
DAG.getIntPtrConstant(24), 8, false,
DstSV, 0, SrcSV, 0);
}
SDValue
X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
// Comparison intrinsics.
case Intrinsic::x86_sse_comieq_ss:
case Intrinsic::x86_sse_comilt_ss:
case Intrinsic::x86_sse_comile_ss:
case Intrinsic::x86_sse_comigt_ss:
case Intrinsic::x86_sse_comige_ss:
case Intrinsic::x86_sse_comineq_ss:
case Intrinsic::x86_sse_ucomieq_ss:
case Intrinsic::x86_sse_ucomilt_ss:
case Intrinsic::x86_sse_ucomile_ss:
case Intrinsic::x86_sse_ucomigt_ss:
case Intrinsic::x86_sse_ucomige_ss:
case Intrinsic::x86_sse_ucomineq_ss:
case Intrinsic::x86_sse2_comieq_sd:
case Intrinsic::x86_sse2_comilt_sd:
case Intrinsic::x86_sse2_comile_sd:
case Intrinsic::x86_sse2_comigt_sd:
case Intrinsic::x86_sse2_comige_sd:
case Intrinsic::x86_sse2_comineq_sd:
case Intrinsic::x86_sse2_ucomieq_sd:
case Intrinsic::x86_sse2_ucomilt_sd:
case Intrinsic::x86_sse2_ucomile_sd:
case Intrinsic::x86_sse2_ucomigt_sd:
case Intrinsic::x86_sse2_ucomige_sd:
case Intrinsic::x86_sse2_ucomineq_sd: {
unsigned Opc = 0;
ISD::CondCode CC = ISD::SETCC_INVALID;
switch (IntNo) {
default: break;
case Intrinsic::x86_sse_comieq_ss:
case Intrinsic::x86_sse2_comieq_sd:
Opc = X86ISD::COMI;
CC = ISD::SETEQ;
break;
case Intrinsic::x86_sse_comilt_ss:
case Intrinsic::x86_sse2_comilt_sd:
Opc = X86ISD::COMI;
CC = ISD::SETLT;
break;
case Intrinsic::x86_sse_comile_ss:
case Intrinsic::x86_sse2_comile_sd:
Opc = X86ISD::COMI;
CC = ISD::SETLE;
break;
case Intrinsic::x86_sse_comigt_ss:
case Intrinsic::x86_sse2_comigt_sd:
Opc = X86ISD::COMI;
CC = ISD::SETGT;
break;
case Intrinsic::x86_sse_comige_ss:
case Intrinsic::x86_sse2_comige_sd:
Opc = X86ISD::COMI;
CC = ISD::SETGE;
break;
case Intrinsic::x86_sse_comineq_ss:
case Intrinsic::x86_sse2_comineq_sd:
Opc = X86ISD::COMI;
CC = ISD::SETNE;
break;
case Intrinsic::x86_sse_ucomieq_ss:
case Intrinsic::x86_sse2_ucomieq_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETEQ;
break;
case Intrinsic::x86_sse_ucomilt_ss:
case Intrinsic::x86_sse2_ucomilt_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETLT;
break;
case Intrinsic::x86_sse_ucomile_ss:
case Intrinsic::x86_sse2_ucomile_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETLE;
break;
case Intrinsic::x86_sse_ucomigt_ss:
case Intrinsic::x86_sse2_ucomigt_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETGT;
break;
case Intrinsic::x86_sse_ucomige_ss:
case Intrinsic::x86_sse2_ucomige_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETGE;
break;
case Intrinsic::x86_sse_ucomineq_ss:
case Intrinsic::x86_sse2_ucomineq_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETNE;
break;
}
unsigned X86CC;
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
DAG.getConstant(X86CC, MVT::i8), Cond);
return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
}
// Fix vector shift instructions where the last operand is a non-immediate
// i32 value.
case Intrinsic::x86_sse2_pslli_w:
case Intrinsic::x86_sse2_pslli_d:
case Intrinsic::x86_sse2_pslli_q:
case Intrinsic::x86_sse2_psrli_w:
case Intrinsic::x86_sse2_psrli_d:
case Intrinsic::x86_sse2_psrli_q:
case Intrinsic::x86_sse2_psrai_w:
case Intrinsic::x86_sse2_psrai_d:
case Intrinsic::x86_mmx_pslli_w:
case Intrinsic::x86_mmx_pslli_d:
case Intrinsic::x86_mmx_pslli_q:
case Intrinsic::x86_mmx_psrli_w:
case Intrinsic::x86_mmx_psrli_d:
case Intrinsic::x86_mmx_psrli_q:
case Intrinsic::x86_mmx_psrai_w:
case Intrinsic::x86_mmx_psrai_d: {
SDValue ShAmt = Op.getOperand(2);
if (isa<ConstantSDNode>(ShAmt))
return SDValue();
unsigned NewIntNo = 0;
MVT ShAmtVT = MVT::v4i32;
switch (IntNo) {
case Intrinsic::x86_sse2_pslli_w:
NewIntNo = Intrinsic::x86_sse2_psll_w;
break;
case Intrinsic::x86_sse2_pslli_d:
NewIntNo = Intrinsic::x86_sse2_psll_d;
break;
case Intrinsic::x86_sse2_pslli_q:
NewIntNo = Intrinsic::x86_sse2_psll_q;
break;
case Intrinsic::x86_sse2_psrli_w:
NewIntNo = Intrinsic::x86_sse2_psrl_w;
break;
case Intrinsic::x86_sse2_psrli_d:
NewIntNo = Intrinsic::x86_sse2_psrl_d;
break;
case Intrinsic::x86_sse2_psrli_q:
NewIntNo = Intrinsic::x86_sse2_psrl_q;
break;
case Intrinsic::x86_sse2_psrai_w:
NewIntNo = Intrinsic::x86_sse2_psra_w;
break;
case Intrinsic::x86_sse2_psrai_d:
NewIntNo = Intrinsic::x86_sse2_psra_d;
break;
default: {
ShAmtVT = MVT::v2i32;
switch (IntNo) {
case Intrinsic::x86_mmx_pslli_w:
NewIntNo = Intrinsic::x86_mmx_psll_w;
break;
case Intrinsic::x86_mmx_pslli_d:
NewIntNo = Intrinsic::x86_mmx_psll_d;
break;
case Intrinsic::x86_mmx_pslli_q:
NewIntNo = Intrinsic::x86_mmx_psll_q;
break;
case Intrinsic::x86_mmx_psrli_w:
NewIntNo = Intrinsic::x86_mmx_psrl_w;
break;
case Intrinsic::x86_mmx_psrli_d:
NewIntNo = Intrinsic::x86_mmx_psrl_d;
break;
case Intrinsic::x86_mmx_psrli_q:
NewIntNo = Intrinsic::x86_mmx_psrl_q;
break;
case Intrinsic::x86_mmx_psrai_w:
NewIntNo = Intrinsic::x86_mmx_psra_w;
break;
case Intrinsic::x86_mmx_psrai_d:
NewIntNo = Intrinsic::x86_mmx_psra_d;
break;
default: abort(); // Can't reach here.
}
break;
}
}
MVT VT = Op.getValueType();
ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
DAG.getConstant(NewIntNo, MVT::i32),
Op.getOperand(1), ShAmt);
}
}
}
SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
// Depths > 0 not supported yet!
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
return SDValue();
// Just load the return address
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
}
SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
MVT VT = Op.getValueType();
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, DAG.getEntryNode(), FrameAddr, NULL, 0);
return FrameAddr;
}
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
SelectionDAG &DAG) {
return DAG.getIntPtrConstant(2*TD->getPointerSize());
}
SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
{
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
getPointerTy());
unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
DAG.getIntPtrConstant(-TD->getPointerSize()));
StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr);
MF.getRegInfo().addLiveOut(StoreAddrReg);
return DAG.getNode(X86ISD::EH_RETURN,
MVT::Other,
Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
}
SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
SelectionDAG &DAG) {
SDValue Root = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
const X86InstrInfo *TII =
((X86TargetMachine&)getTargetMachine()).getInstrInfo();
if (Subtarget->is64Bit()) {
SDValue OutChains[6];
// Large code-model.
const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r);
const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
// Load the pointer to the nested function into R11.
unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
SDValue Addr = Trmp;
OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
TrmpAddr, 0);
Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
// Load the 'nest' parameter value into R10.
// R10 is specified in X86CallingConv.td
OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
TrmpAddr, 10);
Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
// Jump to the nested function.
OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
TrmpAddr, 20);
unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
TrmpAddr, 22);
SDValue Ops[] =
{ Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
return DAG.getMergeValues(Ops, 2);
} else {
const Function *Func =
cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
unsigned CC = Func->getCallingConv();
unsigned NestReg;
switch (CC) {
default:
assert(0 && "Unsupported calling convention");
case CallingConv::C:
case CallingConv::X86_StdCall: {
// Pass 'nest' parameter in ECX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::ECX;
// Check that ECX wasn't needed by an 'inreg' parameter.
const FunctionType *FTy = Func->getFunctionType();
const AttrListPtr &Attrs = Func->getAttributes();
if (!Attrs.isEmpty() && !Func->isVarArg()) {
unsigned InRegCount = 0;
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I, ++Idx)
if (Attrs.paramHasAttr(Idx, Attribute::InReg))
// FIXME: should only count parameters that are lowered to integers.
InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
if (InRegCount > 2) {
cerr << "Nest register in use - reduce number of inreg parameters!\n";
abort();
}
}
break;
}
case CallingConv::X86_FastCall:
case CallingConv::Fast:
// Pass 'nest' parameter in EAX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::EAX;
break;
}
SDValue OutChains[4];
SDValue Addr, Disp;
Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Trmp, TrmpAddr, 0);
Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
TrmpAddr, 5, false, 1);
Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
SDValue Ops[] =
{ Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
return DAG.getMergeValues(Ops, 2);
}
}
SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
/*
The rounding mode is in bits 11:10 of FPSR, and has the following
settings:
00 Round to nearest
01 Round to -inf
10 Round to +inf
11 Round to 0
FLT_ROUNDS, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
To perform the conversion, we do:
(((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
*/
MachineFunction &MF = DAG.getMachineFunction();
const TargetMachine &TM = MF.getTarget();
const TargetFrameInfo &TFI = *TM.getFrameInfo();
unsigned StackAlignment = TFI.getStackAlignment();
MVT VT = Op.getValueType();
// Save FP Control Word to stack slot
int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
DAG.getEntryNode(), StackSlot);
// Load FP Control Word from stack slot
SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
// Transform as necessary
SDValue CWD1 =
DAG.getNode(ISD::SRL, MVT::i16,
DAG.getNode(ISD::AND, MVT::i16,
CWD, DAG.getConstant(0x800, MVT::i16)),
DAG.getConstant(11, MVT::i8));
SDValue CWD2 =
DAG.getNode(ISD::SRL, MVT::i16,
DAG.getNode(ISD::AND, MVT::i16,
CWD, DAG.getConstant(0x400, MVT::i16)),
DAG.getConstant(9, MVT::i8));
SDValue RetVal =
DAG.getNode(ISD::AND, MVT::i16,
DAG.getNode(ISD::ADD, MVT::i16,
DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
DAG.getConstant(1, MVT::i16)),
DAG.getConstant(3, MVT::i16));
return DAG.getNode((VT.getSizeInBits() < 16 ?
ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
}
SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getValueType();
MVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
Op = Op.getOperand(0);
if (VT == MVT::i8) {
// Zero extend to i32 since there is not an i8 bsr.
OpVT = MVT::i32;
Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
}
// Issue a bsr (scan bits in reverse) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
Op = DAG.getNode(X86ISD::BSR, VTs, Op);
// If src is zero (i.e. bsr sets ZF), returns NumBits.
SmallVector<SDValue, 4> Ops;
Ops.push_back(Op);
Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
Ops.push_back(Op.getValue(1));
Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
// Finally xor with NumBits-1.
Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
if (VT == MVT::i8)
Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
return Op;
}
SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getValueType();
MVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
Op = Op.getOperand(0);
if (VT == MVT::i8) {
OpVT = MVT::i32;
Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
}
// Issue a bsf (scan bits forward) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
Op = DAG.getNode(X86ISD::BSF, VTs, Op);
// If src is zero (i.e. bsf sets ZF), returns NumBits.
SmallVector<SDValue, 4> Ops;
Ops.push_back(Op);
Ops.push_back(DAG.getConstant(NumBits, OpVT));
Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
Ops.push_back(Op.getValue(1));
Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
if (VT == MVT::i8)
Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
return Op;
}
SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
MVT T = Op.getValueType();
unsigned Reg = 0;
unsigned size = 0;
switch(T.getSimpleVT()) {
default:
assert(false && "Invalid value type!");
case MVT::i8: Reg = X86::AL; size = 1; break;
case MVT::i16: Reg = X86::AX; size = 2; break;
case MVT::i32: Reg = X86::EAX; size = 4; break;
case MVT::i64:
if (Subtarget->is64Bit()) {
Reg = X86::RAX; size = 8;
} else //Should go away when LowerType stuff lands
return SDValue(ExpandATOMIC_CMP_SWAP(Op.getNode(), DAG), 0);
break;
};
SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
Op.getOperand(2), SDValue());
SDValue Ops[] = { cpIn.getValue(0),
Op.getOperand(1),
Op.getOperand(3),
DAG.getTargetConstant(size, MVT::i8),
cpIn.getValue(1) };
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
SDValue cpOut =
DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
return cpOut;
}
SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op,
SelectionDAG &DAG) {
MVT T = Op->getValueType(0);
assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
SDValue cpInL, cpInH;
cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
DAG.getConstant(0, MVT::i32));
cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
DAG.getConstant(1, MVT::i32));
cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
cpInL, SDValue());
cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
cpInH, cpInL.getValue(1));
SDValue swapInL, swapInH;
swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
DAG.getConstant(0, MVT::i32));
swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
DAG.getConstant(1, MVT::i32));
swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
swapInL, cpInH.getValue(1));
swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
swapInH, swapInL.getValue(1));
SDValue Ops[] = { swapInH.getValue(0),
Op->getOperand(1),
swapInH.getValue(1) };
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
Result.getValue(1));
SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
cpOutL.getValue(2));
SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
SDValue Vals[2] = { ResultVal, cpOutH.getValue(1) };
return DAG.getMergeValues(Vals, 2).getNode();
}
SDNode* X86TargetLowering::ExpandATOMIC_LOAD_SUB(SDNode* Op,
SelectionDAG &DAG) {
MVT T = Op->getValueType(0);
SDValue negOp = DAG.getNode(ISD::SUB, T,
DAG.getConstant(0, T), Op->getOperand(2));
return DAG.getAtomic((T==MVT::i8 ? ISD::ATOMIC_LOAD_ADD_8:
T==MVT::i16 ? ISD::ATOMIC_LOAD_ADD_16:
T==MVT::i32 ? ISD::ATOMIC_LOAD_ADD_32:
T==MVT::i64 ? ISD::ATOMIC_LOAD_ADD_64: 0),
Op->getOperand(0), Op->getOperand(1), negOp,
cast<AtomicSDNode>(Op)->getSrcValue(),
cast<AtomicSDNode>(Op)->getAlignment()).getNode();
}
/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default: assert(0 && "Should not custom lower this!");
case ISD::ATOMIC_CMP_SWAP_8: return LowerCMP_SWAP(Op,DAG);
case ISD::ATOMIC_CMP_SWAP_16: return LowerCMP_SWAP(Op,DAG);
case ISD::ATOMIC_CMP_SWAP_32: return LowerCMP_SWAP(Op,DAG);
case ISD::ATOMIC_CMP_SWAP_64: return LowerCMP_SWAP(Op,DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: return LowerShift(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::FABS: return LowerFABS(Op, DAG);
case ISD::FNEG: return LowerFNEG(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::VSETCC: return LowerVSETCC(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::CALL: return LowerCALL(Op, DAG);
case ISD::RET: return LowerRET(Op, DAG);
case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::FRAME_TO_ARGS_OFFSET:
return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
case ISD::CTLZ: return LowerCTLZ(Op, DAG);
case ISD::CTTZ: return LowerCTTZ(Op, DAG);
// FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
case ISD::READCYCLECOUNTER:
return SDValue(ExpandREADCYCLECOUNTER(Op.getNode(), DAG), 0);
}
}
/// ReplaceNodeResults - Replace a node with an illegal result type
/// with a new node built out of custom code.
SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
switch (N->getOpcode()) {
default: assert(0 && "Should not custom lower this!");
case ISD::FP_TO_SINT: return ExpandFP_TO_SINT(N, DAG);
case ISD::READCYCLECOUNTER: return ExpandREADCYCLECOUNTER(N, DAG);
case ISD::ATOMIC_CMP_SWAP_64: return ExpandATOMIC_CMP_SWAP(N, DAG);
case ISD::ATOMIC_LOAD_SUB_8: return ExpandATOMIC_LOAD_SUB(N,DAG);
case ISD::ATOMIC_LOAD_SUB_16: return ExpandATOMIC_LOAD_SUB(N,DAG);
case ISD::ATOMIC_LOAD_SUB_32: return ExpandATOMIC_LOAD_SUB(N,DAG);
case ISD::ATOMIC_LOAD_SUB_64: return ExpandATOMIC_LOAD_SUB(N,DAG);
}
}
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return NULL;
case X86ISD::BSF: return "X86ISD::BSF";
case X86ISD::BSR: return "X86ISD::BSR";
case X86ISD::SHLD: return "X86ISD::SHLD";
case X86ISD::SHRD: return "X86ISD::SHRD";
case X86ISD::FAND: return "X86ISD::FAND";
case X86ISD::FOR: return "X86ISD::FOR";
case X86ISD::FXOR: return "X86ISD::FXOR";
case X86ISD::FSRL: return "X86ISD::FSRL";
case X86ISD::FILD: return "X86ISD::FILD";
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
case X86ISD::FLD: return "X86ISD::FLD";
case X86ISD::FST: return "X86ISD::FST";
case X86ISD::CALL: return "X86ISD::CALL";
case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
case X86ISD::CMP: return "X86ISD::CMP";
case X86ISD::COMI: return "X86ISD::COMI";
case X86ISD::UCOMI: return "X86ISD::UCOMI";
case X86ISD::SETCC: return "X86ISD::SETCC";
case X86ISD::CMOV: return "X86ISD::CMOV";
case X86ISD::BRCOND: return "X86ISD::BRCOND";
case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
case X86ISD::Wrapper: return "X86ISD::Wrapper";
case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
case X86ISD::PINSRB: return "X86ISD::PINSRB";
case X86ISD::PINSRW: return "X86ISD::PINSRW";
case X86ISD::FMAX: return "X86ISD::FMAX";
case X86ISD::FMIN: return "X86ISD::FMIN";
case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
case X86ISD::FRCP: return "X86ISD::FRCP";
case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
case X86ISD::VSHL: return "X86ISD::VSHL";
case X86ISD::VSRL: return "X86ISD::VSRL";
case X86ISD::CMPPD: return "X86ISD::CMPPD";
case X86ISD::CMPPS: return "X86ISD::CMPPS";
case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
}
}
// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const {
// X86 supports extremely general addressing modes.
// X86 allows a sign-extended 32-bit immediate field as a displacement.
if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
return false;
if (AM.BaseGV) {
// We can only fold this if we don't need an extra load.
if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
return false;
// X86-64 only supports addr of globals in small code model.
if (Subtarget->is64Bit()) {
if (getTargetMachine().getCodeModel() != CodeModel::Small)
return false;
// If lower 4G is not available, then we must use rip-relative addressing.
if (AM.BaseOffs || AM.Scale > 1)
return false;
}
}
switch (AM.Scale) {
case 0:
case 1:
case 2:
case 4:
case 8:
// These scales always work.
break;
case 3:
case 5:
case 9:
// These scales are formed with basereg+scalereg. Only accept if there is
// no basereg yet.
if (AM.HasBaseReg)
return false;
break;
default: // Other stuff never works.
return false;
}
return true;
}
bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
if (!Ty1->isInteger() || !Ty2->isInteger())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
if (NumBits1 <= NumBits2)
return false;
return Subtarget->is64Bit() || NumBits1 < 64;
}
bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
if (NumBits1 <= NumBits2)
return false;
return Subtarget->is64Bit() || NumBits1 < 64;
}
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
// Only do shuffles on 128-bit vector types for now.
if (VT.getSizeInBits() == 64) return false;
return (Mask.getNode()->getNumOperands() <= 4 ||
isIdentityMask(Mask.getNode()) ||
isIdentityMask(Mask.getNode(), true) ||
isSplatMask(Mask.getNode()) ||
isPSHUFHW_PSHUFLWMask(Mask.getNode()) ||
X86::isUNPCKLMask(Mask.getNode()) ||
X86::isUNPCKHMask(Mask.getNode()) ||
X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
}
bool
X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
MVT EVT, SelectionDAG &DAG) const {
unsigned NumElts = BVOps.size();
// Only do shuffles on 128-bit vector types for now.
if (EVT.getSizeInBits() * NumElts == 64) return false;
if (NumElts == 2) return true;
if (NumElts == 4) {
return (isMOVLMask(&BVOps[0], 4) ||
isCommutedMOVL(&BVOps[0], 4, true) ||
isSHUFPMask(&BVOps[0], 4) ||
isCommutedSHUFP(&BVOps[0], 4));
}
return false;
}
//===----------------------------------------------------------------------===//
// X86 Scheduler Hooks
//===----------------------------------------------------------------------===//
// private utility function
MachineBasicBlock *
X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
MachineBasicBlock *MBB,
unsigned regOpc,
unsigned immOpc,
unsigned LoadOpc,
unsigned CXchgOpc,
unsigned copyOpc,
unsigned notOpc,
unsigned EAXreg,
TargetRegisterClass *RC,
bool invSrc) {
// For the atomic bitwise operator, we generate
// thisMBB:
// newMBB:
// ld t1 = [bitinstr.addr]
// op t2 = t1, [bitinstr.val]
// mov EAX = t1
// lcs dest = [bitinstr.addr], t2 [EAX is implicit]
// bz newMBB
// fallthrough -->nextMBB
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
/// First build the CFG
MachineFunction *F = MBB->getParent();
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB);
// Move all successors to thisMBB to nextMBB
nextMBB->transferSuccessors(thisMBB);
// Update thisMBB to fall through to newMBB
thisMBB->addSuccessor(newMBB);
// newMBB jumps to itself and fall through to nextMBB
newMBB->addSuccessor(nextMBB);
newMBB->addSuccessor(newMBB);
// Insert instructions into newMBB based on incoming instruction
assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
MachineOperand& destOper = bInstr->getOperand(0);
MachineOperand* argOpers[6];
int numArgs = bInstr->getNumOperands() - 1;
for (int i=0; i < numArgs; ++i)
argOpers[i] = &bInstr->getOperand(i+1);
// x86 address has 4 operands: base, index, scale, and displacement
int lastAddrIndx = 3; // [0,3]
int valArgIndx = 4;
unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
unsigned tt = F->getRegInfo().createVirtualRegister(RC);
if (invSrc) {
MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
}
else
tt = t1;
unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
assert((argOpers[valArgIndx]->isRegister() ||
argOpers[valArgIndx]->isImmediate()) &&
"invalid operand");
if (argOpers[valArgIndx]->isRegister())
MIB = BuildMI(newMBB, TII->get(regOpc), t2);
else
MIB = BuildMI(newMBB, TII->get(immOpc), t2);
MIB.addReg(tt);
(*MIB).addOperand(*argOpers[valArgIndx]);
MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
MIB.addReg(t1);
MIB = BuildMI(newMBB, TII->get(CXchgOpc));
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
MIB.addReg(t2);
assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
(*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
MIB.addReg(EAXreg);
// insert branch
BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
return nextMBB;
}
// private utility function
MachineBasicBlock *
X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
MachineBasicBlock *MBB,
unsigned cmovOpc) {
// For the atomic min/max operator, we generate
// thisMBB:
// newMBB:
// ld t1 = [min/max.addr]
// mov t2 = [min/max.val]
// cmp t1, t2
// cmov[cond] t2 = t1
// mov EAX = t1
// lcs dest = [bitinstr.addr], t2 [EAX is implicit]
// bz newMBB
// fallthrough -->nextMBB
//
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
/// First build the CFG
MachineFunction *F = MBB->getParent();
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB);
// Move all successors to thisMBB to nextMBB
nextMBB->transferSuccessors(thisMBB);
// Update thisMBB to fall through to newMBB
thisMBB->addSuccessor(newMBB);
// newMBB jumps to newMBB and fall through to nextMBB
newMBB->addSuccessor(nextMBB);
newMBB->addSuccessor(newMBB);
// Insert instructions into newMBB based on incoming instruction
assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
MachineOperand& destOper = mInstr->getOperand(0);
MachineOperand* argOpers[6];
int numArgs = mInstr->getNumOperands() - 1;
for (int i=0; i < numArgs; ++i)
argOpers[i] = &mInstr->getOperand(i+1);
// x86 address has 4 operands: base, index, scale, and displacement
int lastAddrIndx = 3; // [0,3]
int valArgIndx = 4;
unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
// We only support register and immediate values
assert((argOpers[valArgIndx]->isRegister() ||
argOpers[valArgIndx]->isImmediate()) &&
"invalid operand");
unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
if (argOpers[valArgIndx]->isRegister())
MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
else
MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
(*MIB).addOperand(*argOpers[valArgIndx]);
MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
MIB.addReg(t1);
MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
MIB.addReg(t1);
MIB.addReg(t2);
// Generate movc
unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
MIB.addReg(t2);
MIB.addReg(t1);
// Cmp and exchange if none has modified the memory location
MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
MIB.addReg(t3);
assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
(*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
MIB.addReg(X86::EAX);
// insert branch
BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now.
return nextMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
switch (MI->getOpcode()) {
default: assert(false && "Unexpected instr type to insert");
case X86::CMOV_FR32:
case X86::CMOV_FR64:
case X86::CMOV_V4F32:
case X86::CMOV_V2F64:
case X86::CMOV_V2I64: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
unsigned Opc =
X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi node for the select.
sinkMBB->transferSuccessors(BB);
// Add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return BB;
}
case X86::FP32_TO_INT16_IN_MEM:
case X86::FP32_TO_INT32_IN_MEM:
case X86::FP32_TO_INT64_IN_MEM:
case X86::FP64_TO_INT16_IN_MEM:
case X86::FP64_TO_INT32_IN_MEM:
case X86::FP64_TO_INT64_IN_MEM:
case X86::FP80_TO_INT16_IN_MEM:
case X86::FP80_TO_INT32_IN_MEM:
case X86::FP80_TO_INT64_IN_MEM: {
// Change the floating point control register to use "round towards zero"
// mode when truncating to an integer value.
MachineFunction *F = BB->getParent();
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
// Load the old value of the high byte of the control word...
unsigned OldCW =
F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
// Set the high part to be round to zero...
addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
.addImm(0xC7F);
// Reload the modified control word now...
addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
// Restore the memory image of control word to original value
addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
.addReg(OldCW);
// Get the X86 opcode to use.
unsigned Opc;
switch (MI->getOpcode()) {
default: assert(0 && "illegal opcode!");
case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
}
X86AddressMode AM;
MachineOperand &Op = MI->getOperand(0);
if (Op.isRegister()) {
AM.BaseType = X86AddressMode::RegBase;
AM.Base.Reg = Op.getReg();
} else {
AM.BaseType = X86AddressMode::FrameIndexBase;
AM.Base.FrameIndex = Op.getIndex();
}
Op = MI->getOperand(1);
if (Op.isImmediate())
AM.Scale = Op.getImm();
Op = MI->getOperand(2);
if (Op.isImmediate())
AM.IndexReg = Op.getImm();
Op = MI->getOperand(3);
if (Op.isGlobalAddress()) {
AM.GV = Op.getGlobal();
} else {
AM.Disp = Op.getImm();
}
addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
.addReg(MI->getOperand(4).getReg());
// Reload the original control word now.
addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return BB;
}
case X86::ATOMAND32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
X86::AND32ri, X86::MOV32rm,
X86::LCMPXCHG32, X86::MOV32rr,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass);
case X86::ATOMOR32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
X86::OR32ri, X86::MOV32rm,
X86::LCMPXCHG32, X86::MOV32rr,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass);
case X86::ATOMXOR32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
X86::XOR32ri, X86::MOV32rm,
X86::LCMPXCHG32, X86::MOV32rr,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass);
case X86::ATOMNAND32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
X86::AND32ri, X86::MOV32rm,
X86::LCMPXCHG32, X86::MOV32rr,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass, true);
case X86::ATOMMIN32:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
case X86::ATOMMAX32:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
case X86::ATOMUMIN32:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
case X86::ATOMUMAX32:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
case X86::ATOMAND16:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
X86::AND16ri, X86::MOV16rm,
X86::LCMPXCHG16, X86::MOV16rr,
X86::NOT16r, X86::AX,
X86::GR16RegisterClass);
case X86::ATOMOR16:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
X86::OR16ri, X86::MOV16rm,
X86::LCMPXCHG16, X86::MOV16rr,
X86::NOT16r, X86::AX,
X86::GR16RegisterClass);
case X86::ATOMXOR16:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
X86::XOR16ri, X86::MOV16rm,
X86::LCMPXCHG16, X86::MOV16rr,
X86::NOT16r, X86::AX,
X86::GR16RegisterClass);
case X86::ATOMNAND16:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
X86::AND16ri, X86::MOV16rm,
X86::LCMPXCHG16, X86::MOV16rr,
X86::NOT16r, X86::AX,
X86::GR16RegisterClass, true);
case X86::ATOMMIN16:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
case X86::ATOMMAX16:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
case X86::ATOMUMIN16:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
case X86::ATOMUMAX16:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
case X86::ATOMAND8:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
X86::AND8ri, X86::MOV8rm,
X86::LCMPXCHG8, X86::MOV8rr,
X86::NOT8r, X86::AL,
X86::GR8RegisterClass);
case X86::ATOMOR8:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
X86::OR8ri, X86::MOV8rm,
X86::LCMPXCHG8, X86::MOV8rr,
X86::NOT8r, X86::AL,
X86::GR8RegisterClass);
case X86::ATOMXOR8:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
X86::XOR8ri, X86::MOV8rm,
X86::LCMPXCHG8, X86::MOV8rr,
X86::NOT8r, X86::AL,
X86::GR8RegisterClass);
case X86::ATOMNAND8:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
X86::AND8ri, X86::MOV8rm,
X86::LCMPXCHG8, X86::MOV8rr,
X86::NOT8r, X86::AL,
X86::GR8RegisterClass, true);
// FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
case X86::ATOMAND64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
X86::AND64ri32, X86::MOV64rm,
X86::LCMPXCHG64, X86::MOV64rr,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass);
case X86::ATOMOR64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
X86::OR64ri32, X86::MOV64rm,
X86::LCMPXCHG64, X86::MOV64rr,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass);
case X86::ATOMXOR64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
X86::XOR64ri32, X86::MOV64rm,
X86::LCMPXCHG64, X86::MOV64rr,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass);
case X86::ATOMNAND64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
X86::AND64ri32, X86::MOV64rm,
X86::LCMPXCHG64, X86::MOV64rr,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass, true);
case X86::ATOMMIN64:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
case X86::ATOMMAX64:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
case X86::ATOMUMIN64:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
case X86::ATOMUMAX64:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
}
}
//===----------------------------------------------------------------------===//
// X86 Optimization Hooks
//===----------------------------------------------------------------------===//
void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
const APInt &Mask,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
unsigned Opc = Op.getOpcode();
assert((Opc >= ISD::BUILTIN_OP_END ||
Opc == ISD::INTRINSIC_WO_CHAIN ||
Opc == ISD::INTRINSIC_W_CHAIN ||
Opc == ISD::INTRINSIC_VOID) &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
switch (Opc) {
default: break;
case X86ISD::SETCC:
KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
Mask.getBitWidth() - 1);
break;
}
}
/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
/// node is a GlobalAddress + offset.
bool X86TargetLowering::isGAPlusOffset(SDNode *N,
GlobalValue* &GA, int64_t &Offset) const{
if (N->getOpcode() == X86ISD::Wrapper) {
if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
return true;
}
}
return TargetLowering::isGAPlusOffset(N, GA, Offset);
}
static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
const TargetLowering &TLI) {
GlobalValue *GV;
int64_t Offset = 0;
if (TLI.isGAPlusOffset(Base, GV, Offset))
return (GV->getAlignment() >= N && (Offset % N) == 0);
// DAG combine handles the stack object case.
return false;
}
static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
unsigned NumElems, MVT EVT,
SDNode *&Base,
SelectionDAG &DAG, MachineFrameInfo *MFI,
const TargetLowering &TLI) {
Base = NULL;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Idx = PermMask.getOperand(i);
if (Idx.getOpcode() == ISD::UNDEF) {
if (!Base)
return false;
continue;
}
SDValue Elt = DAG.getShuffleScalarElt(N, i);
if (!Elt.getNode() ||
(Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
return false;
if (!Base) {
Base = Elt.getNode();
if (Base->getOpcode() == ISD::UNDEF)
return false;
continue;
}
if (Elt.getOpcode() == ISD::UNDEF)
continue;
if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
EVT.getSizeInBits()/8, i, MFI))
return false;
}
return true;
}
/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
/// if the load addresses are consecutive, non-overlapping, and in the right
/// order.
static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
const TargetLowering &TLI) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MVT VT = N->getValueType(0);
MVT EVT = VT.getVectorElementType();
SDValue PermMask = N->getOperand(2);
unsigned NumElems = PermMask.getNumOperands();
SDNode *Base = NULL;
if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
DAG, MFI, TLI))
return SDValue();
LoadSDNode *LD = cast<LoadSDNode>(Base);
if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
LD->getSrcValueOffset(), LD->isVolatile());
return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
LD->getSrcValueOffset(), LD->isVolatile(),
LD->getAlignment());
}
/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget,
const TargetLowering &TLI) {
unsigned NumOps = N->getNumOperands();
// Ignore single operand BUILD_VECTOR.
if (NumOps == 1)
return SDValue();
MVT VT = N->getValueType(0);
MVT EVT = VT.getVectorElementType();
if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
// We are looking for load i64 and zero extend. We want to transform
// it before legalizer has a chance to expand it. Also look for i64
// BUILD_PAIR bit casted to f64.
return SDValue();
// This must be an insertion into a zero vector.
SDValue HighElt = N->getOperand(1);
if (!isZeroNode(HighElt))
return SDValue();
// Value must be a load.
SDNode *Base = N->getOperand(0).getNode();
if (!isa<LoadSDNode>(Base)) {
if (Base->getOpcode() != ISD::BIT_CONVERT)
return SDValue();
Base = Base->getOperand(0).getNode();
if (!isa<LoadSDNode>(Base))
return SDValue();
}
// Transform it into VZEXT_LOAD addr.
LoadSDNode *LD = cast<LoadSDNode>(Base);
// Load must not be an extload.
if (LD->getExtensionType() != ISD::NON_EXTLOAD)
return SDValue();
SDVTList Tys = DAG.getVTList(VT, MVT::Other);
SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, Tys, Ops, 2);
DAG.ReplaceAllUsesOfValueWith(SDValue(Base, 1), ResNode.getValue(1));
return ResNode;
}
/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
SDValue Cond = N->getOperand(0);
// If we have SSE[12] support, try to form min/max nodes.
if (Subtarget->hasSSE2() &&
(N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
if (Cond.getOpcode() == ISD::SETCC) {
// Get the LHS/RHS of the select.
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
unsigned Opcode = 0;
if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
switch (CC) {
default: break;
case ISD::SETOLE: // (X <= Y) ? X : Y -> min
case ISD::SETULE:
case ISD::SETLE:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
case ISD::SETLT:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOGT: // (X > Y) ? X : Y -> max
case ISD::SETUGT:
case ISD::SETGT:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
case ISD::SETGE:
Opcode = X86ISD::FMAX;
break;
}
} else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
switch (CC) {
default: break;
case ISD::SETOGT: // (X > Y) ? Y : X -> min
case ISD::SETUGT:
case ISD::SETGT:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
case ISD::SETGE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOLE: // (X <= Y) ? Y : X -> max
case ISD::SETULE:
case ISD::SETLE:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
case ISD::SETLT:
Opcode = X86ISD::FMAX;
break;
}
}
if (Opcode)
return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
}
}
return SDValue();
}
/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
// Turn load->store of MMX types into GPR load/stores. This avoids clobbering
// the FP state in cases where an emms may be missing.
// A preferable solution to the general problem is to figure out the right
// places to insert EMMS. This qualifies as a quick hack.
StoreSDNode *St = cast<StoreSDNode>(N);
if (St->getValue().getValueType().isVector() &&
St->getValue().getValueType().getSizeInBits() == 64 &&
isa<LoadSDNode>(St->getValue()) &&
!cast<LoadSDNode>(St->getValue())->isVolatile() &&
St->getChain().hasOneUse() && !St->isVolatile()) {
SDNode* LdVal = St->getValue().getNode();
LoadSDNode *Ld = 0;
int TokenFactorIndex = -1;
SmallVector<SDValue, 8> Ops;
SDNode* ChainVal = St->getChain().getNode();
// Must be a store of a load. We currently handle two cases: the load
// is a direct child, and it's under an intervening TokenFactor. It is
// possible to dig deeper under nested TokenFactors.
if (ChainVal == LdVal)
Ld = cast<LoadSDNode>(St->getChain());
else if (St->getValue().hasOneUse() &&
ChainVal->getOpcode() == ISD::TokenFactor) {
for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
if (ChainVal->getOperand(i).getNode() == LdVal) {
TokenFactorIndex = i;
Ld = cast<LoadSDNode>(St->getValue());
} else
Ops.push_back(ChainVal->getOperand(i));
}
}
if (Ld) {
// If we are a 64-bit capable x86, lower to a single movq load/store pair.
if (Subtarget->is64Bit()) {
SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
Ld->getBasePtr(), Ld->getSrcValue(),
Ld->getSrcValueOffset(), Ld->isVolatile(),
Ld->getAlignment());
SDValue NewChain = NewLd.getValue(1);
if (TokenFactorIndex != -1) {
Ops.push_back(NewChain);
NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
Ops.size());
}
return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
St->getSrcValue(), St->getSrcValueOffset(),
St->isVolatile(), St->getAlignment());
}
// Otherwise, lower to two 32-bit copies.
SDValue LoAddr = Ld->getBasePtr();
SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
DAG.getConstant(4, MVT::i32));
SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
Ld->getSrcValue(), Ld->getSrcValueOffset(),
Ld->isVolatile(), Ld->getAlignment());
SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
Ld->isVolatile(),
MinAlign(Ld->getAlignment(), 4));
SDValue NewChain = LoLd.getValue(1);
if (TokenFactorIndex != -1) {
Ops.push_back(LoLd);
Ops.push_back(HiLd);
NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
Ops.size());
}
LoAddr = St->getBasePtr();
HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
DAG.getConstant(4, MVT::i32));
SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
St->getSrcValue(), St->getSrcValueOffset(),
St->isVolatile(), St->getAlignment());
SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
St->getSrcValue(),
St->getSrcValueOffset() + 4,
St->isVolatile(),
MinAlign(St->getAlignment(), 4));
return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
}
}
return SDValue();
}
/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
/// X86ISD::FXOR nodes.
static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
// F[X]OR(0.0, x) -> x
// F[X]OR(x, 0.0) -> x
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
if (C->getValueAPF().isPosZero())
return N->getOperand(0);
return SDValue();
}
/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
// FAND(0.0, x) -> 0.0
// FAND(x, 0.0) -> 0.0
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
if (C->getValueAPF().isPosZero())
return N->getOperand(0);
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
return SDValue();
}
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default: break;
case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
case ISD::BUILD_VECTOR:
return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
case X86ISD::FXOR:
case X86ISD::FOR: return PerformFORCombine(N, DAG);
case X86ISD::FAND: return PerformFANDCombine(N, DAG);
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// X86 Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
X86TargetLowering::ConstraintType
X86TargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'A':
case 'f':
case 'r':
case 'R':
case 'l':
case 'q':
case 'Q':
case 'x':
case 'y':
case 'Y':
return C_RegisterClass;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// LowerXConstraint - try to replace an X constraint, which matches anything,
/// with another that has more specific requirements based on the type of the
/// corresponding operand.
const char *X86TargetLowering::
LowerXConstraint(MVT ConstraintVT) const {
// FP X constraints get lowered to SSE1/2 registers if available, otherwise
// 'f' like normal targets.
if (ConstraintVT.isFloatingPoint()) {
if (Subtarget->hasSSE2())
return "Y";
if (Subtarget->hasSSE1())
return "x";
}
return TargetLowering::LowerXConstraint(ConstraintVT);
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
char Constraint,
bool hasMemory,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result(0, 0);
switch (Constraint) {
default: break;
case 'I':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 31) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
return;
case 'J':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 63) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
return;
case 'N':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 255) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
return;
case 'i': {
// Literal immediates are always ok.
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType());
break;
}
// If we are in non-pic codegen mode, we allow the address of a global (with
// an optional displacement) to be used with 'i'.
GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
int64_t Offset = 0;
// Match either (GA) or (GA+C)
if (GA) {
Offset = GA->getOffset();
} else if (Op.getOpcode() == ISD::ADD) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
if (C && GA) {
Offset = GA->getOffset()+C->getZExtValue();
} else {
C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
if (C && GA)
Offset = GA->getOffset()+C->getZExtValue();
else
C = 0, GA = 0;
}
}
if (GA) {
if (hasMemory)
Op = LowerGlobalAddress(GA->getGlobal(), DAG);
else
Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
Offset);
Result = Op;
break;
}
// Otherwise, not valid for this mode.
return;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
Ops, DAG);
}
std::vector<unsigned> X86TargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
// FIXME: not handling fp-stack yet!
switch (Constraint[0]) { // GCC X86 Constraint Letters
default: break; // Unknown constraint letter
case 'A': // EAX/EDX
if (VT == MVT::i32 || VT == MVT::i64)
return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
break;
case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
case 'Q': // Q_REGS
if (VT == MVT::i32)
return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
else if (VT == MVT::i16)
return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
else if (VT == MVT::i8)
return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
else if (VT == MVT::i64)
return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
break;
}
}
return std::vector<unsigned>();
}
std::pair<unsigned, const TargetRegisterClass*>
X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const {
// First, see if this is a constraint that directly corresponds to an LLVM
// register class.
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
case 'r': // GENERAL_REGS
case 'R': // LEGACY_REGS
case 'l': // INDEX_REGS
if (VT == MVT::i64 && Subtarget->is64Bit())
return std::make_pair(0U, X86::GR64RegisterClass);
if (VT == MVT::i32)
return std::make_pair(0U, X86::GR32RegisterClass);
else if (VT == MVT::i16)
return std::make_pair(0U, X86::GR16RegisterClass);
else if (VT == MVT::i8)
return std::make_pair(0U, X86::GR8RegisterClass);
break;
case 'f': // FP Stack registers.
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
// value to the correct fpstack register class.
if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, X86::RFP32RegisterClass);
if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, X86::RFP64RegisterClass);
return std::make_pair(0U, X86::RFP80RegisterClass);
case 'y': // MMX_REGS if MMX allowed.
if (!Subtarget->hasMMX()) break;
return std::make_pair(0U, X86::VR64RegisterClass);
break;
case 'Y': // SSE_REGS if SSE2 allowed
if (!Subtarget->hasSSE2()) break;
// FALL THROUGH.
case 'x': // SSE_REGS if SSE1 allowed
if (!Subtarget->hasSSE1()) break;
switch (VT.getSimpleVT()) {
default: break;
// Scalar SSE types.
case MVT::f32:
case MVT::i32:
return std::make_pair(0U, X86::FR32RegisterClass);
case MVT::f64:
case MVT::i64:
return std::make_pair(0U, X86::FR64RegisterClass);
// Vector types.
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
return std::make_pair(0U, X86::VR128RegisterClass);
}
break;
}
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass*> Res;
Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
// Not found as a standard register?
if (Res.second == 0) {
// GCC calls "st(0)" just plain "st".
if (StringsEqualNoCase("{st}", Constraint)) {
Res.first = X86::ST0;
Res.second = X86::RFP80RegisterClass;
}
return Res;
}
// Otherwise, check to see if this is a register class of the wrong value
// type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
// turn into {ax},{dx}.
if (Res.second->hasType(VT))
return Res; // Correct type already, nothing to do.
// All of the single-register GCC register classes map their values onto
// 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
// really want an 8-bit or 32-bit register, map to the appropriate register
// class and return the appropriate register.
if (Res.second == X86::GR16RegisterClass) {
if (VT == MVT::i8) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::AL; break;
case X86::DX: DestReg = X86::DL; break;
case X86::CX: DestReg = X86::CL; break;
case X86::BX: DestReg = X86::BL; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = Res.second = X86::GR8RegisterClass;
}
} else if (VT == MVT::i32) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::EAX; break;
case X86::DX: DestReg = X86::EDX; break;
case X86::CX: DestReg = X86::ECX; break;
case X86::BX: DestReg = X86::EBX; break;
case X86::SI: DestReg = X86::ESI; break;
case X86::DI: DestReg = X86::EDI; break;
case X86::BP: DestReg = X86::EBP; break;
case X86::SP: DestReg = X86::ESP; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = Res.second = X86::GR32RegisterClass;
}
} else if (VT == MVT::i64) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::RAX; break;
case X86::DX: DestReg = X86::RDX; break;
case X86::CX: DestReg = X86::RCX; break;
case X86::BX: DestReg = X86::RBX; break;
case X86::SI: DestReg = X86::RSI; break;
case X86::DI: DestReg = X86::RDI; break;
case X86::BP: DestReg = X86::RBP; break;
case X86::SP: DestReg = X86::RSP; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = Res.second = X86::GR64RegisterClass;
}
}
} else if (Res.second == X86::FR32RegisterClass ||
Res.second == X86::FR64RegisterClass ||
Res.second == X86::VR128RegisterClass) {
// Handle references to XMM physical registers that got mapped into the
// wrong class. This can happen with constraints like {xmm0} where the
// target independent register mapper will just pick the first match it can
// find, ignoring the required type.
if (VT == MVT::f32)
Res.second = X86::FR32RegisterClass;
else if (VT == MVT::f64)
Res.second = X86::FR64RegisterClass;
else if (X86::VR128RegisterClass->hasType(VT))
Res.second = X86::VR128RegisterClass;
}
return Res;
}